JP2000109381A - Lightweight pottery product and its production - Google Patents

Lightweight pottery product and its production

Info

Publication number
JP2000109381A
JP2000109381A JP11200007A JP20000799A JP2000109381A JP 2000109381 A JP2000109381 A JP 2000109381A JP 11200007 A JP11200007 A JP 11200007A JP 20000799 A JP20000799 A JP 20000799A JP 2000109381 A JP2000109381 A JP 2000109381A
Authority
JP
Japan
Prior art keywords
silicate
coating layer
hollow
product
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11200007A
Other languages
Japanese (ja)
Other versions
JP3411242B2 (en
Inventor
Tadashi Kawai
紀 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20000799A priority Critical patent/JP3411242B2/en
Priority to US09/491,346 priority patent/US6251814B1/en
Priority to CN00105512A priority patent/CN1107038C/en
Publication of JP2000109381A publication Critical patent/JP2000109381A/en
Application granted granted Critical
Publication of JP3411242B2 publication Critical patent/JP3411242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances

Abstract

PROBLEM TO BE SOLVED: To produce a lightweight pottery product whose specific gravity is smaller than that of an ordinary pottery. SOLUTION: This pottery product is produced by molding a kneaded material obtained by adding a lightening agent in clay consisting essentially of silica and alumina into a desired shape and firing them. The lightening agent is a fine spherical hollow ceramic powder consisting essentially of silica and alumina and having a hollow structure and has the surface coated with an inorganic coating layer consisting essentially of a silicon compound (e.g. sodium silicate, potassium silicate or the like). The powder is incorporated in a body in the ratio of 20-80 wt.% in the uniformly dispersed state and a structure that adjacent hollow ceramic powders are bound to each other with the inorganic coating layer exists in the body. In this method for producing the pottery product, the clay in mixed with the hollow ceramic powder, the mixture is with water, kneaded and molded into the desired shape, then dried and fired.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般的な陶磁器の
比重(2.3〜2.5)よりも小さな比重(例えば1.
3以下)を有する高強度の軽量陶磁器製品に関する。
又、本発明は、このような軽量化された陶磁器製品を製
造するための方法に関するものでもある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific gravity smaller than that of general ceramics (2.3 to 2.5).
3) or less.
The present invention also relates to a method for producing such a lightweight ceramic product.

【0002】[0002]

【従来の技術】今日、人間生活の広い分野でセラミッ
ク、磁器、陶器は深く貢献しているが、その特性上の欠
点の一つに比重が大きいことが挙げられる。一般的に、
これらの比重は2.3〜2.5であり、その材質の長所
から見て、この重量は重大な問題で、軽量化が強く望ま
れている。又、主として建材や美術陶芸壁画の分野にお
いては、美しい釉面を有し、自由に彫造でき、しかも着
色が自由に行え、耐候性及び耐熱性が良好な陶磁器を軽
量化することができれば、更にその利用度が高まること
が期待される。
2. Description of the Related Art Today, ceramics, porcelain, and ceramics have contributed deeply in a wide field of human life, but one of the drawbacks in their characteristics is that they have a large specific gravity. Typically,
These specific gravities are 2.3 to 2.5, and in view of the advantages of the materials, this weight is a serious problem, and weight reduction is strongly desired. Also, mainly in the field of building materials and art ceramic murals, if it is possible to reduce the weight of ceramics that have a beautiful glaze surface, can be carved freely, and can be colored freely, and have good weather resistance and heat resistance, It is expected that the usage will further increase.

【0003】ところで、これまでに陶磁器の軽量化を図
るために、いくつかの方策がとられてきた。その一つ
は、(A)発泡剤を混入し焼成により気泡を形成するこ
とによる方法、また(B)本体陶磁器の中に既に発泡さ
せた発泡剤(例えばパーライト等)の混入による方法、
もう一つは(C)可燃材(例えば粉末状のポリエステル
や木くず等)を混入し高温で気化させ、その存在位置に
空隙を生じさせる方法があった。(A)(B)の場合に
は、セメント剤に発泡剤を混入して多孔質素材(カオリ
ンやセリサイト等)に応用することができるが、粘土及
びスリップに発泡剤を混入して気孔空隙を作る場合に、
気孔の均一化と平均化が困難である。又、(C)の場合
には、炉内温度が上昇するにつれガス化が起こり、場合
によっては発火が起こって、磁器本体が破壊されること
がある。従って、皿等厚みが20mm以下のものを製造
することは可能であるが、それ以上の厚みのものは不可
能である。又、いずれも強度の点において非常に低いも
のしかできない。更に、一般的な磁器の場合には、成形
後の乾燥時及び焼成時に大きな収縮が起こるという問題
点もあり、収縮が大きいことによって、焼成後の製品の
大きさにバラツキが見られる。
By the way, several measures have been taken to reduce the weight of ceramics. One of them is a method of (A) mixing a foaming agent to form air bubbles by firing, (B) a method of mixing a foaming agent (for example, pearlite, etc.) already foamed in the main body ceramic,
Another method is to mix (C) a combustible material (for example, powdered polyester or wood chips), vaporize the mixture at a high temperature, and generate a void at the existing position. In the case of (A) and (B), a foaming agent can be mixed with a cement material and applied to a porous material (such as kaolin or sericite). When making
It is difficult to equalize and average pores. In the case of (C), gasification occurs as the furnace temperature rises, and in some cases, ignition occurs and the porcelain body may be destroyed. Therefore, it is possible to manufacture a dish or the like having a thickness of 20 mm or less, but it is impossible to manufacture a dish having a thickness greater than 20 mm. In addition, in each case, only very low strength can be obtained. Further, in the case of general porcelain, there is a problem that large shrinkage occurs during drying and firing after molding. Due to the large shrinkage, the size of the product after firing varies.

【0004】そこで、このような問題点を解決して軽量
陶磁器や軽量陶板を製造する方法として、例えば特開昭
63−203555号公報や特開平9−52781号公
報には、原土に市販の粉末状セラミック中空体(シラス
バルーン、ガラスバルーン等)を混入し、押出成形、ロ
クロ成形あるいはプレス加工により成形し、得られた成
形体を焼成する方法が記載されている。しかしながら、
単に市販のセラミック中空体を混入するだけでは、例え
ば多孔質のシラスバルーン等の場合には、焼成後の強度
が弱く、連続気泡となるために吸水性があるものしか得
られず、又、ガラスバルーンの場合には、焼成後の強度
は大きくなるが、それ自体に吸水性がないために、土練
機による押出成形では水分が均一に行き渡らず、時間が
経つにつれ分離が起こり、成形上においても困難で、し
かも焼成後の製品の品質にバラツキが見られる。又、プ
レス加工においてもプレス圧力が不均一にかかるため、
いかに強度が高いセラミック中空体を使用しても、その
中空構造が圧力に耐えられずに部分的に破壊され、吸水
したり、強度や比重等にもバラツキが出るので、大きな
平面を有する成形体(陶板)の製造や大量生産には不向
きである。尚、ガラスバルーン等を使用した場合には、
釉薬ののりが不均一になる可能性もある。
[0004] In order to solve such problems and to manufacture lightweight ceramics and lightweight ceramic plates, for example, JP-A-63-203555 and JP-A-9-52781 disclose commercially available methods. A method is described in which a powdery ceramic hollow body (such as a shirasu balloon or a glass balloon) is mixed, molded by extrusion molding, rotomolding or press working, and the obtained molded body is fired. However,
By simply mixing a commercially available ceramic hollow body, for example, in the case of a porous shirasu balloon or the like, the strength after firing is low, and only those having a water absorbability due to being open cells can be obtained. In the case of balloons, the strength after firing is large, but since there is no water absorption in itself, moisture is not uniformly distributed in extrusion molding by a clay kneader, separation occurs over time, and on molding, Is difficult, and the quality of the product after firing varies. Also, in the press working, the pressing pressure is unevenly applied,
No matter how strong the ceramic hollow body is, even if the hollow structure cannot withstand the pressure, it is partially destroyed and absorbs water, and the strength and specific gravity vary. It is not suitable for manufacturing (mass plate) or mass production. When using a glass balloon or the like,
Glaze glue may be uneven.

【0005】本来、陶土は、原料と水分を充分に混練
し、時間と共に熟成されて可塑性が増すなどの理由で、
制作上においても製品としてもその完成度が高くなる
が、吸水性のないセラミック中空体を混入すると、安定
した混練が困難であるという問題点があった。又、これ
を改善すべく、可塑性のないものには市販の有機バイン
ダー等を使用する場合があるが、多種多様なものがあ
り、現状では用途や製品のスペックによってその経験や
実験によって使い分ける必要があり、手間がかかる上、
バインダー自体が高価で、しかも焼成時にはガス化し、
製品自体に連続気泡を作るため、高強度体を作るために
必要な独立気泡のみの焼成体を製造することが難しく、
吸水率も高くなるので、その使用範囲が制限されること
になる。更に、無機バインダーとして珪酸ソーダ(水ガ
ラス)等を原土混練時に混入する方法も提案されてきて
いるが、このような方法では、均一な分散を達成するこ
とが難しく、又、過度の混練によりセラミック中空体が
破壊される等の問題点もあり、この方法もまた均一で安
定した製品の供給が困難である。その上、このような製
法を用いて得られた焼成後の製品を破壊して顕微鏡で表
面を拡大してみると、その破断面ではセラミック中空体
と結合剤(陶土など)とが剥離しているのではなく、ほ
とんどがセラミック中空体自体が破壊されて2つに割れ
ていることがわかり、よって、製品の強度向上を図るに
は、セラミック中空体自体を更に強化することが必要で
ある。
[0005] Originally, porcelain clay is kneaded sufficiently with the raw materials and water, and is aged over time to increase plasticity.
Although the degree of perfection is high both in production and as a product, there is a problem that if a ceramic hollow body having no water absorption is mixed, stable kneading is difficult. To improve this, commercially available organic binders and the like may be used for those that are not plastic, but there are a wide variety of them, and at present, it is necessary to use them properly based on experience and experiments depending on the application and product specifications. Yes, it takes time,
The binder itself is expensive and gasifies during firing,
It is difficult to manufacture a fired body with only closed cells necessary to make a high-strength body because it creates open cells in the product itself,
Since the water absorption is also high, the range of use is limited. Further, a method has been proposed in which sodium silicate (water glass) or the like is mixed as an inorganic binder at the time of kneading the raw earth. However, with such a method, it is difficult to achieve uniform dispersion. There are also problems such as breakage of the ceramic hollow body, and it is also difficult with this method to supply a uniform and stable product. Moreover, when the fired product obtained by using such a manufacturing method is destroyed and the surface is enlarged with a microscope, the ceramic hollow body and the binder (such as clay) are peeled off at the fractured surface. Rather, it was found that the hollow ceramic body itself was mostly broken and broken into two pieces. Therefore, in order to improve the strength of the product, it is necessary to further strengthen the hollow ceramic body itself.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、陶磁
器の有する特質を失うことなく、成形性が良く、安定し
た品質及び寸法安定性を有し、通常の陶磁器よりも比重
が小さく、強度の高い軽量陶磁器製品を提供することに
ある。本発明者は、シリカとアルミナを主成分とし、か
つ中空構造を有する微小球状の中空セラミック粉末(市
販品)の表面(球面)に、珪酸化合物を主成分とする無
機コーティング層を形成させて二重構造としたものを、
シリカとアルミナを主成分とする原料粘土の中にを特定
比率にて混合し、焼成によって上記無機コーティング層
を溶融させて、陶磁器製品の素地中に、隣接する中空セ
ラミック粉末同士が無機コーティング層により結着した
構造を形成させることで、上記の課題がいずれも効果的
に解決でき、一般的な磁器製品よりも焼成後の比重が小
さく、強度の高い陶磁器が得られることを見い出して、
本発明を完成した。
SUMMARY OF THE INVENTION An object of the present invention is to improve the formability, maintain stable quality and dimensional stability without losing the characteristics of ceramics, have a lower specific gravity than ordinary ceramics, and improve strength. To provide high-quality, lightweight ceramic products. The present inventors have formed an inorganic coating layer mainly composed of a silicate compound on the surface (spherical surface) of a fine spherical hollow ceramic powder (commercially available) having silica and alumina as main components and having a hollow structure. What was made a heavy structure,
The raw material clay mainly composed of silica and alumina is mixed at a specific ratio, and the inorganic coating layer is melted by firing, and in the ceramic product base, adjacent hollow ceramic powders are separated by the inorganic coating layer. By forming a bonded structure, all of the above problems can be effectively solved, and the specific gravity after firing is smaller than that of general porcelain products, and it has been found that ceramics with high strength can be obtained.
The present invention has been completed.

【0007】[0007]

【課題を解決するための手段】本発明の軽量陶磁器製品
は、原料としてのシリカとアルミナを主成分とする粘土
類に軽量化剤を添加、混練して得られた混練物を、所望
の形状に成形した後、焼成を行うことにより製造された
陶磁器製品であって、上記軽量化剤が、シリカとアルミ
ナを主成分とし、かつ中空構造を有する微小球状の中空
セラミック粉末であり、該中空セラミック粉末の表面
が、珪酸化合物を主成分とする無機コーティング層によ
って被覆されており、上記中空セラミック粉末が、上記
陶磁器製品の素地中に20〜80重量%の含有割合で均
一に分散された状態で含まれており、しかも、当該素地
中に、隣接する中空セラミック粉末同士が上記無機コー
ティング層により結着した構造が存在していることを特
徴とする。又、本発明は、上記の軽量陶磁器製品におい
て、上記無機コーティング層を構成する主成分が、珪酸
ナトリウム、珪酸カリウム、珪酸カルシウム、珪酸リチ
ウム、珪酸アンチモン、珪酸アミン及び珪酸セシウムか
ら成る群より選ばれたものであることを特徴とするもの
でもある。更に、本発明は、上記の軽量陶磁器製品にお
いて、上記中空セラミック粉末の平均粒径が45〜25
0μmであり、しかもその融点が1200℃以上であ
り、上記無機コーティング層の厚み:上記中空セラミッ
ク粉末の球面肉厚が、0.5:1〜2:1であることを
特徴とするものでもある。
The lightweight ceramic product of the present invention is obtained by adding a lightening agent to clays mainly composed of silica and alumina as raw materials and kneading the kneaded material into a desired shape. A ceramic product manufactured by firing into a ceramic product, wherein the lightening agent is a fine spherical hollow ceramic powder having silica and alumina as main components and having a hollow structure. The surface of the powder is covered with an inorganic coating layer containing a silicate compound as a main component, and the hollow ceramic powder is uniformly dispersed in the ceramic product base at a content of 20 to 80% by weight. And a structure in which adjacent hollow ceramic powders are bonded to each other by the inorganic coating layer. Further, the present invention provides the lightweight ceramic product, wherein the main component constituting the inorganic coating layer is selected from the group consisting of sodium silicate, potassium silicate, calcium silicate, lithium silicate, antimony silicate, amine silicate and cesium silicate. It is also characterized by the fact that Further, the present invention provides the above lightweight ceramic product, wherein the hollow ceramic powder has an average particle size of 45 to 25.
0 μm, and the melting point is 1200 ° C. or more, and the thickness of the inorganic coating layer: the spherical wall thickness of the hollow ceramic powder is 0.5: 1 to 2: 1. .

【0008】更に、本発明は、このような軽量陶磁器製
品を製造するための方法でもあり、軽量化剤の添加によ
って、通常の陶磁器の比重よりも小さな比重を有する軽
量陶磁器製品を製造するための方法であって、軽量化剤
の添加によって、通常の陶磁器の比重よりも小さな比重
を有する軽量陶磁器製品を製造するための方法であっ
て、シリカとアルミナを主成分とし、かつ中空構造を有
する微小球状の中空セラミック粉末で、該中空セラミッ
ク粉末の表面が、珪酸化合物を主成分とする無機コーテ
ィング層により被覆されているものを準備した後、シリ
カとアルミナを主成分とする粘土類と、該中空セラミッ
ク粉末の含有量が20〜80重量%となるようにして混
合し、更に水を加えた後、均質になるまで混練を行い、
得られた混練物を所望の形状に成形し、乾燥を行った
後、上記中空セラミック粉末の融点よりも低く、かつ上
記無機コーティング層が溶融し得る温度にて焼成を行う
ことによって、上記陶磁器製品の素地中に、隣接する中
空セラミック粉末同士が上記無機コーティング層により
結着した構造を形成させることを特徴とする。又、本発
明は、上記の製造方法において、上記無機コーティング
層を構成する主成分が、珪酸ナトリウム、珪酸カリウ
ム、珪酸カルシウム、珪酸リチウム、珪酸アンチモン、
珪酸アミン及び珪酸セシウムから成る群より選ばれたも
のであることを特徴とするものでもある。更に、本発明
は、上記の製造方法において、上記中空セラミック粉末
として、平均粒径が45〜250μmで、しかもその融
点が1200℃以上であり、上記無機コーティング層の
厚み:上記中空セラミック粉末の球面肉厚が0.5:1
〜2:1であるものを使用することを特徴とするもので
もある。
Further, the present invention is also a method for producing such a lightweight porcelain product, which comprises adding a lightening agent to produce a lightweight porcelain product having a specific gravity smaller than that of ordinary porcelain. A method for producing a lightweight ceramic product having a specific gravity smaller than that of ordinary ceramics by adding a lightening agent, comprising silica and alumina as main components, and having a hollow structure. After preparing a spherical hollow ceramic powder, the surface of which is coated with an inorganic coating layer mainly composed of a silicate compound, clays mainly composed of silica and alumina, After mixing so that the content of the ceramic powder is 20 to 80% by weight, and further adding water, kneading is performed until the mixture becomes homogeneous.
The obtained kneaded material is formed into a desired shape, dried, and then calcined at a temperature lower than the melting point of the hollow ceramic powder, and at which the inorganic coating layer can be melted, thereby obtaining the ceramic product. In the base material, a structure in which adjacent hollow ceramic powders are bound to each other by the inorganic coating layer is formed. Further, in the present invention, the main component constituting the inorganic coating layer may be sodium silicate, potassium silicate, calcium silicate, lithium silicate, antimony silicate,
It is also characterized by being selected from the group consisting of amine silicate and cesium silicate. Further, the present invention provides the above-mentioned production method, wherein the hollow ceramic powder has an average particle size of 45 to 250 μm, a melting point of 1200 ° C. or more, and a thickness of the inorganic coating layer: a spherical surface of the hollow ceramic powder. 0.5: 1 wall thickness
22: 1.

【0009】[0009]

【発明の実施の形態】まず最初に、本発明の軽量陶磁器
製品について説明する。本発明の軽量陶磁器製品は、シ
リカとアルミナを主成分とする粘土類を原料として使用
し、この原料に軽量化剤を添加し、混練を行うことによ
って軽量化剤が粘土中に均質に分散された状態とし、こ
のようにして得られた混練物を、所望の形状に成形した
後、焼成を行うことにより製造されたものであって、本
発明の軽量陶磁器製品においては、軽量化剤として、シ
リカとアルミナを主成分とし、かつ中空構造を有する微
小球状(閉鎖型中空体)の中空セラミック粉末で、該中
空セラミック粉末の表面が、珪酸化合物を主成分とする
無機コーティング層により被覆されているものが使用さ
れており、この中空セラミック粉末は、陶磁器製品の素
地中に20〜80重量%の含有割合で均一に分散された
状態で存在し、隣接する中空セラミック粉末同士のうち
のいくつかは、上記の無機コーティング層の溶融により
互いに結着している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a lightweight ceramic product of the present invention will be described. The lightweight porcelain product of the present invention uses a clay mainly composed of silica and alumina as a raw material, a lightening agent is added to the raw material, and the mixture is kneaded so that the lightening agent is homogeneously dispersed in the clay. The kneaded product obtained in this manner is formed into a desired shape and then fired, and in the lightweight ceramic product of the present invention, as a lightening agent, A micro-spherical (closed hollow body) hollow ceramic powder mainly composed of silica and alumina and having a hollow structure, and the surface of the hollow ceramic powder is coated with an inorganic coating layer mainly composed of a silicate compound. This hollow ceramic powder is present in a state of being uniformly dispersed at a content of 20 to 80% by weight in a ceramic product base, and adjacent hollow ceramic powder is used. Some of each other, are bound to each other by melting of the inorganic coating layer.

【0010】本発明の軽量陶磁器製品中に軽量化剤とし
て含まれている中空セラミック粉末の芯材(球状のセラ
ミック中空体)は、シリカとアルミナを主成分とするも
のであるために耐熱性に優れており、中空構造を有する
ことによって比重が小さく(水の比重よりも小さく、例
えば0.5g/cm3 以下)、このような芯材を含む中
空セラミック粉末の添加による効果としては、軽量化が
達成される、収縮率が低減され寸法安定性の良い製品が
得られる、混練物の流動性が向上する、製品の強度が向
上するなどが挙げられる。本発明においては、成形性や
強度などの点から、上記の中空セラミック粉末の平均粒
径が45〜250μmであることが好ましく、80〜1
75μmであることが更に好ましく、100〜130μ
mであることが最も好ましい。又、この中空セラミック
粉末の融点は、焼成時に中空構造が破壊されないように
焼成温度よりも高ければ良く、融点が1200℃以上で
あるものを通常使用するが、約1200〜1300℃の
高温で焼成を行う場合には、融点が1500〜1600
℃程度である中空セラミック粉末を使用することが好ま
しい。尚、本発明では、上記中空セラミック粉末の芯材
として、セメント・石膏用のフィラーである市販品を利
用することができ、例えばオーストラリアE社製の高強
度軽量フィラー(商品名:イースフィアーズ、SL15
0、SL180、SLGなど)を使用することができ
る。
The core material (spherical ceramic hollow body) of the hollow ceramic powder contained as a lightening agent in the lightweight ceramic product of the present invention has heat resistance because it is mainly composed of silica and alumina. It is excellent and has a low specific gravity due to having a hollow structure (smaller than the specific gravity of water, for example, 0.5 g / cm 3 or less). The effect of the addition of such a hollow ceramic powder containing a core material is weight reduction. Is achieved, a product having a reduced shrinkage and good dimensional stability is obtained, the fluidity of the kneaded material is improved, and the strength of the product is improved. In the present invention, the average particle size of the hollow ceramic powder is preferably 45 to 250 μm, and 80 to 1 from the viewpoint of moldability and strength.
75 μm, more preferably 100 to 130 μm.
m is most preferred. The melting point of the hollow ceramic powder may be higher than the sintering temperature so that the hollow structure is not destroyed at the time of sintering. Usually, a powder having a melting point of 1200 ° C. or more is used. When performing, the melting point is 1500-1600
It is preferable to use a hollow ceramic powder having a temperature of about ° C. In the present invention, as the core material of the hollow ceramic powder, a commercially available product that is a filler for cement and gypsum can be used. For example, a high-strength lightweight filler manufactured by Australia E Company (trade names: East Spheres, SL15)
0, SL180, SLG, etc.).

【0011】そして、本発明では、中空セラミック粉末
の表面が、珪酸化合物を主成分とする無機コーティング
層によって被覆されており、この無機コーティング層を
構成する主剤としては、例えば珪酸ナトリウム、珪酸カ
リウム、珪酸カルシウム、珪酸リチウム、珪酸アンチモ
ン、珪酸アミン、珪酸セシウムなどが適しており、特に
珪酸アルカリ塩が有効である。本発明にて最も好ましい
コーティング層の具体的組成としては、珪酸ナトリウム
(水ガラス)に、アルミナ、硼酸、炭酸ソーダ、酸化カ
ルシウム、酸化カリウムを混合したものが挙げられる。
[0011] In the present invention, the surface of the hollow ceramic powder is coated with an inorganic coating layer containing a silicate compound as a main component. Examples of a main agent constituting the inorganic coating layer include sodium silicate, potassium silicate, and the like. Calcium silicate, lithium silicate, antimony silicate, amine silicate, cesium silicate and the like are suitable, and alkali silicate is particularly effective. The most preferable specific composition of the coating layer in the present invention is a mixture of sodium silicate (water glass), alumina, boric acid, sodium carbonate, calcium oxide, and potassium oxide.

【0012】上記の無機コーティング層が被覆された中
空セラミック粉末を製造するには、実質的に吸水性を有
しない高強度セラミック中空体(耐熱温度1300℃以
上)の外周面に、噴霧コーティング方式などにより表面
コーティングを行うのが一般的であるが、この無機コー
ティング層の厚みは、芯材中空セラミックの肉厚の50
〜200%(即ち、無機コーティング層の厚み:中空セ
ラミック粉末の球面肉厚=0.5:1〜2:1)が最も
効果的である。これは、上記厚みの割合が下限値よりも
小さくなると補強剤としての効果がうすれる傾向が見ら
れ、逆に、上記の上限値よりも大きくなると主たる目的
である軽量化の効果がうすれる傾向が見られるためであ
る。
In order to produce a hollow ceramic powder coated with the above inorganic coating layer, a spray coating method or the like is applied to the outer peripheral surface of a high-strength ceramic hollow body (heat-resistant temperature of 1300 ° C. or higher) having substantially no water absorption. In general, the inorganic coating layer has a thickness of 50% of the thickness of the core hollow ceramic.
200200% (that is, the thickness of the inorganic coating layer: the spherical wall thickness of the hollow ceramic powder = 0.5: 1 to 2: 1) is most effective. This indicates that the effect as a reinforcing agent tends to be weakened when the ratio of the thickness is smaller than the lower limit, and conversely, the effect of weight reduction, which is the main purpose when the ratio is larger than the upper limit, tends to be weakened. Is seen.

【0013】この無機コーティング層は、市販のセラミ
ック中空体にコーティングを行った直後に60℃以上の
温度で乾燥させ、脱水後に700〜800℃で素焼きを
することで、多孔質構造が形成され、その後の成形時の
混練やプレス加工の圧力に耐え得る強度となる。そし
て、これによって得られた二層構造の中空セラミックを
他の陶磁原土等と混合し、上記の中空セラミックの耐熱
温度以下の温度で、しかも上記無機コーティング層が溶
融する温度(例えば約1250℃〜1300℃)で焼成
を行うと、芯材中空セラミックはそのまま溶融せずに残
り、多孔質のセラミック層はその位置で溶融し、ガラス
化して隣接して位置しているセラミック中空体(芯材)
同士を結着させる強化剤となり、しかも吸水防止剤とな
る。
This inorganic coating layer is dried at a temperature of 60 ° C. or more immediately after coating a commercially available hollow ceramic body, and after dehydration, is sintered at 700 to 800 ° C. to form a porous structure. The strength is sufficient to withstand the pressure of kneading and pressing during the subsequent molding. Then, the hollow ceramic having a two-layer structure obtained as described above is mixed with another porcelain clay or the like, and at a temperature lower than the heat resistance temperature of the hollow ceramic and at a temperature at which the inorganic coating layer melts (for example, about 1250 ° C.) When firing is performed at about 1300 ° C.), the core hollow ceramic remains without being melted as it is, and the porous ceramic layer is melted at that position, vitrified and the adjacent ceramic hollow body (core material) is melted. )
It acts as a strengthening agent that binds each other, and also acts as a water absorption inhibitor.

【0014】本発明の陶磁器製品にあっては、上記中空
セラミック粉末が、素地中に20〜80重量%の含有割
合、即ち、粘土:中空セラミック粉末=80〜20:2
0〜80(重量比)にて含まれており、中空セラミック
粉末の含有割合が20重量%未満になると、強度の点で
は問題はないが、軽量化の効果が小さいという欠点があ
り、逆に、中空セラミック粉末の含有割合は80重量%
を越えると、大幅な軽量化は達成できるが、成形が非常
に困難になり、焼成後の製品強度が著しく低下するとい
う欠点がある。製品の実用性や製造コストなどを考慮す
ると、中空セラミック粉末の含有割合は30〜70重量
%が適しており、最も実用的な含有割合は30〜50重
量%(粘土の含有割合が70〜50重量%)である。本
発明の陶磁器製品には、嵩比重の小さな中空セラミック
粉末が素地中に均一に分散された状態で存在しているた
め、焼成後の製品の嵩比重を、中空セラミック粉末を含
まない製品の嵩比重の約1/2〜1/4とすることがで
き、中空セラミック粉末の含有割合を適宜選択すること
によって種々の嵩比重の製品を得ることができるが、一
般的な嵩比重としては約0.5〜1.3g/cm3 であ
る。
In the ceramic product of the present invention, the content of the hollow ceramic powder in the substrate is 20 to 80% by weight, that is, clay: hollow ceramic powder = 80 to 20: 2.
If the content of the hollow ceramic powder is less than 20% by weight, there is no problem in strength, but there is a disadvantage that the effect of weight reduction is small. 80% by weight of hollow ceramic powder
If the ratio exceeds, a significant reduction in weight can be achieved, but there is a drawback that molding becomes extremely difficult and the product strength after firing is significantly reduced. Considering the practicality of the product and the production cost, the content of the hollow ceramic powder is suitably 30 to 70% by weight, and the most practical content is 30 to 50% by weight (the content of the clay is 70 to 50%). % By weight). In the ceramic product of the present invention, since the hollow ceramic powder having a small bulk specific gravity is present in a state of being uniformly dispersed in the base material, the bulk specific gravity of the fired product is reduced by the bulk of the product containing no hollow ceramic powder. The specific gravity can be set to about 1/2 to 1/4, and by appropriately selecting the content ratio of the hollow ceramic powder, products having various bulk specific gravities can be obtained. 0.5 to 1.3 g / cm 3 .

【0015】一方、本発明の軽量陶磁器製品を製造する
のに使用される粘土類は、特に限定されるものではない
が、カオリン、セリサイト、木節粘土、半磁器(カオリ
ンと木節との混合物)などが特に好ましい。このうち、
木節粘土とは、第三紀鮮新世前期の層状に堆積した粘土
であり、主に微細石カオリン鉱物から成り、石英、長
石、チタン鉱物なども少量含んでおり、可塑性が大き
く、その耐火度はSK30〜34であり、木節粘土を原
料として使用した場合の利点としては、可塑性が高く成
形性が向上する、低コストである、釉薬(石灰釉、土灰
釉など)の定着が安定する、釉薬を多種の中から選択で
きる、品質的に安定した製品の提供が可能になる、など
であり、その他の陶土による配合も可能である。
On the other hand, the clays used for producing the lightweight ceramic product of the present invention are not particularly limited, but include kaolin, sericite, kibushi clay, semi-porcelain (a mixture of kaolin and kibushi). Mixtures) are particularly preferred. this house,
Kibushi clay is a layered clay of the early Pliocene, mainly composed of fine stone kaolin minerals, contains small amounts of quartz, feldspar, titanium minerals, etc., has high plasticity, and its fire resistance Are SK30 to 34, and the advantages of using Kibushi clay as a raw material include high plasticity and improved moldability, low cost, and stable fixing of glaze (lime glaze, clay ash glaze, etc.). In addition, the glaze can be selected from a variety of types, and it is possible to provide a stable product in quality.

【0016】又、本発明では、上記粘土類と中空セラミ
ック粉末を混練する際に、水と共に、成型時に混練物の
可塑性を増加させるためにバインダーが添加されても良
く、混練物を押出成型する場合には、アルミナ系粉末等
に適合するように配合された市販の押出用バインダーが
使用できる。適した押出用バインダーとしては、ユケン
工業株式会社製のセランダー(商品名)が挙げられ、こ
のようなバインダーには、乾燥クラックを防止する働き
もある。ただし、このようなバインダー成分は、前述の
無機コーティング層が表面被覆された中空セラミック粉
末が素地中に分散された本発明の軽量陶磁器製品では、
任意に添加される成分であって、無機コーティング層を
有しない市販の中空セラミック粉末を使用する場合のよ
うに必須成分ではない。
In the present invention, when kneading the clay and the hollow ceramic powder, a binder may be added together with water to increase the plasticity of the kneaded material at the time of molding, and the kneaded material is extruded. In this case, a commercially available binder for extrusion formulated to be compatible with the alumina-based powder or the like can be used. Suitable extrusion binders include Celander (trade name) manufactured by Yuken Industry Co., Ltd. Such binders also have the function of preventing dry cracks. However, such a binder component is, in the lightweight ceramic product of the present invention in which the hollow ceramic powder coated with the above-mentioned inorganic coating layer is dispersed in a base material,
It is an optional component and is not an essential component as in the case of using a commercially available hollow ceramic powder having no inorganic coating layer.

【0017】次に、上述の軽量陶磁器製品を製造するた
めの本発明の製造方法について説明する。本発明の製造
方法においては、まず、前述の中空セラミック粉末と粘
土とを、中空セラミック粉末の含有量が20〜80重量
%となるようにして予め粉末状態で混合し、これに更に
水を加えた後、均質になるまで混練を行い、成形に適し
た硬さ及び粘度に調整する。そして、得られた混練物を
所望の形状に成形するが、この際、成形方法は特に限定
されるものではなく、鋳込成形であっても「ろくろ成
形」であってもプレス成形であっても良い。この際、例
えば土粘機による押出成形を行っても良い。
Next, a manufacturing method of the present invention for manufacturing the above lightweight ceramic product will be described. In the production method of the present invention, first, the above-mentioned hollow ceramic powder and clay are mixed in a powder state in advance so that the content of the hollow ceramic powder becomes 20 to 80% by weight, and water is further added thereto. After that, kneading is performed until the mixture becomes homogeneous, and the hardness and viscosity are adjusted to be suitable for molding. Then, the obtained kneaded material is molded into a desired shape, but at this time, the molding method is not particularly limited, and it may be cast molding or "rolling wheel molding" or press molding. Is also good. At this time, for example, extrusion molding using a clay viscometer may be performed.

【0018】これらの成形方法を用いて得られた成形体
は、その後、ひび割れができないようにゆっくりと乾燥
させるが、この際、成形体の表面に彫刻を行うことも可
能である。本発明の製法では、乾燥を行って予め水分を
除去した後、素焼きを行い、施釉し、焼成するのが一般
的であるが、製品の表面に装飾を要しない場合には、施
釉を行わなくても良い。本発明の製法において焼成を行
う際の温度(焼成温度)は、前述の中空セラミック粉末
の中空構造が壊れないように、中空セラミック粉末の融
点よりも低い温度で、しかも前記無機コーティング層が
溶融して隣接する層同士が結着するような温度が選択さ
れ、約1200〜1300℃が一般的である。
The molded body obtained by using these molding methods is then dried slowly so as not to cause cracks. At this time, it is also possible to engrave the surface of the molded body. In the production method of the present invention, after drying and removing moisture in advance, it is common to perform unglazing, glaze, and bake, but when no decoration is required on the surface of the product, do not perform glaze. May be. The temperature (firing temperature) at the time of firing in the production method of the present invention is a temperature lower than the melting point of the hollow ceramic powder so that the hollow structure of the hollow ceramic powder is not broken. The temperature is selected such that adjacent layers bind together, and is generally about 1200-1300 ° C.

【0019】本発明の製造方法では、中空セラミック粉
末の外側面に形成された無機コーティング層によって分
散性が改良されるために、無機バインダーとして珪酸ソ
ーダ等を添加する従来の製法のように、過度の混練を必
要とせず、これにより中空セラミック粉末の中空構造の
破壊が避けられ、均質で安定した製品を供給することが
できるという利点がある。以下、本発明の実施例を示し
て本発明を更に詳細に説明するが、本発明はこれらに限
定されるものではない。
In the production method of the present invention, since the dispersibility is improved by the inorganic coating layer formed on the outer surface of the hollow ceramic powder, excessive dispersion is required as in the conventional production method in which sodium silicate or the like is added as an inorganic binder. Does not need to be kneaded, whereby the hollow structure of the hollow ceramic powder is prevented from being broken, and a homogeneous and stable product can be supplied. Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention, but the present invention is not limited thereto.

【0020】[0020]

【実施例】実施例1:本発明の軽量陶磁器製品の製造例
(プレス加工による製造例) 芯材となるセラミック中空体として、オーストラリアE
社製のイースフィアーズSL150(嵩比重0.25〜
0.42、圧縮強度〔40%生存時〕700kgf/c
2 、融点1600℃、粉径20〜150μm)を準備
し、これを分級して粉径150μm前後のものだけを取
り出して使用した。このセラミック中空体の外観は白色
粉末であり、その化学成分は、SiO2 59.7%、A
23 38.3%、Fe23 0.40%、CaO
0.20%、TiO2 1.09%、強熱減量0.30%
である。そして、無機コーティング層形成用のコーティ
ング剤として、珪酸54.9%、酸化ナトリウム12.
6%、酸化カルシウム5.7%、酸化カリウム8.4
%、アルミナ15.8%、硼酸鉛3%に水を加えて粘度
調整した。尚、酸化ナトリウム、酸化カリウムはフラッ
クスの目的で、アルミナは素焼焼成後の強度と気孔率の
調整のために、又、硼酸鉛はフラックスと低温でガラス
粘度を出すためにそれぞれ混合した。この他、コーティ
ング後の硬化剤として、ポリビニルアルコールを少量添
加した。上記のセラミック中空体の表面に、上記のコー
ティング剤をコーティングする際には、上記セラミック
中空体を噴出させながら上記コーティング剤を噴霧コー
ティングし、中空体が落下中に約90〜100℃の熱風
で急速乾燥を行った。この際、均一なコーティング硬化
を得るために、上記の方法を3回繰り返した。上記方法
により、直径150μm、肉厚約10μmのセラミック
中空体の表面に、厚さ約10〜15μmの無機コーティ
ング層が形成されたものを得、これを約800℃で酸化
焼成すると、2層構造の中空セラミック粉末が得られ
た。
EXAMPLES Example 1: Manufacturing example of lightweight ceramic product of the present invention (manufacturing example by pressing) As a ceramic hollow body serving as a core material, Australia E
Yeast Spheres SL150 (bulk specific gravity 0.25 to 0.25)
0.42, compressive strength [at 40% survival] 700 kgf / c
m 2 , melting point 1600 ° C., powder diameter 20-150 μm) were prepared, and only those having a powder diameter of about 150 μm were taken out and used. The appearance of this ceramic hollow body is a white powder, and its chemical component is SiO 2 59.7%, A
l 2 O 3 38.3%, Fe 2 O 3 0.40%, CaO
0.20%, TiO 2 1.09%, ignition loss 0.30%
It is. As a coating agent for forming an inorganic coating layer, 54.9% of silicic acid and sodium oxide 12.
6%, calcium oxide 5.7%, potassium oxide 8.4
%, Alumina 15.8%, and lead borate 3%, water was added to adjust the viscosity. It is to be noted that sodium oxide and potassium oxide were mixed for the purpose of flux, alumina was mixed for adjusting the strength and porosity after firing, and lead borate was mixed with the flux to obtain a glass viscosity at a low temperature. In addition, a small amount of polyvinyl alcohol was added as a curing agent after coating. When coating the above-mentioned coating agent on the surface of the above-mentioned ceramic hollow body, the above-mentioned ceramic hollow body is sprayed and sprayed with the coating agent while ejecting the hollow body, and the hollow body is dropped with hot air of about 90 to 100 ° C while falling. Rapid drying was performed. At this time, the above method was repeated three times in order to obtain uniform coating curing. According to the above method, a ceramic hollow body having a diameter of 150 μm and a thickness of about 10 μm was obtained by forming an inorganic coating layer having a thickness of about 10 to 15 μm on the surface thereof. Was obtained.

【0021】次に、磁器原土のカオリン(上石)と長石
(フェスパー)の混合物と、上記中空セラミック粉末と
を、下記の表1に記載される配合割合(80重量部〜1
0重量部:20重量部〜90重量部)で配合し、これに
水分10重量部を添加しながらニーダーにて混合し、そ
の混合粉体を加圧200kgf/cm2 でプレス加工
し、150×150×10mmの大きさとし、その後、
室温60℃の乾燥室にて約24時間乾燥し、約1280
℃の温度にて酸化焼成し、本発明の軽量陶磁器製品を製
造した。尚、カオリンと長石を混合したのは、焼成後の
製品の強度向上と比重調整のためである。図1は、この
時の焼成温度曲線であり、焼成には金属抵抗30KW電
気炉を使用した。一方、対照として、中空セラミック粉
末を添加しないものも作製した。各配合割合の製品それ
ぞれ10枚について、嵩比重、曲げ強度及び吸水率(冷
間吸水率)を測定した。その測定結果を、以下の表1に
示す。 嵩比重・・・・・乾燥重量/(飽水重量−水中重量) 曲げ強度・・・・3Wl/2bd2 W=破壊荷重、l
=支点間距離、b=試験体の幅、d=試験体の厚さであ
る 冷間吸水率・・・試験体を乾燥し、常温の清水中に24
時間浸漬し、布で拭き、直ちに計測した。〔(飽水重量
−乾燥重量)/乾燥重量〕×100 尚、曲げ強度及び冷間吸水率は、JIS A 5209
によるものである。
Next, a mixture of kaolin (upper stone) and feldspar (fespar) of porcelain raw earth and the above-mentioned hollow ceramic powder were mixed at a mixing ratio (80 parts by weight to 1 part) shown in Table 1 below.
(0 parts by weight: 20 parts by weight to 90 parts by weight), mixed with a kneader while adding 10 parts by weight of water to the mixture, and press-pressed the mixed powder under a pressure of 200 kgf / cm 2 to obtain 150 × It has a size of 150 × 10 mm, and then
Dry for about 24 hours in a drying room at room temperature 60 ° C.
It was baked by oxidation at a temperature of ℃ to produce a lightweight ceramic product of the present invention. The reason for mixing kaolin and feldspar is to improve the strength of the product after firing and to adjust the specific gravity. FIG. 1 shows a firing temperature curve at this time. A 30 KW electric furnace having a metal resistance was used for firing. On the other hand, a control without the addition of the hollow ceramic powder was also prepared as a control. The bulk specific gravity, bending strength, and water absorption (cold water absorption) were measured for 10 products of each mixing ratio. The measurement results are shown in Table 1 below. Bulk density ..... dry weight / (water-saturated weight - weight in water) Bending strength ···· 3Wl / 2bd 2 W = breaking load, l
= Distance between fulcrum points, b = width of test specimen, d = thickness of test specimen Cold water absorption rate: dry the test specimen and place it in clear water at room temperature for 24 hours.
Soaked for hours, wiped with a cloth and measured immediately. [(Saturated weight-dry weight) / dry weight] × 100 The flexural strength and the cold water absorption were measured according to JIS A 5209.
It is due to.

【0022】[0022]

【表1】 [Table 1]

【0023】比較例1:無機コーティング層を有しない
セラミック中空体を使用した場合の軽量陶磁器製品の製
造例 実施例1で使用した同条件のセラミック中空体を、コー
ティングすることなくそのまま、前記の磁器原土(カオ
リンと長石の混合物)と、表2に記載される配合割合に
て混合して混練し、実施例1と同条件で乾燥、焼成し
た。各配合割合の製品それぞれ10枚について、嵩比
重、曲げ強度及び吸水率(冷間吸水率)を測定した。そ
の測定結果を、以下の表2に示す。
Comparative Example 1: Production example of a lightweight ceramic article using a ceramic hollow body having no inorganic coating layer The ceramic hollow body under the same conditions used in Example 1 was used as it was without coating. It was mixed and kneaded with the original soil (a mixture of kaolin and feldspar) at the mixing ratio shown in Table 2, and dried and fired under the same conditions as in Example 1. The bulk specific gravity, bending strength, and water absorption (cold water absorption) were measured for 10 products of each mixing ratio. The measurement results are shown in Table 2 below.

【0024】[0024]

【表2】 [Table 2]

【0025】上記表1及び表2の実験結果からわかるよ
うに、実施例1で得られた本発明の製品の場合には、陶
磁器の軽量化が達成できるだけでなく、セラミック中空
体の表面に無機コーティング層を設けることで、コーテ
ィングの無い場合に比べて著しく強度が高く、吸水率も
1%以下であるために(比較例1では2.4〜3.6
%)、充分な実用性を有する。又、物性の均質性の点で
も、比較例1のものが測定数値のバラツキが大きかった
のに対して、実施例1のものはほとんどバラツキがな
く、均質な物性の製品であった。図2には、前記表1及
び表2の実験結果を基に作成した、嵩比重‐曲げ強度相
関グラフが示されており、このグラフから、実施例1の
本発明の製品は、比較例1の製品よりも、同じ嵩比重で
も強度が大きく、中空セラミック粉末の配合割合を大き
くして嵩比重を小さくしても強度低下が少ないことが理
解される。そして、製品を切断して、その切断面を拡大
して観察してみると、比較例1のものでは表面付近(プ
レス金型接触面)ほどセラミック中空体が破壊されてい
たが、実施例1のものでは、ほとんどセラミック中空体
が破壊されておらず、バルーン状態が維持されているこ
とが確認できた。
As can be seen from the experimental results in Tables 1 and 2, in the case of the product of the present invention obtained in Example 1, not only can the weight of the ceramic be reduced, but also the inorganic hollow By providing the coating layer, the strength is remarkably higher and the water absorption is 1% or less as compared with the case without the coating (2.4 to 3.6 in Comparative Example 1).
%), And has sufficient practicality. Also, in terms of the homogeneity of physical properties, Comparative Example 1 had a large variation in measured values, whereas Example 1 had almost no variation and was a product having uniform physical properties. FIG. 2 shows a bulk specific gravity-bending strength correlation graph prepared based on the experimental results in Tables 1 and 2 above. From this graph, the product of the present invention of Example 1 was compared with Comparative Example 1 It is understood that the strength is higher than that of the product even at the same bulk specific gravity, and that the strength is less reduced even when the bulk ceramic powder is blended in a larger proportion and the bulk specific gravity is reduced. When the product was cut and the cut surface was enlarged and observed, in the case of Comparative Example 1, the ceramic hollow body was more broken near the surface (the contact surface of the press die). In the case of the sample, it was confirmed that the ceramic hollow body was hardly broken and the balloon state was maintained.

【0026】実施例2:押出成形による本発明の軽量陶
磁器製品の製造例 実施例1で得た2層構造の中空セラミック粉末と、可塑
性粘土の木節粘土を、表3に記載される配合割合にて混
合し、これに水分25重量部を加えて混練し、真空土練
機で押出成形を行い、実施例1と同様の大きさの成形体
を10枚ずつ作製した。この際に用いた木節粘土の化学
成分は、SiO2 48.6%、Al2334.1%、
Fe23 1.1%、CaO0.4%、TiO2 0.6
%、MgO0.2%、K2 O0.7%、Na2 O0.2
%である。その後、得られた成形品を約40℃の乾燥室
で10時間、60℃で24時間乾燥し、実施例1と同様
に、電気炉で1280℃にて酸化焼成した。一方、対照
として、中空セラミック粉末を添加しないものも作製し
た。各配合割合の製品それぞれ10枚について、嵩比
重、曲げ強度及び吸水率(冷間吸水率)を測定した。そ
の測定結果を、以下の表3に示す。
Example 2: Production example of the lightweight ceramic product of the present invention by extrusion molding The mixture ratio of the hollow ceramic powder having a two-layer structure obtained in Example 1 and the kibushi clay of the plastic clay is shown in Table 3. , And kneaded by adding 25 parts by weight of water to the mixture, and extruded with a vacuum kneader to produce 10 compacts having the same size as in Example 1. The chemical components of Kibushi clay used at this time were 48.6% of SiO 2 , 34.1% of Al 2 O 3 ,
Fe 2 O 3 1.1%, CaO 0.4%, TiO 2 0.6
%, MgO 0.2%, K 2 O 0.7%, Na 2 O 0.2
%. Thereafter, the obtained molded product was dried in a drying chamber at about 40 ° C. for 10 hours and at 60 ° C. for 24 hours, and oxidized and fired at 1280 ° C. in an electric furnace as in Example 1. On the other hand, a control without the addition of the hollow ceramic powder was also prepared as a control. The bulk specific gravity, bending strength, and water absorption (cold water absorption) were measured for 10 products of each mixing ratio. The measurement results are shown in Table 3 below.

【0027】[0027]

【表3】 [Table 3]

【0028】比較例2:無機コーティング層を有しない
セラミック中空体を使用した場合の製造例(押出成形に
よる) 実施例1で使用した同条件のセラミック中空体を、コー
ティングすることなくそのまま、前記の木節粘土と、表
4に記載される配合割合にて混合し、実施例1と同様に
して、それぞれ10枚ずつ、焼成体を作製した。各配合
割合の製品について、嵩比重、曲げ強度及び吸水率(冷
間吸水率)を測定した(n=10)。その測定結果を、
以下の表4に示す。
Comparative Example 2: Production example using a ceramic hollow body having no inorganic coating layer (by extrusion molding) The ceramic hollow body under the same conditions as used in Example 1 was used as it was without coating. It was mixed with Kibushi clay at the compounding ratio shown in Table 4, and 10 fired bodies were produced in the same manner as in Example 1. The bulk specific gravity, bending strength, and water absorption (cold water absorption) of the products of each mixing ratio were measured (n = 10). The measurement result,
It is shown in Table 4 below.

【0029】[0029]

【表4】 [Table 4]

【0030】上記表3及び表4の実験結果からわかるよ
うに、実施例2で得られた本発明の製品の場合には、陶
磁器の軽量化が達成できるだけでなく、セラミック中空
体の表面に無機コーティング層が設けられていることに
より、コーティングの無い場合に比べて著しく強度が高
く、吸水率も低く、充分な実用性を有する。又、物性の
均質性の点でも、比較例2のものが測定数値のバラツキ
が大きかったのに対して、実施例2のものはほとんどバ
ラツキがなく、均質な物性の製品であった。図3には、
前記表3及び表4の実験結果を基に作成した、嵩比重‐
曲げ強度相関グラフが示されており、このグラフから、
実施例2の本発明の製品は、比較例2の製品よりも、同
じ嵩比重でも強度が大きく、中空セラミック粉末の配合
割合を大きくして嵩比重を小さくしても強度低下が少な
いことが理解される。そして、製品を切断して、その切
断面を拡大して観察してみると、比較例2のものでは表
面付近(プレス金型接触面)ほどセラミック中空体が破
壊されていたが、実施例2のものでは、ほとんどセラミ
ック中空体が破壊されておらず、バルーン状態が維持さ
れていることが確認できた。
As can be seen from the experimental results in Tables 3 and 4, in the case of the product of the present invention obtained in Example 2, not only can the ceramics be reduced in weight, but also the surface of the ceramic hollow body can be made inorganic. Due to the provision of the coating layer, the strength is remarkably high, the water absorption is low, and sufficient practicality is obtained as compared with the case without the coating. Also in terms of the homogeneity of physical properties, Comparative Example 2 had a large variation in measured values, whereas Example 2 had almost no variation and was a product having uniform physical properties. In FIG.
Bulk specific gravity created based on the experimental results in Tables 3 and 4 above.
A bending strength correlation graph is shown, and from this graph,
It is understood that the product of the present invention of Example 2 has higher strength than the product of Comparative Example 2 even at the same bulk specific gravity, and the strength is less reduced even when the mixing ratio of the hollow ceramic powder is increased and the bulk specific gravity is reduced. Is done. Then, when the product was cut and the cut surface was enlarged and observed, in the case of Comparative Example 2, the ceramic hollow body was more broken near the surface (the contact surface of the press die). In the case of the sample, it was confirmed that the ceramic hollow body was hardly broken and the balloon state was maintained.

【0031】表1〜表4の実験結果から、中空セラミッ
ク粉末の添加によって、焼成後の製品の嵩比重を、中空
セラミック粉末を含まない製品の嵩比重の約1/2〜1
/4とすることができ、水の比重1.0よりも軽い比重
の陶磁器製品が得られることがわかる。
From the experimental results in Tables 1 to 4, the addition of the hollow ceramic powder makes it possible to reduce the bulk specific gravity of the fired product to about 1/2 to 1 of the bulk specific gravity of the product not containing the hollow ceramic powder.
/ 4, which indicates that a ceramic product having a specific gravity lighter than 1.0 can be obtained.

【0032】[0032]

【発明の効果】本発明の軽量陶磁器製品では、芯材であ
るセラミック中空体の球面全体に無機コーティング層が
被覆された二層構造の、嵩比重の小さく高強度の中空セ
ラミック粉末が素地中に均一に分散された状態で存在し
ているので、従来の陶磁器に比べて非常に強度が高く、
比重も軽く、又、乾燥後及び焼成後の収縮率が小さいの
で製品の寸法精度に優れ、しかも、陶磁器本来の特性が
損なわれることなく、陶磁器の有する美しさ、表現の自
由、形状の自在などが全て保持されており、各種建築用
外装材の他、装飾品などの非常に幅広い用途に利用で
き、建築用材として求められる耐震性、耐火性、耐候性
等を有している。特に、水の比重1.0よりも小さな比
重を有する本発明の陶磁器製品の場合には、水に浮くと
いう利点を示す。本発明では、無機コーティング層が被
覆された中空セラミック粉末が、成形時においては表面
多孔質材は保水剤(バインダー)の役目を果たし、プレ
ス加工においては不均一な圧力から芯材を守るショック
アブソーバーの役目をし、又、吸水性が釉薬の付着力を
向上させ、焼成時にはその表面多孔質材がそのまま溶融
し、セラミック中空体(芯材)同士をつなぎとめる強化
剤となり、更にはガラス化することにより吸水防止剤と
しての役目も果たす。更に、本発明の製造方法を用いる
ことにより、軽量化された高強度の陶磁器製品を得るこ
とが可能である。
According to the lightweight ceramic product of the present invention, a hollow ceramic powder having a low bulk specific gravity and a high strength has a two-layer structure in which an inorganic coating layer is coated on the entire spherical surface of a ceramic hollow body as a core material. Because it is present in a uniformly dispersed state, its strength is very high compared to conventional ceramics,
The specific gravity is light, and the shrinkage ratio after drying and firing is small, so the product has excellent dimensional accuracy, and the beauty, freedom of expression, freedom of shape, etc. of the ceramics are maintained without impairing the original characteristics of the ceramics. And can be used for a very wide range of applications, such as decorative materials, in addition to various building exterior materials, and has seismic resistance, fire resistance, weather resistance, and the like required for building materials. In particular, the ceramic product of the present invention having a specific gravity of water smaller than 1.0 exhibits an advantage of floating on water. According to the present invention, the hollow ceramic powder coated with the inorganic coating layer has a surface porous material that functions as a water retention agent (binder) during molding, and a shock absorber that protects the core material from uneven pressure in pressing. In addition, the water absorption improves the adhesion of the glaze, and the surface porous material melts as it is during firing, becomes a reinforcing agent to hold the ceramic hollow bodies (core material) together, and further vitrifies. Thus, it also serves as a water absorption inhibitor. Furthermore, by using the manufacturing method of the present invention, it is possible to obtain a light-weight, high-strength ceramic product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における焼成温度曲線である。FIG. 1 is a firing temperature curve in this example.

【図2】セラミック中空体の外周面を無機コーティング
層で被覆した場合と、被覆しない場合における、磁器原
土と中空セラミックとを混練して得られた焼成品の、嵩
比重‐曲げ強度相関グラフである。
FIG. 2 is a graph showing a relationship between bulk specific gravity and flexural strength of a fired product obtained by kneading a porcelain clay and a hollow ceramic in a case where an outer peripheral surface of a ceramic hollow body is coated with an inorganic coating layer and in a case where the outer surface is not coated. It is.

【図3】セラミック中空体の外周面を無機コーティング
層で被覆した場合と、被覆しない場合における、木節粘
土と中空セラミックとを混練して得られた焼成品の、嵩
比重‐曲げ強度相関グラフである。
FIG. 3 is a graph showing a relationship between bulk specific gravity and flexural strength of a fired product obtained by kneading Kibushi clay and hollow ceramic when the outer peripheral surface of the hollow ceramic body is coated with an inorganic coating layer and when the hollow ceramic is not coated. It is.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原料としてのシリカとアルミナを主成分
とする粘土類に軽量化剤を添加、混練して得られた混練
物を、所望の形状に成形した後、焼成を行うことにより
製造された陶磁器製品であって、上記軽量化剤が、シリ
カとアルミナを主成分とし、かつ中空構造を有する微小
球状の中空セラミック粉末であり、該中空セラミック粉
末の表面が、珪酸化合物を主成分とする無機コーティン
グ層によって被覆されており、上記中空セラミック粉末
が、上記陶磁器製品の素地中に20〜80重量%の含有
割合で均一に分散された状態で含まれており、しかも、
当該素地中に、隣接する中空セラミック粉末同士が上記
無機コーティング層により結着した構造が存在している
ことを特徴とする軽量陶磁器製品。
1. A kneaded product obtained by adding a lightening agent to clays mainly composed of silica and alumina as raw materials and kneading the resulting mixture, forming the kneaded product into a desired shape, followed by firing. A ceramic product, wherein the lightening agent is a fine spherical hollow ceramic powder having silica and alumina as main components, and having a hollow structure, and the surface of the hollow ceramic powder has a silicate compound as a main component. Coated with an inorganic coating layer, wherein the hollow ceramic powder is contained in a state of being uniformly dispersed at a content of 20 to 80% by weight in the base material of the ceramic product, and
A lightweight porcelain product, wherein a structure in which adjacent hollow ceramic powders are bound together by the inorganic coating layer exists in the substrate.
【請求項2】 上記無機コーティング層を構成する主成
分が、珪酸ナトリウム、珪酸カリウム、珪酸カルシウ
ム、珪酸リチウム、珪酸アンチモン、珪酸アミン及び珪
酸セシウムから成る群より選ばれたものであることを特
徴とする請求項1記載の軽量陶磁器製品。
2. The method according to claim 1, wherein a main component of the inorganic coating layer is selected from the group consisting of sodium silicate, potassium silicate, calcium silicate, lithium silicate, antimony silicate, amine silicate and cesium silicate. The lightweight ceramic product according to claim 1, wherein
【請求項3】 上記中空セラミック粉末の平均粒径が4
5〜250μmであり、しかもその融点が1200℃以
上であり、上記無機コーティング層の厚み:上記中空セ
ラミック粉末の球面肉厚が、0.5:1〜2:1である
ことを特徴とする請求項1又は2記載の軽量陶磁器製
品。
3. The hollow ceramic powder having an average particle size of 4
5 to 250 μm, and the melting point is 1200 ° C. or more, and the thickness of the inorganic coating layer: the spherical wall thickness of the hollow ceramic powder is 0.5: 1 to 2: 1. Item 3. A lightweight ceramic product according to item 1 or 2.
【請求項4】 軽量化剤の添加によって、通常の陶磁器
の比重よりも小さな比重を有する軽量陶磁器製品を製造
するための方法であって、シリカとアルミナを主成分と
し、かつ中空構造を有する微小球状の中空セラミック粉
末で、該中空セラミック粉末の表面が、珪酸化合物を主
成分とする無機コーティング層により被覆されているも
のを準備した後、シリカとアルミナを主成分とする粘土
類と、該中空セラミック粉末の含有量が20〜80重量
%となるようにして混合し、更に水を加えた後、均質に
なるまで混練を行い、得られた混練物を所望の形状に成
形し、乾燥を行った後、上記中空セラミック粉末の融点
よりも低く、かつ上記無機コーティング層が溶融し得る
温度にて焼成を行うことによって、上記陶磁器製品の素
地中に、隣接する中空セラミック粉末同士が上記無機コ
ーティング層により結着した構造を形成させることを特
徴とする軽量陶磁器製品の製造方法。
4. A method for producing a lightweight ceramic product having a specific gravity smaller than that of ordinary ceramics by adding a weight-reducing agent, comprising: a fine particle having silica and alumina as main components and having a hollow structure. After preparing a spherical hollow ceramic powder, the surface of which is coated with an inorganic coating layer mainly composed of a silicate compound, clays mainly composed of silica and alumina, Mixing is performed so that the content of the ceramic powder is 20 to 80% by weight, and after adding water, kneading is performed until the mixture becomes homogeneous, and the obtained kneaded material is formed into a desired shape and dried. After that, by sintering at a temperature lower than the melting point of the hollow ceramic powder and at which the inorganic coating layer can be melted, the base material of the porcelain product is A method for manufacturing a lightweight ceramic product, comprising forming a structure in which empty ceramic powders are bound by the inorganic coating layer.
【請求項5】 上記無機コーティング層を構成する主成
分が、珪酸ナトリウム、珪酸カリウム、珪酸カルシウ
ム、珪酸リチウム、珪酸アンチモン、珪酸アミン及び珪
酸セシウムから成る群より選ばれたものであることを特
徴とする請求項4記載の軽量陶磁器製品の製造方法。
5. The method according to claim 1, wherein a main component of the inorganic coating layer is selected from the group consisting of sodium silicate, potassium silicate, calcium silicate, lithium silicate, antimony silicate, amine silicate and cesium silicate. The method for producing a lightweight ceramic product according to claim 4.
【請求項6】 上記中空セラミック粉末として、平均粒
径が45〜250μmで、しかもその融点が1200℃
以上であり、上記無機コーティング層の厚み:上記中空
セラミック粉末の球面肉厚が0.5:1〜2:1である
ものを使用することを特徴とする請求項4又は5記載の
軽量陶磁器製品の製造方法。
6. The hollow ceramic powder has an average particle size of 45 to 250 μm and a melting point of 1200 ° C.
The lightweight ceramic product according to claim 4 or 5, wherein the inorganic coating layer: the hollow ceramic powder has a spherical wall thickness of 0.5: 1 to 2: 1. Manufacturing method.
JP20000799A 1998-08-07 1999-07-14 Lightweight porcelain product and method of manufacturing the same Expired - Fee Related JP3411242B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20000799A JP3411242B2 (en) 1998-08-07 1999-07-14 Lightweight porcelain product and method of manufacturing the same
US09/491,346 US6251814B1 (en) 1999-07-14 2000-01-26 Light-weight pottery article
CN00105512A CN1107038C (en) 1999-07-14 2000-03-29 Light ceramic product and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23646998 1998-08-07
JP10-236469 1998-08-07
JP20000799A JP3411242B2 (en) 1998-08-07 1999-07-14 Lightweight porcelain product and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000109381A true JP2000109381A (en) 2000-04-18
JP3411242B2 JP3411242B2 (en) 2003-05-26

Family

ID=26511901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000799A Expired - Fee Related JP3411242B2 (en) 1998-08-07 1999-07-14 Lightweight porcelain product and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3411242B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230887A (en) * 2007-03-20 2008-10-02 Nagoya Institute Of Technology Pottery product
KR101409171B1 (en) 2012-12-20 2014-06-19 한국세라믹기술원 Manufacturing method of ceramic ware using the amorphous coating of base material
JP2015218078A (en) * 2014-05-15 2015-12-07 品川リフラクトリーズ株式会社 Light weight thermal insulation alumina and magnesia refractory
KR20220168714A (en) * 2021-06-17 2022-12-26 박주영 Pattery composition for preventing blotting defects and method for producing ceramic using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230887A (en) * 2007-03-20 2008-10-02 Nagoya Institute Of Technology Pottery product
KR101409171B1 (en) 2012-12-20 2014-06-19 한국세라믹기술원 Manufacturing method of ceramic ware using the amorphous coating of base material
JP2015218078A (en) * 2014-05-15 2015-12-07 品川リフラクトリーズ株式会社 Light weight thermal insulation alumina and magnesia refractory
KR20220168714A (en) * 2021-06-17 2022-12-26 박주영 Pattery composition for preventing blotting defects and method for producing ceramic using the same
KR102584536B1 (en) 2021-06-17 2023-09-27 박주영 ethod for manufacturing ceramics using a body composition for preventing blotting defects

Also Published As

Publication number Publication date
JP3411242B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
CN102311274B (en) Light heat-insulating honeycomb ceramic and preparation method thereof
ES2302539T3 (en) COMPOSITION THAT INCLUDES A PHOSPHATE BINDER AND ITS PREPARATION.
JP4446144B2 (en) Method for producing porous sound-absorbing ceramic molded body
JP3411242B2 (en) Lightweight porcelain product and method of manufacturing the same
JP2000290083A (en) Lightweight cellular ceramics, its production, lightweight cellular tile and tiled board with the tile
KR101696716B1 (en) Manufacturing method of high-strength artificial stone block using tailing
US6251814B1 (en) Light-weight pottery article
CA1077181A (en) Composition of matter comprising cellular aggregate distributed in a binder
JP2006188402A (en) Sintered glass article and method for manufacturing the same
US11299426B2 (en) Process for manufacturing agglomerated stone slab
US4119470A (en) Ceramic composition for making stoneware products
JP2579298B2 (en) Method for producing porous cement molding
JPH0643272B2 (en) Porous concrete compact and method for producing the same
JP2979075B2 (en) High strength porcelain and manufacturing method thereof
JP3432804B2 (en) Lightweight tile manufacturing
JP2001039780A (en) Production of water permeable ceramic block
JP2607214B2 (en) Foamed ceramic product for bathroom and method of manufacturing the same
RU2303018C1 (en) Method of manufacture of wall ceramic items
KR20000016833A (en) Lightweight ceramics and method of producing the same
JP3343383B2 (en) Method for producing inorganic lightweight fired body
WO1995007246A1 (en) Sinter mainly comprising glass
US20220380256A1 (en) Article made of conglomerate material and method for manufacturing such article
JP3039782B1 (en) Sintered composition, sinter, tile
JPS6296375A (en) Porous ceramic and manufacture
JPH11147753A (en) Plastic clay formulation for low-temperature baked pottery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees