JPH11239851A - Method for controlling flow in mold for wide width and thin and middle thickness cast slab - Google Patents

Method for controlling flow in mold for wide width and thin and middle thickness cast slab

Info

Publication number
JPH11239851A
JPH11239851A JP4221898A JP4221898A JPH11239851A JP H11239851 A JPH11239851 A JP H11239851A JP 4221898 A JP4221898 A JP 4221898A JP 4221898 A JP4221898 A JP 4221898A JP H11239851 A JPH11239851 A JP H11239851A
Authority
JP
Japan
Prior art keywords
casting
flow
mold
molten steel
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4221898A
Other languages
Japanese (ja)
Other versions
JP3275823B2 (en
Inventor
Takashi Kanazawa
敬 金沢
Yasuyuki Tozaki
泰之 戸崎
Kozaburo Ozaki
孝三郎 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP04221898A priority Critical patent/JP3275823B2/en
Publication of JPH11239851A publication Critical patent/JPH11239851A/en
Application granted granted Critical
Publication of JP3275823B2 publication Critical patent/JP3275823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out the stable casting while controlling the flow in a mold, particularly at the time of casting at a low speed by changing impressing direction of electromagnetic force acted to molten steel in the mold according to the level of the casting speed. SOLUTION: Based on a reference value of the casting speed, the impressing direction of the electromagnetic force is changed so that the molten steel flow from an immersion nozzle 1 is decelerated in the case of being the reference value or higher, and the molten steel flow is accelerated in the case of being less than the reference value, and the casting is executed. The molten steel poured into the mold 2 from the immersion nozzle 1 forms a spouting flow 4 toward the short wall 3 side and this spouting flow 4 collides against the short wall 3 surface and divides into the ascending flow 5 and the descending flow 6. The ascending flow 5 becomes the ascending flow 8 toward the immersion 1 direction near the molten steel surface 7. The spouting flow 4 toward the short wall 3 side is decelerated with the action of the electromagnetic force impressed with an electromagnetic coil 9 arranged so as to circulate the back surface of the mold 2. Therefore, the ascending flow 5 toward the molten steel surface 7 direction is also decelerated, and the variation of the molten steel surface in the mold is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広幅薄・中厚鋳片
の連続鋳造において、安定した鋳造を可能とする広幅薄
・中厚鋳片の鋳型内流動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the flow of a wide, thin, and medium-thick slab in a continuous casting of a wide, thin, and medium-thick slab.

【0002】[0002]

【従来の技術】近年、精錬技術や鋳造技術の著しい進歩
により品質性状の良好な鋳片の製造が容易化したこと
や、省力・省エネルギの思想の高まり等を背景にして熱
間圧延工程の大幅な省略や熱間圧延を施すことなく溶湯
から直接的かつ連続的に薄鋳片を製造しようする試みが
比較的融点の低い非金属ばかりでなく鉄系金属にまで行
われるようになってきた。
2. Description of the Related Art In recent years, the remarkable progress in refining and casting techniques has facilitated the production of cast slabs having good quality properties, and has increased the concept of energy saving and energy saving. Attempts to directly and continuously produce thin slabs from molten metal without significant omission or hot rolling have been made not only for nonmetals with relatively low melting points but also for iron-based metals .

【0003】この薄鋳片を連続的に鋳造する手段とし
て、これまで以下のような方法が提案されている。 (1) ベルト式壁面移動鋳型を使用した連続鋳造方法。 (2) 異形断面鋳型を使用した連続鋳造方法(SMS方
式)。 (3) 双ロール式連続鋳造方法。
[0003] As means for continuously casting this thin slab, the following methods have been proposed. (1) A continuous casting method using a belt-type moving wall mold. (2) A continuous casting method using a modified cross-section mold (SMS method). (3) Twin roll continuous casting method.

【0004】しかし、上記方法には、次のような問題点
が存在している。すなわち、上記(1) の連続鋳造方法
は、ベルト冷却の困難さによるメンテナンス費用やラン
ニングコストが高いという問題のほか、この種の鋳型で
は配設に大きな困難性を伴いがちな浸漬ノズルによる断
気鋳造をおこなわないと表面品質を維持することが非常
に難しいという問題がある。上記(2) の連続鋳造方法
は、漸次ではあるが鋳造方向に向かって鋳型内の断面積
が減少するために鋳型内面と鋳片表面との間に大きな摩
擦力が生じ、この摩擦力による鋳型内面の摩耗が激しく
鋳型寿命が短くなるという問題が指摘されている。上記
(3) の連続鋳造方法は、未凝固部でのロール圧下時に溶
湯の流動が激しく介在物の浮上分離が困難なことや、偏
析が生じ易いという問題点ある。
[0004] However, the above method has the following problems. In other words, the continuous casting method (1) has the problem of high maintenance cost and running cost due to the difficulty of cooling the belt, and also has the problem that the immersion nozzle, which tends to be very difficult to dispose in this type of mold, There is a problem that it is very difficult to maintain surface quality unless casting is performed. In the continuous casting method of the above (2), a large frictional force is generated between the inner surface of the mold and the surface of the slab because the cross-sectional area in the mold decreases gradually but in the casting direction. It has been pointed out that the inner surface is severely worn and the life of the mold is shortened. the above
The continuous casting method (3) has a problem that the flow of the molten metal is severe when the roll is rolled down in the unsolidified portion, so that the floating separation of inclusions is difficult, and segregation is liable to occur.

【0005】このように、従来の薄鋳片の連続鋳造方法
は、何れも充分に満足できる品質の薄鋳片を良好な作業
性の下で安定製造するという観点からは未解決な問題を
多く有し、特に鉄系金属薄板材の工業的製造において熱
間圧延を伴う従来法に代替し得るほどの域に達していな
い。
[0005] As described above, the conventional continuous casting method for thin slabs has many unsolved problems from the viewpoint of stably producing thin slabs of satisfactory quality under good workability. In particular, it has not reached the level where it can be replaced with the conventional method involving hot rolling in the industrial production of iron-based sheet metal materials.

【0006】本発明者らは、上記に代わる方法として、
鋳型厚さを90〜120mm程度とした中厚鋳片の高速
鋳造方法を提案し、さらに、特開平8−90187号公
報において未凝固層を有する中厚鋳片をローラエプロン
帯で圧下するいわゆる未凝固圧下をおこなう連続鋳造方
法を提案した。
The present inventors have proposed, as an alternative,
A high-speed casting method of medium-thick slab having a mold thickness of about 90 to 120 mm has been proposed. Further, in Japanese Patent Application Laid-Open No. 8-90187, a so-called non-solid A continuous casting method with solidification pressure was proposed.

【0007】[0007]

【発明が解決しようとする課題】広幅薄・中厚鋳片の連
続鋳造方法は、生産量の確保の観点から高速鋳造が必須
であり、通常、鋳造速度は3m/分程度以上でおこなわ
れる。高速鋳造の安定操業には、特に湯面レベル制御が
重要であり、鋳型の背面に電磁ブレーキ(EMBr)を
設け、電磁気力により浸漬ノズル(SEN)からの吐出
流を減速し鋳型内での湯面変動を小さくすることがおこ
なわれている。
In the continuous casting method for wide and thin / medium-thick cast slabs, high-speed casting is essential from the viewpoint of securing the production amount, and the casting speed is usually 3 m / min or more. For stable operation of high-speed casting, it is particularly important to control the level of the molten metal. An electromagnetic brake (EMBr) is provided on the back of the mold, and the discharge flow from the immersion nozzle (SEN) is decelerated by electromagnetic force to reduce the molten metal in the mold. Reduction of surface fluctuation has been performed.

【0008】しかし、上工程や下工程の操業トラブルな
どにより鋳造速度が低下した時に、下記の問題が発生す
ることが判った。 (1) 鋳型厚みが90〜120mmと薄いため、SENと
鋳型内壁との間隔が小さく、この部分の溶鋼流動が少な
くなり、温度の高い溶鋼の供給が少ないため鋳型内での
湯面の皮張りが発生しやすい。
However, it has been found that the following problems occur when the casting speed is reduced due to operational problems in the upper and lower steps. (1) Since the thickness of the mold is as thin as 90 to 120 mm, the distance between the SEN and the inner wall of the mold is small, and the flow of molten steel in this part is reduced. Is easy to occur.

【0009】(2) 特にSENが扁平形状の場合には、鋳
型内壁とSENとの間隔の小さい部分が広範囲に存在
し、上記(1) の問題が顕著になる。 (3) 未凝固圧下を実施すると、鋳造速度が同じでも溶鋼
注入量が減少するため鋳型内流動が低下し、上記(1) の
傾向は強くなる。 (4) 上記湯面の皮張りが発生すると、パウダの滓化不良
を引き起こして縦割れの発生やブレークアウトを誘発す
る恐れがある。
(2) In particular, when the SEN has a flat shape, there is a wide range of portions where the distance between the inner wall of the mold and the SEN is small, and the above-mentioned problem (1) becomes remarkable. (3) When the unsolidification reduction is performed, even if the casting speed is the same, the molten steel injection amount is reduced, so that the flow in the mold is reduced, and the tendency of the above (1) is strengthened. (4) When the surface of the molten metal becomes skinned, there is a possibility that poor slagging of the powder is caused to cause vertical cracks and breakout.

【0010】本発明の目的は、鋳造速度の変動に応じ、
特に低速鋳造時における鋳型内流動を制御して安定した
鋳造を可能とする広幅薄・中厚鋳片の鋳型内流動制御方
法を提供することにある。
[0010] An object of the present invention is to respond to a change in casting speed,
In particular, it is an object of the present invention to provide a method for controlling the flow in a mold of a wide, thin and medium-thick cast slab which enables stable casting by controlling the flow in the mold during low-speed casting.

【0011】[0011]

【課題を解決するための手段】本発明者らは、広幅薄・
中厚鋳片の安定鋳造に関する技術開発を推進し、鋳造速
度のレベルに応じて、鋳型内の溶鋼に作用する電磁気力
の印加方向を変更することにより、安定した鋳造が可能
であるとの知見を得た。すなわち、前述したように、広
幅薄・中厚鋳片の鋳造においては、操業トラブルなどに
より鋳造速度が低下したとき、湯面の皮張りが発生し操
業が不安定になる。この操業の不安定は、鋳造速度が鋳
片サイズで設定される基準値未満になったときは、SE
Nからの溶鋼流を加速するように電磁気力を印加するこ
とにより改善される。
Means for Solving the Problems The inventors of the present invention have proposed a wide and thin film.
The knowledge that stable casting is possible by promoting technology development for stable casting of medium thickness slabs and changing the direction of application of electromagnetic force acting on molten steel in the mold according to the casting speed level I got That is, as described above, in the casting of wide, thin and medium-thick cast slabs, when the casting speed is reduced due to an operation trouble or the like, the surface of the molten metal surface is generated and the operation becomes unstable. This instability of the operation occurs when the casting speed falls below a reference value set by the slab size.
It is improved by applying an electromagnetic force to accelerate the molten steel flow from N.

【0012】本発明は上記知見に基づくもので、その要
旨は、「広幅薄・中厚鋳片の連続鋳造において、鋳造速
度の基準値に基づき、基準値以上であれば浸漬ノズルか
らの溶鋼流を減速し、基準値未満であれば前記溶鋼流を
加速するように電磁気力の印加方向を変更して鋳造する
ことを特徴とする広幅薄・中厚鋳片の鋳型内流動制御方
法」である。
The gist of the present invention is based on the above-mentioned findings. The gist of the present invention is that “in continuous casting of wide, thin and medium-thick cast slabs, the casting speed is based on a reference value of casting speed. The method of controlling flow in a mold of a wide, thin, and medium-thick cast slab is characterized in that casting is performed by changing the direction of application of electromagnetic force so as to accelerate the molten steel flow if the flow rate is less than a reference value. .

【0013】上記において、「広幅薄・中厚鋳片」と
は、連続鋳造機の出口で、幅が800〜1800mm程
度、厚さが50〜120mm程度のものを指す。鋳造速
度の基準値とは、たとえば、鋳片の厚×幅が12000
0mm2 程度未満では2.5〜3.0m/分程度、12
0000mm2 程度以上では2.0〜2.5m/分程度
の範囲で設定した値である。なお、本発明の方法は、特
に未凝固層を有する鋳片をローラエプロン帯で圧下する
連続鋳造に適する。
In the above, the term "wide and thin / medium thick slab" refers to an outlet of a continuous casting machine having a width of about 800 to 1800 mm and a thickness of about 50 to 120 mm. The reference value of the casting speed is, for example, the thickness × width of the slab is 12000.
If less than about 0 mm 2, about 2.5 to 3.0 m / min, 12
The value is set in the range of about 2.0 to 2.5 m / min for about 0000 mm 2 or more. The method of the present invention is particularly suitable for continuous casting in which a slab having an unsolidified layer is rolled down with a roller apron band.

【0014】[0014]

【発明の実施の形態】本発明の方法は、広幅薄・中厚鋳
片の連続鋳造において、鋳造速度の基準値に基づき、基
準値以上であればSENからの溶鋼流を減速し、基準値
未満であれば前記溶鋼流を加速するように電磁気力の印
加方向を変更して鋳造することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention is based on the reference value of the casting speed in continuous casting of wide, thin and medium-thick cast slabs. If the value is less than the above range, the casting is performed by changing the application direction of the electromagnetic force so as to accelerate the molten steel flow.

【0015】なお、以下の説明で簡易的に用いる高速鋳
造と低速鋳造は、鋳造速度がそれぞれ上記基準値以上と
基準値未満の場合を指す。図1は、本発明の高速鋳造時
の鋳型内流動パターンを模式的に示す鋳型上部の縦断面
図である。
The high-speed casting and the low-speed casting used in the following description refer to the case where the casting speed is equal to or higher than the reference value and lower than the reference value, respectively. FIG. 1 is a longitudinal sectional view of the upper part of a mold schematically showing a flow pattern in the mold at the time of high-speed casting of the present invention.

【0016】同図に示すように、SEN1から鋳型2内
に注入された溶鋼は、短辺3側に向かう吐出流4を形成
し、この吐出流4は短辺面に衝突し、上昇流5と下降流
6に分岐する。上昇流5は湯面7近傍でSEN1方向に
向かう上層流8となる。上記短辺3側に向かう吐出流4
は、鋳型2の背面を周回するように設けられた電磁コイ
ル9で印加された電磁気力の作用により減速する。した
がって、湯面7方向に向かう上昇流5も減速し、鋳型内
での湯面変動が抑制される。
As shown in FIG. 1, the molten steel injected from the SEN 1 into the casting mold 2 forms a discharge flow 4 toward the short side 3, which collides with the short side surface and forms an upward flow 5. And a downward flow 6. The upward flow 5 becomes an upper layer flow 8 in the direction of SEN1 near the molten metal surface 7. Discharge flow 4 toward short side 3
Is decelerated by the action of the electromagnetic force applied by the electromagnetic coil 9 provided so as to go around the back surface of the mold 2. Therefore, the upward flow 5 in the direction of the molten metal surface 7 is also decelerated, and the fluctuation of the molten metal surface in the mold is suppressed.

【0017】図2は、本発明の低速鋳造時の鋳型内流動
パターンを従来法と比較して模式的に示す鋳型上部の縦
断面図で、同図(a)は電磁気力を印加した本発明法の
場合、同図(b)は電磁気力を印加しない従来法の場合
である。なお、図1と同じ要素は同じ符号で示す。操業
トラブルなどにより鋳造速度が低下すると、SENから
の溶鋼吐出量が減少する。
FIG. 2 is a vertical sectional view of the upper part of the mold schematically showing the flow pattern in the mold at the time of low-speed casting of the present invention in comparison with the conventional method. FIG. 2 (a) shows the present invention to which an electromagnetic force is applied. FIG. 3B shows the case of the conventional method in which no electromagnetic force is applied. The same elements as those in FIG. 1 are denoted by the same reference numerals. When the casting speed decreases due to an operation trouble or the like, the amount of molten steel discharged from the SEN decreases.

【0018】図2(b)に示すように、電磁気力を印加
しない従来法においては、溶鋼吐出量の低下とともに上
昇流5も少なくなる。したがって、湯面7近傍でSEN
1方向に向かう上層流8が減少し、SEN1近傍で溶鋼
の流動が極めて低下したデッドゾーン10が発生し、湯
面の皮張りが生じる。
As shown in FIG. 2B, in the conventional method in which no electromagnetic force is applied, the rising flow 5 decreases with the decrease in the molten steel discharge amount. Therefore, SEN near the molten metal surface 7
The upper layer flow 8 in one direction is reduced, and a dead zone 10 in which the flow of molten steel is extremely reduced near SEN1 is generated, and the surface of the molten metal is covered.

【0019】図2(a)に示す本発明法においては、鋳
型の背面を周回するように設けた電磁コイル9により、
図1で説明した高速鋳造の場合と反対方向に電磁気力を
印加する。同図に示すように、上記電磁気力の印加によ
り、SEN1からの吐出流4が加速され、上昇流5が促
進され、湯面7近傍でのSEN1方向への上層流8が増
加する。
In the method of the present invention shown in FIG. 2 (a), an electromagnetic coil 9 is provided so as to go around the back of the mold.
An electromagnetic force is applied in the direction opposite to the case of the high-speed casting described with reference to FIG. As shown in the figure, the application of the electromagnetic force accelerates the discharge flow 4 from the SEN 1, promotes the upward flow 5, and increases the upper layer flow 8 in the SEN 1 direction near the molten metal surface 7.

【0020】ここで電磁気力の印加方向を変更する鋳造
速度の基準値は、例えば、鋳片の厚×幅が120000
mm2 程度未満では2.5〜3.0m/分程度、120
000mm2 程度以上では2.0〜2.5m/分程度の
範囲で設定した値である。但し、鋳片の厚と幅は、連続
鋳造機出口の寸法であり、鋳造速度は、その引き抜き速
度である。
Here, the reference value of the casting speed for changing the application direction of the electromagnetic force is, for example, the thickness of the slab × the width of 120,000.
If it is less than about 2 mm 2, it is about 2.5 to 3.0 m / min, 120
The value is set in a range of about 2.0 to 2.5 m / min for about 000 mm 2 or more. However, the thickness and width of the slab are the dimensions of the outlet of the continuous casting machine, and the casting speed is the drawing speed.

【0021】すなわち、鋳片断面積が120000mm
2 程度未満では、基準値を2.5〜3.0m/分程度の
範囲で設定し、また120000mm2 程度以上では、
基準値を2.0〜2.5m/分程度の範囲で設定し、鋳
造速度が前記基準値以上の時にはSENからの吐出流を
減速するように電磁気力を印加し、鋳造速度が前記基準
値未満になった時には前記吐出流を加速するように電磁
気力を印加した。
That is, the slab cross-sectional area is 120,000 mm
In less than 2 degrees, the reference value set in the range of about 2.5~3.0M / min, and in 120000Mm 2 about or more,
The reference value is set in a range of about 2.0 to 2.5 m / min. When the casting speed is higher than the reference value, an electromagnetic force is applied so as to reduce the discharge flow from the SEN. When it was less than the above, an electromagnetic force was applied so as to accelerate the discharge flow.

【0022】[0022]

【実施例】(本発明例)表1に示す主仕様の垂直曲げ型
連続鋳造機を用いて、表2に示す成分の中炭素アルミキ
ルド鋼を鋳造した。鋳型の背面を周回するように電磁コ
イルを設け、鋳造速度の基準値を2.5m/分と設定
し、その基準値に基づいて電磁気力の印加方向を変更し
た。すなわち、鋳造速度が前記基準値以上のときは、S
ENからの吐出流を減速する方向に電磁気力を印加(以
下、減速印加という)し、基準値未満の時には、前記吐
出流を加速する方向に電磁気力を印加(以下、加速印加
という)した。なお、電磁気力の印加強度は鋳型の中心
で4000ガウスとした。
EXAMPLES (Example of the present invention) A medium-carbon aluminum killed steel having the components shown in Table 2 was cast using a vertical bending type continuous casting machine having the main specifications shown in Table 1. An electromagnetic coil was provided around the back of the mold, and a reference value of the casting speed was set at 2.5 m / min, and the application direction of the electromagnetic force was changed based on the reference value. That is, when the casting speed is equal to or higher than the reference value, S
Electromagnetic force was applied in the direction of decelerating the discharge flow from the EN (hereinafter, referred to as deceleration application), and when less than the reference value, electromagnetic force was applied in the direction of accelerating the discharge flow (hereinafter, referred to as acceleration application). The applied strength of the electromagnetic force was 4000 Gauss at the center of the mold.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表3に鋳造条件を示す。同表に示すよう
に、鋳造速度を鋳造の途中で5m/分から1.5m/分
に変更した。
Table 3 shows the casting conditions. As shown in the table, the casting speed was changed from 5 m / min to 1.5 m / min during the casting.

【0026】[0026]

【表3】 [Table 3]

【0027】高速鋳造時の湯面レベルの変動、ならびに
低速鋳造時の鋳型内での湯面の皮張り状況および鋳片の
縦割れ発生状況を調査した。
Fluctuations in the level of the molten metal during high-speed casting, the state of skinning of the molten metal in the mold during the low-speed casting, and the occurrence of vertical cracks in the slab were investigated.

【0028】(比較例1)鋳造速度5m/分で鋳造中に
電磁気力の印加すなわち減速印加を停止した以外は、上
記本発明例と同じ条件で鋳造をおこなった。
(Comparative Example 1) Casting was performed under the same conditions as in the above-mentioned present invention except that the application of electromagnetic force, that is, the application of deceleration was stopped during casting at a casting speed of 5 m / min.

【0029】(比較例2)鋳造速度1.5m/分で鋳造
中に電磁気力の印加すなわち加速印加を停止した以外
は、上記本発明例と同じ条件で鋳造をおこなった。
(Comparative Example 2) Casting was carried out under the same conditions as in the above-mentioned present invention example, except that the application of electromagnetic force, that is, the application of acceleration was stopped during casting at a casting speed of 1.5 m / min.

【0030】本発明例は、鋳造速度5m/分で湯面レベ
ル変動が±3mm以内と少なく、また、鋳造速度1.5
m/分で鋳型とSEN間の流動も良好でパウダの滓化状
況も鋳造速度5m/分のときと大きな差違はなく、安定
した鋳造ができた。
In the example of the present invention, at a casting speed of 5 m / min, the fluctuation of the molten metal level is as small as ± 3 mm or less.
At m / min, the flow between the mold and the SEN was good, and the state of powder slagging was not significantly different from that at a casting speed of 5 m / min, and stable casting was possible.

【0031】比較例1は、鋳造速度5m/分で湯面レベ
ル変動が±20mm以上と非常に大きくなり、電磁気力
の印加(減速印加)を停止した約4分後にブレークアウ
トが発生したので、それ以降の鋳造を中止した。
In Comparative Example 1, the variation in the level of the molten metal became extremely large at ± 20 mm or more at a casting speed of 5 m / min, and a breakout occurred about 4 minutes after the application of the electromagnetic force (deceleration application) was stopped. The subsequent casting was stopped.

【0032】比較例2は、電磁気力の印加(加速印加)
の停止後、鋳型とSEN間に湯面の皮張りが発生して、
スラグリムも大きく成長し、不安定な鋳造となった。表
4に、本発明例と比較例2の鋳片の縦割れ発生状況を、
縦割れ指数(鋳片長さに対する縦割れ総長さの比)で示
す。
In Comparative Example 2, application of electromagnetic force (application of acceleration)
After the stoppage, skinning of the surface of the water occurred between the mold and SEN,
The slag rim also grew significantly and became an unstable casting. Table 4 shows the occurrence of longitudinal cracks in the slabs of the present invention and Comparative Example 2.
It is shown by the vertical crack index (the ratio of the total vertical crack length to the slab length).

【0033】[0033]

【表4】 [Table 4]

【0034】本発明例では、縦割れの発生は著しく低減
しており、低速鋳造下における吐出流の加速により、パ
ウダの良好な滓化が実現しているものと判断される。一
方、比較例2では、パウダの滓化が悪くパウダの不均一
流入により縦割れが多く発生したものと考えられる。
In the example of the present invention, the occurrence of vertical cracks is remarkably reduced, and it is judged that favorable slag formation of powder is realized by acceleration of the discharge flow under low-speed casting. On the other hand, in Comparative Example 2, it is considered that powder formation was poor and many vertical cracks occurred due to uneven inflow of powder.

【0035】また、長期間操業時の本発明例と比較例2
のブレークアウトの発生率を表4に併せて示す。同表に
示すように、ブレークアウトの発生率においても両者に
は大きな差違があり、メニスカス部分に適切な溶鋼流動
を付与することにより、低速鋳造時においても安定した
鋳造が可能であることが判明した。
Further, the present invention example and comparative example 2 during long-term operation
Table 4 also shows the incidence of breakout. As shown in the table, there is a large difference between the two in the breakout occurrence rate, and it has been found that stable casting can be performed even at low speed casting by applying appropriate molten steel flow to the meniscus part. did.

【0036】[0036]

【発明の効果】本発明方法によれば、広幅薄・中厚鋳片
の連続鋳造において、低速鋳造時においても安定した鋳
造が可能となる。
According to the method of the present invention, in continuous casting of wide, thin and medium-thick cast pieces, stable casting can be performed even at low speed casting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高速鋳造時の鋳型内流動パターンを模
式的に示す鋳型上部の縦断面図である。
FIG. 1 is a vertical sectional view of an upper portion of a mold schematically showing a flow pattern in the mold during high-speed casting according to the present invention.

【図2】本発明の低速鋳造時の鋳型内流動パターンを従
来法と比較して模式的に示す鋳型上部の縦断面図で、同
図(a)は電磁気力を印加した本発明法の場合、同図
(b)は電磁気力を印加しない従来法の場合である。
FIG. 2 is a vertical cross-sectional view of the upper part of the mold schematically showing the flow pattern in the mold at the time of low-speed casting of the present invention in comparison with the conventional method, and FIG. 2 (a) shows the case of the method of the present invention in which an electromagnetic force is applied. FIG. 3B shows the case of the conventional method in which no electromagnetic force is applied.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル(SEN) 2 鋳型 3 短辺 4 吐出流 5 上昇流 6 下降流 7 湯面 8 上層流 9 電磁コイル 10 デッドゾーン DESCRIPTION OF SYMBOLS 1 Immersion nozzle (SEN) 2 Mold 3 Short side 4 Discharge flow 5 Upflow 6 Downflow 7 Hot surface 8 Upper flow 9 Electromagnetic coil 10 Dead zone

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 広幅薄・中厚鋳片の連続鋳造において、
鋳造速度の基準値に基づき、基準値以上であれば浸漬ノ
ズルからの吐出流を減速し、基準値未満であれば前記吐
出流を加速するように電磁気力の印加方向を変更して鋳
造することを特徴とする広幅薄・中厚鋳片の鋳型内流動
制御方法。
In a continuous casting of wide and thin, medium and thick cast slabs,
Based on the reference value of the casting speed, casting is performed by changing the application direction of the electromagnetic force so as to reduce the discharge flow from the immersion nozzle if the reference value is equal to or more than the reference value, and to accelerate the discharge flow if the reference value is less than the reference value. A method for controlling the flow of a wide, thin and medium-thick cast slab in a mold.
JP04221898A 1998-02-24 1998-02-24 Method of controlling flow of wide thin and medium thick slabs in mold Expired - Fee Related JP3275823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04221898A JP3275823B2 (en) 1998-02-24 1998-02-24 Method of controlling flow of wide thin and medium thick slabs in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04221898A JP3275823B2 (en) 1998-02-24 1998-02-24 Method of controlling flow of wide thin and medium thick slabs in mold

Publications (2)

Publication Number Publication Date
JPH11239851A true JPH11239851A (en) 1999-09-07
JP3275823B2 JP3275823B2 (en) 2002-04-22

Family

ID=12629912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04221898A Expired - Fee Related JP3275823B2 (en) 1998-02-24 1998-02-24 Method of controlling flow of wide thin and medium thick slabs in mold

Country Status (1)

Country Link
JP (1) JP3275823B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486274A1 (en) * 2002-03-01 2004-12-15 JFE Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
JP2010110797A (en) * 2008-11-07 2010-05-20 Kobe Steel Ltd Continuous casting method of slab which has static magnetic field act on upward flow over narrow surface in mold
WO2020100729A1 (en) * 2018-11-14 2020-05-22 日本製鉄株式会社 Apparatus for manufacturing thin steel sheet, and method for manufacturing thin steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486274A1 (en) * 2002-03-01 2004-12-15 JFE Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
EP1486274A4 (en) * 2002-03-01 2008-06-04 Jfe Steel Corp Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
US7540317B2 (en) 2002-03-01 2009-06-02 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
US7762311B2 (en) 2002-03-01 2010-07-27 Jfe Steel Corporation Method for controlling flow of molten steel in mold and method for continuously producing a cast product
US7967058B2 (en) 2002-03-01 2011-06-28 Jfe Steel Corporation Apparatus for controlling flow of molten steel in mold
JP2010110797A (en) * 2008-11-07 2010-05-20 Kobe Steel Ltd Continuous casting method of slab which has static magnetic field act on upward flow over narrow surface in mold
WO2020100729A1 (en) * 2018-11-14 2020-05-22 日本製鉄株式会社 Apparatus for manufacturing thin steel sheet, and method for manufacturing thin steel sheet
JPWO2020100729A1 (en) * 2018-11-14 2021-09-30 日本製鉄株式会社 Thin steel sheet manufacturing equipment and thin steel sheet manufacturing method

Also Published As

Publication number Publication date
JP3275823B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
JP3275823B2 (en) Method of controlling flow of wide thin and medium thick slabs in mold
JP4337565B2 (en) Steel slab continuous casting method
KR100654889B1 (en) Nozzle for continuous casting
JP3186631B2 (en) Termination method of constant speed drawing casting in continuous casting
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP2009136908A (en) Method for drawing out slab after completion of casting in continuous casting
US4033404A (en) Oscillatory mold equipped with a hollow mold cavity which is curved in the direction of travel of the strand
JPH091292A (en) Method for continuously casting thin cast slab
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JP3395387B2 (en) Continuous casting of wide thin slabs
JP2888071B2 (en) Thin slab continuous casting method
CN212239170U (en) Submersed nozzle brick capable of reducing slag rolling of sheet billet crystallizer
WO2024004364A1 (en) Steel continuous casting method
JP3042324B2 (en) Dummy bar head for continuous casting of wide thin slab
JPH0390263A (en) Continuous casting method
JPS60238069A (en) Continuous casting method of steel
CN112045177A (en) Submerged nozzle brick capable of reducing slag entrapment of sheet billet crystallizer and using method
CN114713780A (en) Method for improving stability of solidification zone of molten silicon steel in thin strip continuous casting process
CN116213669A (en) Method for controlling casting blank segregation defect
JPS63188459A (en) Continuous casting method for round cast billet
JPS63126651A (en) Belt type continuous casting method
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH0215858A (en) Method and device for continuously casting cast strip
JP2888155B2 (en) Continuous casting method of ultra low carbon steel containing Ti

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

LAPS Cancellation because of no payment of annual fees