JPH1123845A - Laminated polarizer - Google Patents

Laminated polarizer

Info

Publication number
JPH1123845A
JPH1123845A JP9190604A JP19060497A JPH1123845A JP H1123845 A JPH1123845 A JP H1123845A JP 9190604 A JP9190604 A JP 9190604A JP 19060497 A JP19060497 A JP 19060497A JP H1123845 A JPH1123845 A JP H1123845A
Authority
JP
Japan
Prior art keywords
film
high polymer
polarizer
laminated
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9190604A
Other languages
Japanese (ja)
Inventor
Shigekuni Sasaki
重邦 佐々木
Takashi Sawada
孝 澤田
Toru Maruno
透 丸野
Hisataka Takenaka
久貴 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9190604A priority Critical patent/JPH1123845A/en
Publication of JPH1123845A publication Critical patent/JPH1123845A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laminated polarizer easy to handle and hardly being damaged by arranging a high polymer film on one side of a multilayer film. SOLUTION: This polarizer is constituted so that the high polymer film 4 is arranged on one side of the multilayer film 3 alternately laminated with plural dielectric films 1 and plural metallic films or semiconductor films 2. As the dielectric film 1 in such a case, a silicon dioxide, etc., is used. As the metallic film, e.g. an aluminum film, a gold film, etc., are used. As the semiconductor film, a germanium film, a silicon film, etc., are used. Further, as the high polymer film 4, various high polymer films are used, and e.g. a polymethyl methacrylate film, a polycarbonate film, a polystyrene film, a polyimide film, etc., are used. Further, the high polymer film 4 doesn't mean only a high polymer material single body, but may be the substance forming the metallic film, etc., on the high polymer film 4 also. Further, the thickness of the high polymer film 4 is defined so that the whole laminated polarizer has flexibility.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規な積層型偏光子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel laminated polarizer.

【0002】[0002]

【従来の技術及び課題】偏光子は、基本的な光受動素子
であり、多くの光デバイスを構成する上で必要不可欠な
素子である。偏光子としては多くの種類のものが開発さ
れており、例えばグラントムソン、グランテーラーなど
の複屈折プリズム偏光子、ワイヤグリッド偏光子、ダイ
クロイック偏光フィルム、複屈折回折格子、偏光ガラ
ス、積層型偏光子等がある。これらの多くのものは素子
長がmm単位のものであるが、積層型偏光子は数十μm
の薄さのものが製造されている。
2. Description of the Related Art A polarizer is a basic optical passive element and an indispensable element in configuring many optical devices. Many types of polarizers have been developed, for example, birefringent prism polarizers such as Glan-Thompson and Glan-Taylor, wire grid polarizers, dichroic polarizing films, birefringent diffraction gratings, polarizing glass, laminated polarizers Etc. Many of these have an element length of mm unit, but the laminated polarizer is several tens μm.
Is manufactured.

【0003】最近の光通信システムの進展により様々な
光学部品が開発され、そこに使用される偏光子にも様々
な要求が課せられている。例えば光路中に微小な間隙を
形成した光学素子に薄い偏光子を挿入した光学部品が用
いられる。この偏光子には偏光子を挿入した時に生じる
過剰損失を低減するために非常に薄いものが要求され
る。例えば光路中の微小な間隙を数十μm以下(偏光子
はそれ以下の厚さ)にすることにより、過剰損失を0.
5dB程度に抑えることが可能である。この薄さを実現
できるのは積層型偏光子だけである。この積層型偏光子
は特開昭55−117108号で川上らによって明らか
にされている。
[0003] With the recent development of optical communication systems, various optical components have been developed, and various requirements have also been imposed on polarizers used therein. For example, an optical component in which a thin polarizer is inserted into an optical element having a minute gap formed in the optical path is used. The polarizer is required to be very thin in order to reduce excess loss generated when the polarizer is inserted. For example, by setting the minute gap in the optical path to several tens of μm or less (the thickness of the polarizer is less than that), excess loss is reduced to 0.1 μm.
It can be suppressed to about 5 dB. Only a laminated polarizer can realize this thinness. This laminated polarizer is disclosed by Kawakami et al. In JP-A-55-117108.

【0004】また特性を改良した積層型偏光子は特開平
4−256904号、特開平6−265834号で公開
されている。この積層型偏光子の基本的構成はガラスな
どの基板上に1μm程度の厚さの二酸化ケイ素などの誘
電体と5〜10nm程度の厚さの金属あるいは半導体の
薄膜を交互に積層した多層膜を形成したものである。実
際に積層型偏光子を作製する場合は基板付き多層膜をダ
イシングソーなどにより薄板状に切り出し、例えば10
μmの厚さに研磨している。しかしながらこの工程での
取り扱いが非常に難しく、破損がおきやすく、歩留まり
も悪い。またこの積層型偏光子を光学素子に装着する場
合先程近べたように数十μm以下の微小な間隙に挿入し
なくてはならず、挿入のやり方によっては積層型偏光子
が破損するという問題が起こる。これは従来の積層型偏
光子がガラス基板と多層膜が一体となった構成で基板お
よび多層膜とも非常に脆いからである。そのようなこと
から歩留まりの良い積層型偏光子の製造方法及び光路中
の微小な間隙に破損せず挿入できる積層型偏光子が望ま
れていた。
[0004] Laminated polarizers having improved characteristics are disclosed in JP-A-4-256904 and JP-A-6-265834. The basic structure of this laminated polarizer is a multilayer film in which a dielectric such as silicon dioxide having a thickness of about 1 μm and a metal or semiconductor thin film having a thickness of about 5 to 10 nm are alternately laminated on a substrate such as glass. It is formed. When actually manufacturing a laminated polarizer, a multilayer film with a substrate is cut into a thin plate shape using a dicing saw or the like.
Polished to a thickness of μm. However, handling in this step is very difficult, breakage easily occurs, and the yield is poor. In addition, when this laminated polarizer is mounted on an optical element, it has to be inserted into a minute gap of several tens of μm or less as described above, and there is a problem that the laminated polarizer may be damaged depending on the insertion method. Occur. This is because the conventional laminated polarizer has a configuration in which the glass substrate and the multilayer film are integrated, and both the substrate and the multilayer film are very fragile. Therefore, there has been a demand for a method of manufacturing a laminated polarizer having a good yield and a laminated polarizer that can be inserted into a minute gap in an optical path without being damaged.

【0005】[0005]

【発明が解決しようとする課題】本発明は、取り扱いが
容易で破損する恐れの小さい積層型偏光子を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a laminated polarizer which is easy to handle and is less likely to be damaged.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記の目
的を達成するため、鋭意検討を行った結果積層型偏光子
を新たな構成とすることにより課題が解決できることを
見いだし、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that the problem can be solved by adopting a new structure of the laminated polarizer. Was completed.

【0007】すなわち本発明の第一の発明の積層型偏光
子は、複数個の誘電体膜と複数個の金属膜又は半導体膜
が交互に積層された多層膜の片側に高分子膜を配した構
成をしていることを特徴とする。
That is, in the laminated polarizer of the first invention of the present invention, a polymer film is disposed on one side of a multilayer film in which a plurality of dielectric films and a plurality of metal films or semiconductor films are alternately laminated. It is characterized by having a configuration.

【0008】本発明の第二の発明の積層型偏光子は、複
数個の誘電体膜と複数個の金属膜又は半導体膜が交互に
積層された多層膜の両側に高分子膜を配した構成をして
いることを特徴とする。
A laminated polarizer according to a second aspect of the present invention has a structure in which a polymer film is disposed on both sides of a multilayer film in which a plurality of dielectric films and a plurality of metal films or semiconductor films are alternately laminated. It is characterized by doing.

【0009】本発明の第三の発明の積層型偏光子は、複
数個の誘電体膜と複数個の金属膜又は半導体膜が交互に
積層された多層膜の片側または両側に高分子膜を配した
構成をしている積層型偏光子において高分子膜の厚さが
多層膜の厚さの5倍以上であることを特徴とする。
In the laminated polarizer according to the third aspect of the present invention, a polymer film is disposed on one or both sides of a multilayer film in which a plurality of dielectric films and a plurality of metal films or semiconductor films are alternately laminated. In the laminated polarizer having the above structure, the thickness of the polymer film is five times or more the thickness of the multilayer film.

【0010】以下本発明を概説する。Hereinafter, the present invention will be outlined.

【0011】図1は多層膜の片側が高分子膜とした本発
明に係わる積層型偏光子の構成例を表すものである。ま
た図2は多層膜の両側とも高分子膜とした本発明に係わ
る積層型偏光子の構成例を表すものである。図中の符号
1は誘電体膜、符号2は金属膜または半導体膜、符号3
は多層膜、符号4は高分子膜である。
FIG. 1 shows a configuration example of a laminated polarizer according to the present invention in which one side of a multilayer film is a polymer film. FIG. 2 shows a configuration example of a laminated polarizer according to the present invention in which a polymer film is formed on both sides of the multilayer film. In the figure, reference numeral 1 indicates a dielectric film, reference numeral 2 indicates a metal film or a semiconductor film, and reference numeral 3
Denotes a multilayer film, and reference numeral 4 denotes a polymer film.

【0012】誘電体膜としては二酸化ケイ素膜などが使
用できる。金属膜としては例えばアルミニウム膜、金膜
などが使用できる。半導体膜としてはゲルマニウム膜、
シリコン膜などが使用できる。それぞれの厚さはどのよ
うな性能の積層型偏光子を製造するかによって異なる
が、誘電体膜は1μm前後、金属または半導体膜は5〜
10nmで用いられる。高分子膜としては種々の高分子
膜が使用でき、例えばポリメチルメタクリレート膜、ポ
リカーボネート膜、ポリスチレン膜、ポリイミド膜など
が使用できる。なお、高分子膜は高分子材料単体だけを
意味するものではなく必要があれば高分子膜に金属膜な
どを形成したものでも良い。高分子膜の厚さは積層型偏
光子全体で柔軟性があれば良い。理想的には多層膜の厚
さの5倍以上の厚さが望ましい。
As the dielectric film, a silicon dioxide film or the like can be used. As the metal film, for example, an aluminum film, a gold film, or the like can be used. As a semiconductor film, a germanium film,
A silicon film or the like can be used. The respective thicknesses vary depending on the performance of the laminated polarizer to be manufactured, but the dielectric film is about 1 μm, and the metal or semiconductor film is 5 to
Used at 10 nm. Various polymer films can be used as the polymer film, and for example, a polymethyl methacrylate film, a polycarbonate film, a polystyrene film, a polyimide film, and the like can be used. The polymer film does not mean only the polymer material alone, but may be a polymer film formed by forming a metal film or the like if necessary. The thickness of the polymer film only needs to be flexible throughout the laminated polarizer. Ideally, the thickness is preferably five times or more the thickness of the multilayer film.

【0013】本発明の積層型偏光子の作製方法としては
例えば石英ガラス、シリコンなどの仮基板上に誘電体膜
と金属膜または半導体膜を交互に積層した後仮基板から
剥離し、高分子フィルムを片側または両側に貼り付ける
方法でも良いし、また高分子材料からできている基板上
に誘電体膜と金属膜または半導体膜を交互に積層しても
良い。
As a method of manufacturing the laminated polarizer of the present invention, for example, a dielectric film and a metal film or a semiconductor film are alternately laminated on a temporary substrate such as quartz glass or silicon and then peeled off from the temporary substrate to form a polymer film. May be attached to one or both sides, or a dielectric film and a metal film or a semiconductor film may be alternately laminated on a substrate made of a polymer material.

【0014】[0014]

【実施例1】厚さ0.6mmのポリイミド成型体(膜)
5上に厚み0.1μmのアルミニウム蒸着膜6を形成
し、光学研磨を行い積層型偏光子作製のための基板とし
た。この基板上に高周波スパッタリング法により石英を
ターゲットとしてアルゴンと酸素の雰囲気中で厚さ1μ
mの石英膜7を形成した。続いて高周波スパッタリング
法によりゲルマニウムをターゲットとしてアルゴン雰囲
気中で厚さ8nmのゲルマニウム膜8を形成した。この
石英膜とゲルマニウム膜の形成工程をそれぞれ100回
行い、図3に示す断面構造をもつ多層膜を形成した。図
中、9は石英膜とゲルマニウム膜の繰り返しを表してい
る。
Example 1 A 0.6 mm thick polyimide molded product (film)
A 0.1 μm-thick aluminum vapor-deposited film 6 was formed on 5 and optically polished to obtain a substrate for producing a laminated polarizer. On this substrate, a 1 μm thick quartz was used as a target by high frequency sputtering in an atmosphere of argon and oxygen.
m of the quartz film 7 was formed. Subsequently, a germanium film 8 having a thickness of 8 nm was formed in a argon atmosphere using germanium as a target by high frequency sputtering. This quartz film and germanium film forming process were performed 100 times each to form a multilayer film having a cross-sectional structure shown in FIG. In the figure, reference numeral 9 denotes a repetition of a quartz film and a germanium film.

【0015】次にこの多層膜をダイシングソーを用いて
20μm間隔で切り出した。さらに短冊状の多層膜を2
mmおきに切断した。このようにして幅2mm、高さ約
0.7mm、厚さ20μmの積層型偏光子を得た。切り
出しの際破損は全くなかった。また30μmの溝を形成
した光導波路に挿入しても破損することはなかった。こ
の積層型偏光子の消光比は波長1.3μmで40dBを
超える値を持っており、偏光子としての十分な性能を有
していた。高分子膜の厚さは多層膜の厚さの約6倍であ
る。
Next, this multilayer film was cut out at intervals of 20 μm using a dicing saw. In addition, a strip-shaped multilayer
Cutting was performed every mm. Thus, a laminated polarizer having a width of 2 mm, a height of about 0.7 mm, and a thickness of 20 μm was obtained. There was no damage at the time of cutting. Also, no damage was caused even when inserted into an optical waveguide having a 30 μm groove. The extinction ratio of this laminated polarizer had a value exceeding 40 dB at a wavelength of 1.3 μm, and had sufficient performance as a polarizer. The thickness of the polymer film is about six times the thickness of the multilayer film.

【0016】[0016]

【実施例2】実施例1と同様にして厚さ0.6mmのポ
リイミド基板上に多層膜を形成した後多層膜上にポリイ
ミドの前駆体溶液をスピンコート法で塗布した。そして
加熱キュアを行うことにより厚さ50μmのポリイミド
フィルムを形成した。実施例1と同様にしてダイシング
ソーにより切り出し、幅2mm、高さ約0.75mm、
厚さ20μmの積層型偏光子を得た。切り出しの際破損
は全くなかった。また30μmの溝を形成した光導波路
に挿入しても破損することはなかった。また両面が高分
子膜で覆われているため積層型偏光子表面への衝撃に対
しても非常に強かった。この積層型偏光子の消光比は波
長1.3μmで40dBを超える値を持っており、偏光
子としての十分な性能を有していた。高分子膜の厚さは
多層膜の厚さの約7倍である。
Example 2 A multilayer film was formed on a 0.6 mm-thick polyimide substrate in the same manner as in Example 1, and a polyimide precursor solution was applied on the multilayer film by spin coating. Then, a polyimide film having a thickness of 50 μm was formed by heating and curing. Cut out with a dicing saw in the same manner as in Example 1, width 2 mm, height about 0.75 mm,
A 20 μm-thick laminated polarizer was obtained. There was no damage at the time of cutting. Also, no damage was caused even when inserted into an optical waveguide having a 30 μm groove. In addition, since both surfaces were covered with the polymer film, it was very strong against impact on the surface of the laminated polarizer. The extinction ratio of this laminated polarizer had a value exceeding 40 dB at a wavelength of 1.3 μm, and had sufficient performance as a polarizer. The thickness of the polymer film is about seven times the thickness of the multilayer film.

【0017】[0017]

【比較例1】ガラス基板上に形成した厚さ20μmの従
来の積層型偏光子は、ダイシングソーによる切り出しの
時に一部破損し、また30μmの溝を形成した光導波路
に挿入すると挿入の仕方によって破損する場合があっ
た。
COMPARATIVE EXAMPLE 1 A conventional laminated polarizer having a thickness of 20 μm formed on a glass substrate is partially damaged when cut out with a dicing saw, and when inserted into an optical waveguide having a 30 μm groove formed therein, depending on the manner of insertion. In some cases, it was damaged.

【0018】[0018]

【比較例2】高分子膜の厚さが多層膜の厚さの4倍の積
層型偏光子では、光導波路へ100個の挿入試験を行っ
たところ20個が破損した。
COMPARATIVE EXAMPLE 2 In a laminated polarizer having a polymer film having a thickness of four times the thickness of the multilayer film, 20 were broken when an insertion test of 100 was inserted into the optical waveguide.

【0019】[0019]

【発明の効果】以上述べてきたように本発明の積層型偏
光子は歩留まりよく製造できるとともに、使用にあたっ
ても破損する恐れはほとんどないという利点がある。こ
れらの特徴を利用することにより光導波路などの光部品
を簡易に安価に作製できる等の利点がある。
As described above, the laminated polarizer of the present invention has the advantages that it can be manufactured with a high yield and that it is hardly damaged during use. By utilizing these characteristics, there is an advantage that an optical component such as an optical waveguide can be easily and inexpensively manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】片面が高分子膜である本発明に係わる積層型偏
光子の構成例を示す図。
FIG. 1 is a diagram showing a configuration example of a laminated polarizer according to the present invention in which one surface is a polymer film.

【図2】両面が高分子膜である本発明に係わる積層型偏
光子の構成例を示す図。
FIG. 2 is a diagram showing a configuration example of a laminated polarizer according to the present invention, in which both surfaces are polymer films.

【図3】実施例1の積層型偏光子の断面図。FIG. 3 is a cross-sectional view of the laminated polarizer of Example 1.

【符号の説明】[Explanation of symbols]

1 誘電体膜 2 金属膜または半導体膜 3 多層膜 4 高分子膜 5 ポリイミド膜 6 アルミニウム膜 7 石英膜 8 ゲルマニウム膜 9 石英膜とゲルマニウム膜の繰り返しを表す Reference Signs List 1 dielectric film 2 metal film or semiconductor film 3 multilayer film 4 polymer film 5 polyimide film 6 aluminum film 7 quartz film 8 germanium film 9 represents repetition of quartz film and germanium film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 久貴 東京都武蔵野市御殿山一丁目1番3号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Kuki Takenaka 1-3-1 Gotenyama, Musashino-shi, Tokyo NTT Advanced Technology Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数個の誘電体膜と複数個の金属膜又は半
導体膜が交互に積層された多層膜を含む積層型偏光子に
おいて、多層膜の片側に高分子膜を配した構成をしてい
ることを特徴とする積層型偏光子。
1. A laminated polarizer comprising a multilayer film in which a plurality of dielectric films and a plurality of metal films or semiconductor films are alternately laminated, wherein a polymer film is disposed on one side of the multilayer film. A laminated polarizer, characterized in that:
【請求項2】複数個の誘電体膜と複数個の金属膜又は半
導体膜が交互に積層された多層膜を含む積層型偏光子に
おいて、多層膜の両側に高分子膜を配した構成をしてい
ることを特徴とする積層型偏光子。
2. A laminated polarizer comprising a multilayer film in which a plurality of dielectric films and a plurality of metal films or semiconductor films are alternately laminated, wherein a polymer film is disposed on both sides of the multilayer film. A laminated polarizer, characterized in that:
【請求項3】高分子膜の厚さが多層膜の厚さの5倍以上
であることを特徴とする請求項1または請求項2記載の
積層型偏光子。
3. The laminated polarizer according to claim 1, wherein the thickness of the polymer film is at least five times the thickness of the multilayer film.
JP9190604A 1997-07-01 1997-07-01 Laminated polarizer Pending JPH1123845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9190604A JPH1123845A (en) 1997-07-01 1997-07-01 Laminated polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9190604A JPH1123845A (en) 1997-07-01 1997-07-01 Laminated polarizer

Publications (1)

Publication Number Publication Date
JPH1123845A true JPH1123845A (en) 1999-01-29

Family

ID=16260842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9190604A Pending JPH1123845A (en) 1997-07-01 1997-07-01 Laminated polarizer

Country Status (1)

Country Link
JP (1) JPH1123845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
US6535655B1 (en) 2000-01-18 2003-03-18 Corning Incorporated Fiberoptic polarizer and method of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535655B1 (en) 2000-01-18 2003-03-18 Corning Incorporated Fiberoptic polarizer and method of making the same
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
US7002742B2 (en) 2000-09-20 2006-02-21 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element

Similar Documents

Publication Publication Date Title
KR20010053567A (en) Method for fabricating waveguide
JPH1144825A (en) Optical device and its production
US20100128347A1 (en) Polarizing cube and method of fabricating the same
JPH1123845A (en) Laminated polarizer
JP2004125919A (en) Polarizing and splitting element
JP3876666B2 (en) Optical device and manufacturing method thereof
JP3486355B2 (en) Manufacturing method of polarizer
JP2002311387A (en) Multistage reflection type faraday rotator
JP3493149B2 (en) Polarizer, method of manufacturing the same, and waveguide optical device using the same
JPH1195027A (en) Polarizing element of multilayer structure
US5687263A (en) Optical RF bandpass filter and method for manufacturing same
JP2003195031A (en) Air gap type etalon filter and method for manufacturing the same
JP2003248130A (en) Quartz-based optical waveguide component
JPH02110406A (en) Method for forming optical circuit device
JP3292219B2 (en) Divided wave plate and manufacturing method thereof
JP4137737B2 (en) Fabrication method of core expansion fiber array
JP3198039B2 (en) Optical fiber array component and method of manufacturing the same
JPH1152128A (en) Multilayered dielectric film optical filter and its production
JPH09258044A (en) Optical filter-containing waveguide type optical device
JPH1048418A (en) Dielectric multilayered film optical filter and its production
JP3268562B2 (en) Optical switch manufacturing method
JP2000047029A (en) Optical device and its manufacture
JP3490418B2 (en) Method of manufacturing dielectric multilayer filter chip
JP2003294922A (en) Method for making microoptical element and microoptical element, and optical pickup and optical communication module
JPH0843652A (en) Optical waveguide and its production