JPH11237032A - Manufacture of coal-water paste - Google Patents

Manufacture of coal-water paste

Info

Publication number
JPH11237032A
JPH11237032A JP4086898A JP4086898A JPH11237032A JP H11237032 A JPH11237032 A JP H11237032A JP 4086898 A JP4086898 A JP 4086898A JP 4086898 A JP4086898 A JP 4086898A JP H11237032 A JPH11237032 A JP H11237032A
Authority
JP
Japan
Prior art keywords
coal
water
kneader
cwp
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4086898A
Other languages
Japanese (ja)
Other versions
JP4029230B2 (en
Inventor
Misao Takuwa
操 宅和
Makoto Hisamitsu
誠 久光
Hirotsugu Yamaguchi
博嗣 山口
Yoshinori Otani
義則 大谷
Hiroshi Takezaki
博 武崎
Yoshitaka Takahashi
芳孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP04086898A priority Critical patent/JP4029230B2/en
Publication of JPH11237032A publication Critical patent/JPH11237032A/en
Application granted granted Critical
Publication of JP4029230B2 publication Critical patent/JP4029230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the adjustment of moisture with a kneader, even in the case of making use of such coal that the moisture is over 10 wt.%. SOLUTION: In the manufacture of coal-water paste, which manufactures coal-water paste (hereinafter, referred to CWP) 21 by mixing raw coal 1 water 11 while crushing a part of the pulverized coal 19 with a pulverizer 5 after crushing of the raw coal 1 so as to manufacture powder slurry 20, and further, mixing the residual crushed coal 19, a lime stone 22, powder slurry 20, and water 11 with a kneader 6, the viscosity of the CPW 21 is managed by detecting the viscosity of the CWP 21 at the outlet of a kneader 6, and lowering the viscosity of the CWP 21 and also, injecting an interface activator 17 into a pulverizer 5 thereby raising the concentration of the coal of the powder slurry 20 within the pluverizer 5 and performing fine crushing, when the viscosity of the CWP 21 drops, and adjusting the quantity of water to be supplied to the kneader 6 after the viscosity of the CWP 21 at the outlet of the kneader 6 goes up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧した流動層で
石炭等の固体燃料を燃焼し、発生したスチームによって
蒸気タービンを駆動し、さらに高圧、高温の燃焼ガスで
ガスタービンを駆動して高効率で電力を得る加圧流動層
ボイラ複合発電プラントの燃焼炉に関し、特に該燃焼炉
に供給する石炭と水の混合物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to combustion of a solid fuel such as coal in a pressurized fluidized bed, driving a steam turbine by generated steam, and further driving a gas turbine by high-pressure, high-temperature combustion gas. The present invention relates to a combustion furnace for a pressurized fluidized-bed boiler combined cycle power plant that obtains electric power with high efficiency, and more particularly to a method for producing a mixture of coal and water supplied to the combustion furnace.

【0002】[0002]

【従来の技術】加圧流動層ボイラは発生するスチーム及
び高圧の燃焼ガスからエネルギーを売ることが可能であ
る。但し、固体である石炭粒子を加圧状態の燃焼炉内に
連続して安定に供給することが課題の一つである。従来
は流動層燃焼炉への石炭の供給方法として、石炭粒子と
水を混合してペースト状の流体(以下、CWPという)
とし、該CWPをポンプで昇圧及び圧送して噴霧ノズル
から供給する湿式供給方式が知られている(例えば特開
昭62−155433号公報)。この湿式供給方法は乾式供給方
式、例えばロックホッパで昇圧した後空気輸送する方式
に比べ、乾燥などの前処理が不要である。
BACKGROUND OF THE INVENTION Pressurized fluidized bed boilers are capable of selling energy from the steam generated and the high pressure combustion gases. However, one of the issues is to continuously and stably supply solid coal particles into a combustion furnace in a pressurized state. Conventionally, as a method of supplying coal to a fluidized bed combustion furnace, a paste-like fluid (hereinafter, referred to as CWP) obtained by mixing coal particles and water.
There is known a wet supply system in which the CWP is pressurized and pressure-fed by a pump and supplied from a spray nozzle (for example, JP-A-62-155433). This wet supply method does not require pretreatment such as drying as compared with a dry supply method, for example, a method in which the pressure is increased by a lock hopper and then pneumatic transport is performed.

【0003】図8に示すように、従来は原炭1を原炭コ
ンベア2により破砕機3へ供給して重量平均径1〜2mm
になるように破砕する。ここで重量平均径の算出法を示
す。ふるい分けによる粒度分析で、図9に示すようなふ
るいの目開きとふるいを通過した粒子の重量(以下、ふ
るい下累積重量という)との関係を乾炭基準で描く。こ
のときふるいの目開きはふるいを通過した粒子径の最大
値に相当する。この関係より、ふるい下累積重量割合
(=100×(ふるい下累積重量)/(破砕炭重量))
が50%のときの粒径の値(ふるいの目開きの値、図9
のF)を重量平均径としている。
[0003] As shown in FIG. 8, conventionally, raw coal 1 is supplied to a crusher 3 by a raw coal conveyor 2 and a weight average diameter of 1-2 mm.
Crush to become. Here, a method for calculating the weight average diameter will be described. In the particle size analysis by sieving, the relationship between the opening of the sieve as shown in FIG. 9 and the weight of the particles passing through the sieve (hereinafter referred to as the cumulative weight under the sieve) is drawn on a dry coal basis. At this time, the opening of the sieve corresponds to the maximum value of the particle diameter passing through the sieve. From this relationship, the cumulative weight ratio under the sieve (= 100 × (cumulative weight under the sieve) / (crushed coal weight))
Is 50% (value of sieve opening, FIG. 9).
F) is the weight average diameter.

【0004】破砕機3で原炭1を破砕して得られた破砕
炭は、破砕炭ホッパ4を介して一部が微粉砕機5へ投入
され、水ポンプ16により送られる水11とともに重量
平均径0.03〜0.07mmになるように石炭濃度50
%以下で湿式粉砕され、微粉スラリ20が製造される。
製造された微粉スラリ20と破砕炭19と石灰石22を
所定の粘度になるように注水量を調整しながら混練機6
で混合してCWP21を製造する。このCWPは、CW
P撹拌機10でかき混ぜながらタンク7に貯められた
後、CWPポンプ8で火炉9へ圧送される。CWPは配
管内でのつまりが生じないように、粘度が水分で調整さ
れておりピン型粘度計23における100rpmの粘度
約10Pa・sになるように、混練機6で水を注入して混
合している。このときのCWPの水分は炭種によって異
なるが、20〜30wt%程度である。
A part of the crushed coal obtained by crushing the raw coal 1 by the crusher 3 is put into the pulverizer 5 via the crushed coal hopper 4, and is weight-averaged together with the water 11 sent by the water pump 16. Coal concentration 50 so that diameter becomes 0.03-0.07mm
% Or less, and the fine powder slurry 20 is produced.
The kneading machine 6 adjusts the water injection amount of the manufactured fine powder slurry 20, the crushed coal 19 and the limestone 22 so as to have a predetermined viscosity.
To produce CWP21. This CWP is CW
After being stored in the tank 7 while being stirred by the P stirrer 10, it is pumped to the furnace 9 by the CWP pump 8. The viscosity of the CWP is adjusted with moisture so as not to cause clogging in the pipe, and water is injected by the kneader 6 and mixed so that the viscosity at 100 rpm in the pin type viscometer 23 becomes about 10 Pa · s. ing. At this time, the water content of CWP varies depending on the type of coal, but is about 20 to 30% by weight.

【0005】CWPの粘度は、ピン型粘度計で5〜15
Pa・s、好ましくは10Pa・sとしている。これより大き
い粘度ではCWPが配管内で詰まりやすくなり、小さい
粘度では石炭と水が分離しやすくなる。
The viscosity of CWP is 5 to 15 with a pin type viscometer.
Pa · s, preferably 10 Pa · s. If the viscosity is higher than this, CWP tends to be clogged in the pipe, and if the viscosity is low, coal and water are easily separated.

【0006】ここで、図3に示す線A,Bは、微粉砕機
5で微粉砕された微粉スラリに、75μm以下の粒子、
つまり、目開き75μmのふるいを通過した粒子が、微
粉スラリ内の粒子の何%存在するかを示したものであ
り、その割合が60〜70%の範囲にあれば許容範囲で
あることを示している。微粉砕機5内で石炭濃度50%
以上で粉砕すると、図3の線Aのように、微粉砕機5内
の微粉スラリの粘度が増加して石炭粒径が粗くなり、粉
砕能力が低下するので粒度調整が困難になる。したがっ
て粉砕時の石炭濃度は50%以下で粉砕している。
[0006] Here, lines A and B shown in FIG. 3 indicate that particles having a particle size of 75 μm or less are added to the fine powder slurry pulverized by the pulverizer 5.
In other words, it indicates what percentage of the particles in the fine powder slurry are passed through the sieve having an opening of 75 μm, and if the ratio is in the range of 60 to 70%, it indicates that it is within the allowable range. ing. 50% coal concentration in the fine grinding machine 5
When the pulverization is performed as described above, as shown by the line A in FIG. 3, the viscosity of the fine powder slurry in the pulverizer 5 increases, the coal particle diameter becomes coarse, and the pulverization ability decreases, so that it is difficult to adjust the particle diameter. Therefore, pulverization is performed at a coal concentration of 50% or less during pulverization.

【0007】混練機6での微粉スラリ20と破砕炭19
との混合割合は、図4のCに示すように、乾炭基準で微
粉スラリを20〜25wt%としている。この範囲以外に
すると、粘度10Pa・sにするための水分を下げること
ができない。20wt%以下だと石炭と水が分離しやす
い、25wt%以上だと高粘度になりやすいCWPとな
る。すなわち、75μm以下の粒度60〜70%の微粉
を全CWPの石炭粒子の20〜25%混合するのが最も
水分が少ないので燃焼性がよく、水と石炭の分離がほと
んどないので、輸送性にも優れた最適なCWPとなる。
The fine powder slurry 20 and the crushed coal 19 in the kneader 6
As shown in FIG. 4C, the mixing ratio of the fine powder slurry is 20 to 25 wt% based on dry coal. If the amount is outside this range, the water content for making the viscosity 10 Pa · s cannot be reduced. If it is 20 wt% or less, coal and water are easily separated, and if it is 25 wt% or more, CWP is likely to have high viscosity. That is, it is preferable to mix a fine powder having a particle size of 60 to 70% of 75 μm or less with a content of 20 to 25% of the total CWP coal particles because the water content is the lowest and the combustibility is good, and there is almost no separation between water and coal. Is also an excellent optimal CWP.

【0008】[0008]

【発明が解決しようとする課題】原炭1のもつ水分量は
炭種、石炭置場の環境、天候などで異なってくる。通常
は9wt%程度であるが、湿度の高い状態で原炭を放置し
ておくと14wt%程度となることがある。図8の微粉砕
機5と混練機6の石炭と水の混合割合を従来技術のよう
にして製造すると、図6の点線のように、粘度が5〜1
5Pa・sとなる水分(図5参照)にするための混練機6
での注水量がわずかになり、原炭1の保有水分が14wt
%となると、混練機6で水を入れられなくなる。ここで
図6中の混練機での注水割合%は、 混練機での注水割合={(混練機での水添加量)/(全C
WP量)}×100 と定義されている(全CWP量は石炭を含むCWP重
量)。
The amount of water contained in the raw coal 1 varies depending on the type of coal, the environment of the coal yard, the weather, and the like. Usually, it is about 9% by weight, but if raw coal is left in a high humidity state, it may become about 14% by weight. When the mixing ratio of coal and water in the pulverizer 5 and the kneader 6 in FIG. 8 is manufactured according to the conventional technique, the viscosity is 5 to 1 as shown by the dotted line in FIG.
Kneader 6 for making water to 5Pa · s (see Fig. 5)
The amount of water injected into the coal becomes 14 wt.
%, Water cannot be added by the kneader 6. Here, the water injection ratio% in the kneader in FIG. 6 is the water injection ratio in the kneader = {(water addition amount in the kneader) / (total C
(WP amount)} × 100 (total CWP amount is CWP weight including coal).

【0009】それと同時に微粉砕機で水を減らさないと
CWP21の粘度を5〜15Pa・sにするための水分に
ならない。しかし、前述したように微粉砕機での石炭濃
度を50wt%以上にして粉砕すると粉砕能力が低下す
る。この点で問題となる。
At the same time, if the water is not reduced by the pulverizer, the water does not become water for adjusting the viscosity of CWP21 to 5 to 15 Pa · s. However, as described above, when the pulverization is performed by setting the coal concentration in the pulverizer to 50% by weight or more, the pulverization ability is reduced. This is a problem.

【0010】本発明の目的は、水分が10wt%を超える
ような原炭を利用する場合においても、混練機のみで水
調整するために混練機出口での粘度が低下したことを検
知して、微粉砕機の水分量を下げて、混練機での水分調
整を容易にするにある。
An object of the present invention is to detect that the viscosity at the outlet of the kneading machine has decreased because the water is adjusted only by the kneading machine even when using raw coal having a water content of more than 10 wt%. The purpose is to reduce the amount of water in the pulverizer so as to facilitate the adjustment of water in the kneader.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するために、混練機出口でCWP性状を管理して混練
機注水量を制御する際に、混練機出口でCWP粘度が低
減したことを検知して、微粉砕機へ供給される水分量を
低減するものである。そのために微粉砕機に水とともに
界面活性剤を注入して、微粉砕機内での微粉スラリの粘
度を下げ、粉砕能力を界面活性剤を注入しない、水分量
を下げない場合と同等にして微粉スラリを製造するもの
である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention reduces the CWP viscosity at the kneader outlet when controlling the CWP properties at the kneader outlet and controlling the water injection amount of the kneader. That is, the amount of water supplied to the pulverizer is reduced. For this purpose, a surfactant is injected into the pulverizer together with water to reduce the viscosity of the pulverulent slurry in the pulverizer. Is to manufacture.

【0012】この方法に依れば、従来、原炭の保有水分
が10wt%を超えることを理由に混練機で、輸送しやす
いCWP粘度に調整できない場合でも、原炭の水分量を
直接管理することなく、性状が所要の範囲に保たれたC
WPを製造することが可能となる。
[0012] According to this method, the water content of the raw coal is directly controlled even if the kneader cannot adjust the viscosity of the raw coal to an easily transportable CWP because the water content of the raw coal exceeds 10 wt%. C without any properties kept in the required range
WP can be manufactured.

【0013】上記の目的を達成する本発明の第1の手段
は、原炭を破砕したのち、破砕炭の一部を微粉砕機で粉
砕しながら水と混合して微粉スラリを製造し、さらに混
練機で残部の破砕炭と石灰石と前記微粉スラリと水を混
合して石炭・水ペースト(以下、CWPという)を製造
する、石炭・水ペーストの製造方法において、混練機出
口のCWPの粘度を検知して、微粉砕機内の微粉スラリ
の石炭濃度を微粉砕機に供給される水の量で調節するこ
とを特徴とする。
A first means of the present invention to achieve the above object is to crush raw coal, mix a portion of the crushed coal with water while crushing the crushed coal with a pulverizer to produce a fine powder slurry, In a method for producing a coal / water paste (hereinafter referred to as CWP) by mixing the remaining crushed coal, limestone, the fine powder slurry and water with a kneader, the viscosity of CWP at the kneader outlet is determined. Detecting and adjusting the coal concentration of the fine powder slurry in the fine crusher by the amount of water supplied to the fine crusher.

【0014】上記の目的を達成する本発明の第2の手段
は、上記第1の手段において、混練機出口のCWPの粘
度を検知して、微粉砕機内の微粉スラリに注入される界
面活性剤の量を調節することを特徴とする。
A second means of the present invention for achieving the above object is the above-mentioned first means, wherein the viscosity of CWP at the outlet of the kneader is detected and the surfactant injected into the fine powder slurry in the fine pulverizer is used. Is characterized by adjusting the amount of

【0015】上記の目的を達成する本発明の第3の手段
は、上記第1の手段において、混練機出口のCWP粘度
を入力として制御される混練機への注水量が低下するの
を検知して、微粉砕機に供給される水量を調節すること
を特徴とする。
[0015] A third means of the present invention for achieving the above object is that, in the first means, a decrease in the amount of water injected into the kneader controlled by using the CWP viscosity at the kneader outlet as an input is detected. And adjusting the amount of water supplied to the pulverizer.

【0016】上記の目的を達成する本発明の第4の手段
は、上記第3の手段において、混練機への注水量が低下
するのを検知して、微粉砕機内の微粉スラリに界面活性
剤を注入する量を調整することを特徴とする。
A fourth means of the present invention for achieving the above object is that, in the third means, a surfactant is added to the fine slurry in the fine pulverizer by detecting a decrease in the amount of water injected into the kneader. It is characterized in that the amount to be injected is adjusted.

【0017】[0017]

【発明の実施の形態】図1を参照して本発明の第1の実
施例を説明する。図示のCWP製造装置は、原炭1を搬
送する原炭コンベア2と、原炭コンベア2で搬送された
原炭1を重量平均径1〜2mmに破砕する破砕機3と、破
砕機3で破砕、生成された破砕炭19を貯蔵する複数の
破砕炭ホッパ4と、添加剤撹拌機14を備え界面活性剤
17を貯蔵する添加剤タンク12と、添加剤タンク12
に吸込側を接続して配置され界面活性剤17を加圧して
吐出する添加剤ポンプ15と、添加剤ポンプ15の吐出
側配管29に介装された添加剤量調整弁24と、水源か
ら水11を吸引して吐出する水ポンプ16と、水ポンプ
16の吐出側に接続された第1の配管27に介装された
微粉砕機側水量調整弁26と、前記第1の配管の微粉砕
機側水量調整弁26の上流側に分岐して設けられ混練機
側水量調整弁25を介装した第2の配管28と、前記複
数の破砕炭ホッパ4のうちの一つと、吐出側配管29及
び第1の配管27の下流端とに接続された微粉砕機5
と、前記複数の破砕炭ホッパ4のうちの他の一つと、混
練機5の出側と、前記第2の配管28の下流端と、石灰
石22の貯槽とに接続して配置された混練機6と、混練
機6の出側下方に配置され、混練機6の出側に配管30
を介して接続されてCWPを貯蔵するタンク7と、該配
管30に介装されたピン型粘度計23と、タンク7に設
置されタンク7内部のCWPを撹拌するCWP撹拌機1
0と、タンク7からCWPを吸引して火炉9に送るCW
Pポンプ9と、を含んで構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. The illustrated CWP manufacturing apparatus includes a raw coal conveyor 2 for transporting raw coal 1, a crusher 3 for crushing the raw coal 1 conveyed on the raw coal conveyor 2 to a weight average diameter of 1 to 2 mm, and a crusher 3 for crushing. A plurality of crushed coal hoppers 4 for storing the generated crushed coal 19; an additive tank 12 having an additive stirrer 14 for storing a surfactant 17;
Pump 15 which is disposed with the suction side connected thereto and pressurizes and discharges the surfactant 17, an additive amount adjusting valve 24 interposed in the discharge pipe 29 of the additive pump 15, and water from the water source. A water pump 16 for sucking and discharging 11, a fine-pulverizer-side water amount adjusting valve 26 interposed in a first pipe 27 connected to the discharge side of the water pump 16, and fine pulverization of the first pipe A second pipe 28 branched and provided upstream of the machine-side water amount adjustment valve 26 and having a kneader-side water amount adjustment valve 25 interposed therebetween, one of the plurality of crushed coal hoppers 4, and a discharge-side pipe 29. And a pulverizer 5 connected to the downstream end of the first pipe 27
And a kneader connected to the other one of the plurality of crushed coal hoppers 4, the outlet side of the kneader 5, the downstream end of the second pipe 28, and the storage tank of the limestone 22. 6 and a pipe 30 arranged below the outlet side of the kneader 6
, A pin type viscometer 23 interposed in the pipe 30, and a CWP stirrer 1 installed in the tank 7 and stirring the CWP inside the tank 7.
0, CW that sucks CWP from tank 7 and sends it to furnace 9
And a P pump 9.

【0018】上記構成の装置の動作を次に説明する。原
炭1は原炭コンベア2で破砕機3へ供給され、重量平均
径1〜2mmになるように破砕され、破砕炭19となって
破砕炭ホッパ4に投入される。破砕炭ホッパ4の破砕炭
の一部は微粉砕機5に供給され、水ポンプ16に加圧さ
れ微粉砕機側水量調整弁26を経て供給される水11を
混合しながら微粉砕されて微粉スラリ20となる。微粉
砕機5には、添加剤タンク12から添加剤ポンプ15に
加圧され添加剤量調整弁24を経て供給される界面活性
剤17が、乾炭に対して0.01〜0.9%の割合で注
入される。
The operation of the apparatus having the above configuration will be described below. The raw coal 1 is supplied to the crusher 3 by the raw coal conveyor 2, crushed so as to have a weight average diameter of 1 to 2 mm, and turned into the crushed coal 19 and put into the crushed coal hopper 4. A part of the pulverized coal in the pulverized coal hopper 4 is supplied to the pulverizer 5 and is pulverized while being mixed with the water 11 which is pressurized by the water pump 16 and supplied through the pulverizer-side water amount adjusting valve 26. It becomes slurry 20. In the pulverizer 5, the surfactant 17 pressurized from the additive tank 12 to the additive pump 15 and supplied through the additive amount adjusting valve 24 is 0.01 to 0.9% based on the dry coal. Is injected at a rate of

【0019】製造された微粉スラリ20は混練機6に送
られ、同じく混練機6に供給される破砕炭19と石灰石
22と水11とともに混練されてCWP21となる。そ
の際、供給される水量は、製造されるCWPの粘度が所
定の粘度となるように、混練機側水量調整弁25で調整
しながら混練機6に供給される。製造されたCWP21
はピン型粘度計23で粘度を計測され、その後タンク7
に貯蔵される。タンク中のCWP21はCWPポンプ8
で火炉9へ圧送される。
The produced fine powder slurry 20 is sent to the kneading machine 6 and kneaded together with the crushed coal 19, limestone 22 and water 11 which are also supplied to the kneading machine 6, to form the CWP 21. At this time, the supplied water amount is supplied to the kneader 6 while adjusting the water amount adjusting valve 25 on the kneader side so that the viscosity of the CWP to be produced becomes a predetermined viscosity. Manufactured CWP21
Is measured with a pin type viscometer 23, and then the tank 7
Stored in CWP21 in the tank is CWP pump 8
To the furnace 9.

【0020】混練機側水量調整弁25は、ピン型粘度計
23で検出されるCWP粘度が、5〜15Pa・sの範囲
となるように、混練機6に送る水量を制御している。原
炭の水分が高いとCWP粘度が低くなる。ピン型粘度計
23でCWP粘度が低いことが検知されると、添加剤量
調整弁24が開かれ同時に微粉砕機側水量調整弁26の
開度が絞られて、微粉スラリ20の石炭濃度を上げて粉
砕が行われ、混練機6にその微粉スラリが供給される。
この結果混練機6出口の水分が低減することから、CW
P21の粘度は上昇する。これをピン型粘度計23が検
知して、混練機側水量調整弁25で、混練機での注水割
合が図6の全水分が領域Eの範囲内に入るように、言い
替えると、図6の斜めの線で表されている混練機での注
水割合とCWP全水分の関係が領域Eの範囲になるよう
に、再びCWPの粘度が管理される。
The kneader-side water amount adjusting valve 25 controls the amount of water sent to the kneader 6 so that the CWP viscosity detected by the pin type viscometer 23 is in the range of 5 to 15 Pa · s. If the water content of the raw coal is high, the CWP viscosity decreases. When the pin type viscometer 23 detects that the CWP viscosity is low, the additive amount adjusting valve 24 is opened, and at the same time, the opening of the pulverizer-side water amount adjusting valve 26 is narrowed to reduce the coal concentration of the fine powder slurry 20. The fine powder slurry is supplied to the kneader 6.
As a result, the water content at the outlet of the kneader 6 is reduced.
The viscosity of P21 increases. This is detected by the pin-type viscometer 23, and the kneading machine-side water amount adjusting valve 25 is set so that the water injection rate in the kneading machine falls within the range of the region E in FIG. The viscosity of the CWP is again controlled so that the relationship between the ratio of water injection in the kneader and the total water content of the CWP, which is indicated by an oblique line, falls within the range of the region E.

【0021】この方法によると、図6の実線のように、
石炭の保有水分が14wt%あるものでも、混練機のみで
水分調整が可能になる。また、微粉砕機に界面活性剤を
入れると、微粉砕機の石炭濃度をあげて粉砕しても、図
3の線Bで示されるように、石炭濃度がほぼ70%にな
るまでは微粉スラリ20の粒度が所望の粒度範囲に維持
されていて、粉砕性能が低下していないことが分かる。
According to this method, as shown by the solid line in FIG.
Even if the coal has a water content of 14 wt%, the water content can be adjusted only by the kneader. Also, if a surfactant is added to the pulverizer, even if the coal concentration of the pulverizer is increased and pulverized, as shown by the line B in FIG. It can be seen that the particle size of No. 20 was maintained in the desired particle size range, and the pulverizing performance was not reduced.

【0022】燃料コストを抑えることも重要であるか
ら、混練機で水を注入できないほどの水分を持つ石炭
(保有水分が10%以上の石炭)のとき以外は、界面活
性剤を使用しない方がよいが、保有水分10%以上の石
炭のときは界面活性剤を使用しないと、適正な水分調
整、粒度調整ができない。したがって、従来技術と本発
明による運転方法を、受入れ石炭の水分量によって使い
分ける必要がある。ただし、従来技術のように、水分量
の多い微粉砕機中の微粉スラリに界面活性剤を急に入れ
ると分散化が進んで石炭が分離しやすくなる。また、界
面活性剤の入っていない微粉砕機中の微粉スラリの粉砕
濃度(石炭濃度)を急に上げると、前述のように、粉砕
能力が低下する。このため、界面活性剤を入れることと
粉砕濃度を上げることとは、同時に行うことが重要とな
る。
Since it is also important to reduce the fuel cost, it is better not to use a surfactant except when the coal has a water content such that water cannot be injected by a kneader (having a water content of 10% or more). It is good, but in the case of coal having a water content of 10% or more, proper adjustment of water content and particle size cannot be performed unless a surfactant is used. Therefore, it is necessary to selectively use the operation method according to the prior art and the operation method according to the present invention according to the water content of the received coal. However, when a surfactant is suddenly added to a fine powder slurry in a fine pulverizer having a large amount of water as in the prior art, the dispersion is advanced and the coal is easily separated. Also, if the pulverizing concentration (coal concentration) of the fine powder slurry in the pulverizer containing no surfactant is suddenly increased, the pulverizing ability is reduced as described above. For this reason, it is important to simultaneously add the surfactant and increase the pulverization concentration.

【0023】例えば、粉砕濃度50%から60%に上
げ、添加剤を乾炭に対して0.35wt%添加する場合に
は、急に切り替えるのではなく、図7に示すように、徐
々に添加剤量と粉砕濃度を上げるように運転する。
For example, when the pulverization concentration is increased from 50% to 60% and the additive is added in an amount of 0.35% by weight based on the dry coal, the additive is not suddenly switched but is gradually added as shown in FIG. Operate to increase the amount of the agent and the pulverization concentration.

【0024】次に図2を参照して本発明の第2の実施例
を説明する。本実施例が図1に示す前記第1の実施例と
異なるのは、微粉砕機側水量調整弁26及び添加剤量調
整弁24の開度は、ピン型粘度計23の出力で制御され
るのではなく、混練機側水量調整弁25の開度に基づい
て制御されるように構成されている点である。他の構成
要素は前記第1の実施例と同じなので、同一の符号を付
し、説明は省略する。本実施例においてもピン型粘度計
23の出力に基づき、CWP粘度が5〜15Pa・sの範
囲となるように制御される。ピン型粘度計23が出力す
るCWP粘度が設定値以下に低下すると、混練機側水量
調整弁25は注水量が少なくなるように制御される。混
練機側水量調整弁25の開度が絞られたことが検知され
ると、添加剤量調整弁24が開かれ、同時に微粉砕機側
水量調整弁26の開度が絞られる。 このようにして製
造された微粉スラリ20が混練機6に供給されると、C
WP粘度は上昇する。この粘度上昇をピン型粘度計23
が検知して、混練機側水量調整弁25で図6の実線のよ
うに再びCWP21の粘度が管理される。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment shown in FIG. 1 in that the opening degree of the fine-pulverizer-side water amount adjusting valve 26 and the additive amount adjusting valve 24 is controlled by the output of the pin type viscometer 23. Instead, it is configured to be controlled based on the opening degree of the kneader-side water amount adjustment valve 25. The other components are the same as those in the first embodiment, and thus are denoted by the same reference numerals and description thereof will be omitted. Also in the present embodiment, the CWP viscosity is controlled based on the output of the pin type viscometer 23 so as to be in the range of 5 to 15 Pa · s. When the CWP viscosity output by the pin type viscometer 23 falls below the set value, the kneader-side water amount adjusting valve 25 is controlled so that the amount of injected water decreases. When it is detected that the opening of the kneader-side water amount adjustment valve 25 has been reduced, the additive amount adjustment valve 24 is opened, and at the same time, the opening of the pulverizer-side water amount adjustment valve 26 is reduced. When the fine powder slurry 20 thus manufactured is supplied to the kneading machine 6, C
The WP viscosity increases. This increase in viscosity is measured by a pin type viscometer 23.
Is detected, and the viscosity of the CWP 21 is again managed by the kneader-side water amount adjusting valve 25 as shown by the solid line in FIG.

【0025】[0025]

【発明の効果】本発明によれば、受入れ石炭の保有水分
が10%を超えるような場合でも、界面活性剤の添加で
微粉砕機での水分を抑えて粉砕することで、混練機で水
分調整をすることが可能である。これにより、受入れ石
炭の保有水分が10%を超えるような場合でも、微粉砕
機で粉砕された石炭の粒度も低下しないCWPの製造が
可能となった。
According to the present invention, even when the water content of the received coal exceeds 10%, the water content in the pulverizer is reduced by the addition of a surfactant to reduce the water content in the kneader. It is possible to make adjustments. As a result, even when the water content of the received coal exceeds 10%, it is possible to produce CWP in which the particle size of the coal pulverized by the pulverizer does not decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係るCWP製造装置の
要部構成を示す系統図である。
FIG. 1 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係るCWP製造装置の
要部構成を示す系統図である。
FIG. 2 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to a first embodiment of the present invention.

【図3】従来技術と本発明の実施例に係る微粉砕機にお
ける石炭濃度と生成された微粉スラリ粒度との関係を比
較して示すグラフである。
FIG. 3 is a graph comparing the relationship between the coal concentration and the particle size of the generated fine powder slurry in the conventional technology and the fine pulverizer according to the embodiment of the present invention.

【図4】従来技術におけるCWP全水分と混練機での微
粉スラリと破砕炭との混合割合(微粉混合割合)の関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the total water content of CWP and the mixing ratio (fine powder mixing ratio) of fine powder slurry and crushed coal in a kneader in a conventional technique.

【図5】従来技術におけるCWP全水分とCWP粘度の
関係を示すグラフである。
FIG. 5 is a graph showing the relationship between CWP total moisture and CWP viscosity in a conventional technique.

【図6】従来技術と本発明の実施例における混練機に入
れる水の添加割合とCWP全水分との関係を微粉砕機の
石炭保有水分をパラメータとして比較して示すグラフで
ある。
FIG. 6 is a graph showing the relationship between the proportion of water added to the kneader and the total water content of CWP in the prior art and the embodiment of the present invention, comparing the water content of the coal of the pulverizer with the parameter.

【図7】従来技術と本発明の実施例における、微粉砕機
の石炭濃度(粉砕濃度)と界面活性剤添加量の時間に対
する変化を比較して示すグラフである。
FIG. 7 is a graph showing a comparison between changes in the coal concentration (pulverization concentration) and the amount of surfactant added over time in a pulverizer in a conventional technique and an example of the present invention.

【図8】従来技術に係るCWP製造装置の要部構成を示
す系統図である。
FIG. 8 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to a conventional technique.

【図9】ふるい分けにより測定した粒径分布を示す概念
図である。
FIG. 9 is a conceptual diagram showing a particle size distribution measured by sieving.

【符号の説明】[Explanation of symbols]

1 原炭 2 原炭コンベア 3 破砕機 4 破砕炭ホッパ 5 微粉砕機 6 混練機 7 タンク 8 CWPポンプ 9 火炉 10 CWP撹拌機 11 水 12 添加剤タンク 14 添加剤撹拌機 15 添加剤ポンプ 16 水ポンプ 17 界面活性剤 19 破砕炭 20 微粉スラリ 21 CWP 22 石灰石 23 ピン型粘度計 24 添加剤量調整弁 25 混練機側水量調整弁 26 微粉砕機側水量調整弁 27 第1の配管 28 第2の配管 29 吐出側配管 30 配管 REFERENCE SIGNS LIST 1 raw coal 2 raw coal conveyor 3 crusher 4 crushed coal hopper 5 fine crusher 6 kneader 7 tank 8 CWP pump 9 furnace 10 CWP stirrer 11 water 12 additive tank 14 additive stirrer 15 additive pump 16 water pump DESCRIPTION OF SYMBOLS 17 Surfactant 19 Crushed charcoal 20 Fine powder slurry 21 CWP 22 Limestone 23 Pin type viscometer 24 Additive amount adjustment valve 25 Kneader side water amount adjustment valve 26 Pulverizer side water amount adjustment valve 27 First piping 28 Second piping 29 Discharge side piping 30 Piping

フロントページの続き (72)発明者 山口 博嗣 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 大谷 義則 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 武崎 博 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 高橋 芳孝 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内Continued on the front page (72) Inventor Hiroshi Yamaguchi 3-36 Takara-cho, Kure-shi, Hiroshima Prefecture Inside Babcock Hitachi Kure Research Laboratory (72) Inventor Yoshinori Otani 3-36 Takara-cho, Kure-shi Hiroshima Prefecture Inside Babcock Hitachi Kure Research Laboratory (72) Inventor Hiroshi Takezaki 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Research Laboratory (72) Inventor Yoshitaka Takahashi 6-9 Takara-cho Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原炭を破砕したのち、破砕炭の一部を微
粉砕機で粉砕しながら水と混合して微粉スラリを製造
し、さらに混練機で残部の破砕炭と石灰石と前記微粉ス
ラリと水を混合して石炭・水ペースト(以下、CWPと
いう)を製造する、石炭・水ペーストの製造方法におい
て、混練機出口のCWPの粘度を検知して、微粉砕機内
の微粉スラリの石炭濃度を微粉砕機に供給される水の量
で調節することを特徴とする石炭・水ペーストの製造方
法。
After crushing raw coal, a part of the crushed coal is mixed with water while crushing the crushed coal with a pulverizer to produce a fine powder slurry, and the remaining crushed coal, limestone and the fine powder slurry are further mixed with a kneader. Of coal and water paste (hereinafter, referred to as CWP) by mixing water and water to detect the viscosity of CWP at the outlet of the kneader, and the coal concentration of the fine powder slurry in the pulverizer. And the amount of water supplied to the pulverizer.
【請求項2】 請求項1記載の石炭・水ペーストの製造
方法において、混練機出口のCWPの粘度を検知して、
微粉砕機内の微粉スラリに注入される界面活性剤の量を
調節することを特徴とする石炭・水ペーストの製造方
法。
2. The method for producing a coal / water paste according to claim 1, wherein the viscosity of CWP at a kneader outlet is detected.
A method for producing a coal / water paste, comprising adjusting an amount of a surfactant to be injected into a fine powder slurry in a fine pulverizer.
【請求項3】 請求項1記載の石炭・水ペーストの製造
方法において、混練機出口のCWP粘度を入力として制
御される混練機への注水量が低下するのを検知して、微
粉砕機に供給される水量を調節することを特徴とする石
炭・水ペーストの製造方法。
3. The method for producing a coal / water paste according to claim 1, wherein a decrease in the amount of water injected into the kneader controlled by using the CWP viscosity at the kneader outlet as an input is detected, and the fine pulverizer is operated. A method for producing a coal / water paste, wherein the amount of supplied water is adjusted.
【請求項4】 請求項3記載の石炭・水ペーストの製造
方法において、混練機への注水量が低下するのを検知し
て、微粉砕機内の微粉スラリに界面活性剤を注入する量
を調整することを特徴とする石炭・水ペーストの製造方
法。
4. The method for producing a coal / water paste according to claim 3, wherein when the amount of water injected into the kneader is reduced, the amount of the surfactant to be injected into the fine powder slurry in the fine pulverizer is adjusted. A method for producing a coal / water paste.
JP04086898A 1998-02-23 1998-02-23 Coal / water paste manufacturing method Expired - Lifetime JP4029230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04086898A JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04086898A JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Publications (2)

Publication Number Publication Date
JPH11237032A true JPH11237032A (en) 1999-08-31
JP4029230B2 JP4029230B2 (en) 2008-01-09

Family

ID=12592513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04086898A Expired - Lifetime JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Country Status (1)

Country Link
JP (1) JP4029230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348190A (en) * 2005-06-16 2006-12-28 Chugoku Electric Power Co Inc:The Cwp (coal water paste) recovery system and cwp recovery method
JP2008014505A (en) * 2006-07-03 2008-01-24 Chugoku Electric Power Co Inc:The Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP2008190830A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2008190831A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2010091481A (en) * 2008-10-09 2010-04-22 Chugoku Electric Power Co Inc:The Method of managing viscosity of slurry supplied to fluidized bed boiler as fuel, and slurry supply device for executing same
JP2010175214A (en) * 2009-02-02 2010-08-12 Chugoku Electric Power Co Inc:The Method and facility for feeding woody biomass to fluidized bed boiler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348190A (en) * 2005-06-16 2006-12-28 Chugoku Electric Power Co Inc:The Cwp (coal water paste) recovery system and cwp recovery method
JP4637658B2 (en) * 2005-06-16 2011-02-23 中国電力株式会社 CWP collection system and CWP collection method
JP2008014505A (en) * 2006-07-03 2008-01-24 Chugoku Electric Power Co Inc:The Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP2008190830A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2008190831A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2010091481A (en) * 2008-10-09 2010-04-22 Chugoku Electric Power Co Inc:The Method of managing viscosity of slurry supplied to fluidized bed boiler as fuel, and slurry supply device for executing same
JP2010175214A (en) * 2009-02-02 2010-08-12 Chugoku Electric Power Co Inc:The Method and facility for feeding woody biomass to fluidized bed boiler

Also Published As

Publication number Publication date
JP4029230B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JPH11237032A (en) Manufacture of coal-water paste
US4598873A (en) Method of manufacturing a pumpable coal/liquid mixture
JP5456342B2 (en) Method for producing waste oil-based solid fuel and method for using the waste oil-based solid fuel
CN103965982B (en) System and method for preparing coal water slurry
JP2631623B2 (en) Apparatus and method for producing coal / water slurry
CN107413188A (en) The slurries system and its pulping process of a kind of agstone slurrying
CN208978013U (en) A kind of equipment preparing mud brickmaking mixture
JP2622302B2 (en) Coal / water slurry production method
JP5143037B2 (en) Woody biomass supply method to fluidized bed boiler
JP3806851B2 (en) Method and apparatus for transporting fuel for pressurized fluidized bed boiler in piping
JP2010215777A (en) Method for producing waste oil-based solid fuel and method for using the same
JP4079285B2 (en) Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method
JP3588128B2 (en) Coal / water mixture and its production method
JPH11237033A (en) Manufacture of and manufacturing device for coal-water paste
JPH0469679B2 (en)
JPH06108067A (en) Process and apparatus for producing coal/water paste
JP2611921B2 (en) Method and apparatus for producing high-concentration coal / water paste
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus
JP2729763B2 (en) Method and apparatus for manufacturing CWP
JP2003049181A (en) Device for producing coal/water paste
JP4076004B2 (en) Paste fuel production apparatus and method
JP2010229354A (en) Production method for waste oil-based solid fuel, and method of use of the waste oil-based solid fuel
EP0513159B1 (en) A method of supplying coal and sulphur absorbent to a combustor, and a power plant in which the method is applied
JP2011149623A (en) Coal-water paste manufacturing device
JPH09241665A (en) Apparatus for producing and supplying coal/water slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term