JP4029230B2 - Coal / water paste manufacturing method - Google Patents

Coal / water paste manufacturing method Download PDF

Info

Publication number
JP4029230B2
JP4029230B2 JP04086898A JP4086898A JP4029230B2 JP 4029230 B2 JP4029230 B2 JP 4029230B2 JP 04086898 A JP04086898 A JP 04086898A JP 4086898 A JP4086898 A JP 4086898A JP 4029230 B2 JP4029230 B2 JP 4029230B2
Authority
JP
Japan
Prior art keywords
coal
water
cwp
kneader
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04086898A
Other languages
Japanese (ja)
Other versions
JPH11237032A (en
Inventor
操 宅和
誠 久光
博嗣 山口
義則 大谷
博 武崎
芳孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP04086898A priority Critical patent/JP4029230B2/en
Publication of JPH11237032A publication Critical patent/JPH11237032A/en
Application granted granted Critical
Publication of JP4029230B2 publication Critical patent/JP4029230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧した流動層で石炭等の固体燃料を燃焼し、発生したスチームによって蒸気タービンを駆動し、さらに高圧、高温の燃焼ガスでガスタービンを駆動して高効率で電力を得る加圧流動層ボイラ複合発電プラントの燃焼炉に関し、特に該燃焼炉に供給する石炭と水の混合物の製造方法に関する。
【0002】
【従来の技術】
加圧流動層ボイラは発生するスチーム及び高圧の燃焼ガスからエネルギーを売ることが可能である。但し、固体である石炭粒子を加圧状態の燃焼炉内に連続して安定に供給することが課題の一つである。従来は流動層燃焼炉への石炭の供給方法として、石炭粒子と水を混合してペースト状の流体(以下、CWPという)とし、該CWPをポンプで昇圧及び圧送して噴霧ノズルから供給する湿式供給方式が知られている(例えば特開昭62−155433号公報)。この湿式供給方法は乾式供給方式、例えばロックホッパで昇圧した後空気輸送する方式に比べ、乾燥などの前処理が不要である。
【0003】
図8に示すように、従来は原炭1を原炭コンベア2により破砕機3へ供給して重量平均径1〜2mmになるように破砕する。ここで重量平均径の算出法を示す。ふるい分けによる粒度分析で、図9に示すようなふるいの目開きとふるいを通過した粒子の重量(以下、ふるい下累積重量という)との関係を乾炭基準で描く。このときふるいの目開きはふるいを通過した粒子径の最大値に相当する。この関係より、ふるい下累積重量割合(=100×(ふるい下累積重量)/(破砕炭重量))が50%のときの粒径の値(ふるいの目開きの値、図9のF)を重量平均径としている。
【0004】
破砕機3で原炭1を破砕して得られた破砕炭は、破砕炭ホッパ4を介して一部が微粉砕機5へ投入され、水ポンプ16により送られる水11とともに重量平均径0.03〜0.07mmになるように石炭濃度50%以下で湿式粉砕され、微粉スラリ20が製造される。製造された微粉スラリ20と破砕炭19と石灰石22を所定の粘度になるように注水量を調整しながら混練機6で混合してCWP21を製造する。このCWPは、CWP撹拌機10でかき混ぜながらタンク7に貯められた後、CWPポンプ8で火炉9へ圧送される。CWPは配管内でのつまりが生じないように、粘度が水分で調整されておりピン型粘度計23における100rpmの粘度約10Pa・sになるように、混練機6で水を注入して混合している。このときのCWPの水分は炭種によって異なるが、20〜30wt%程度である。
【0005】
CWPの粘度は、ピン型粘度計で5〜15Pa・s、好ましくは10Pa・sとしている。これより大きい粘度ではCWPが配管内で詰まりやすくなり、小さい粘度では石炭と水が分離しやすくなる。
【0006】
ここで、図3に示す線A,Bは、微粉砕機5で微粉砕された微粉スラリに、75μm以下の粒子、つまり、目開き75μmのふるいを通過した粒子が、微粉スラリ内の粒子の何%存在するかを示したものであり、その割合が60〜70%の範囲にあれば許容範囲であることを示している。微粉砕機5内で石炭濃度50%以上で粉砕すると、図3の線Aのように、微粉砕機5内の微粉スラリの粘度が増加して石炭粒径が粗くなり、粉砕能力が低下するので粒度調整が困難になる。したがって粉砕時の石炭濃度は50%以下で粉砕している。
【0007】
混練機6での微粉スラリ20と破砕炭19との混合割合は、図4のCに示すように、乾炭基準で微粉スラリを20〜25wt%としている。この範囲以外にすると、粘度10Pa・sにするための水分を下げることができない。20wt%以下だと石炭と水が分離しやすい、25wt%以上だと高粘度になりやすいCWPとなる。すなわち、75μm以下の粒度60〜70%の微粉を全CWPの石炭粒子の20〜25%混合するのが最も水分が少ないので燃焼性がよく、水と石炭の分離がほとんどないので、輸送性にも優れた最適なCWPとなる。
【0008】
【発明が解決しようとする課題】
原炭1のもつ水分量は炭種、石炭置場の環境、天候などで異なってくる。通常は9wt%程度であるが、湿度の高い状態で原炭を放置しておくと14wt%程度となることがある。図8の微粉砕機5と混練機6の石炭と水の混合割合を従来技術のようにして製造すると、図6の点線のように、粘度が5〜15Pa・sとなる水分(図5参照)にするための混練機6での注水量がわずかになり、原炭1の保有水分が14wt%となると、混練機6で水を入れられなくなる。ここで図6中の混練機での注水割合%は、
混練機での注水割合={(混練機での水添加量)/(全CWP量)}×100
と定義されている(全CWP量は石炭を含むCWP重量)。
【0009】
それと同時に微粉砕機で水を減らさないとCWP21の粘度を5〜15Pa・sにするための水分にならない。しかし、前述したように微粉砕機での石炭濃度を50wt%以上にして粉砕すると粉砕能力が低下する。この点で問題となる。
【0010】
本発明の目的は、水分が10wt%を超えるような原炭を利用する場合においても、混練機のみで水調整するために混練機出口での粘度が低下したことを検知して、微粉砕機の水分量を下げて、混練機での水分調整を容易にするにある。
【0011】
【課題を解決するための手段】
本発明は上記の目的を達成するために、混練機出口でCWP性状を管理して混練機注水量を制御する際に、混練機出口でCWP粘度が低減したことを検知して、微粉砕機へ供給される水分量を低減するものである。そのために微粉砕機に水とともに界面活性剤を注入して、微粉砕機内での微粉スラリの粘度を下げ、粉砕能力を界面活性剤を注入しない、水分量を下げない場合と同等にして微粉スラリを製造するものである。
【0012】
この方法に依れば、従来、原炭の保有水分が10wt%を超えることを理由に混練機で、輸送しやすいCWP粘度に調整できない場合でも、原炭の水分量を直接管理することなく、性状が所要の範囲に保たれたCWPを製造することが可能となる。
【0013】
上記の目的を達成する本発明は、原炭を破砕したのち、破砕炭の一部を微粉砕機で粉砕しながら水と混合して微粉スラリを製造し、さらに混練機で残部の破砕炭と石灰石と前記微粉スラリと水を混合して石炭・水ペースト(以下、CWPという)を製造する、石炭・水ペーストの製造方法において、混練機出口のCWPの粘度に基づいて混練機への注水量を制御し、混練機への注水量が低下するのを検知して、前記微粉砕機へ供給する界面活性剤の量を調節するとともに、前記微粉砕機へ供給する水量を調節することを特徴とする。
【0017】
【発明の実施の形態】
図1を参照して本発明の第1の実施例を説明する。図示のCWP製造装置は、原炭1を搬送する原炭コンベア2と、原炭コンベア2で搬送された原炭1を重量平均径1〜2mmに破砕する破砕機3と、破砕機3で破砕、生成された破砕炭19を貯蔵する複数の破砕炭ホッパ4と、添加剤撹拌機14を備え界面活性剤17を貯蔵する添加剤タンク12と、添加剤タンク12に吸込側を接続して配置され界面活性剤17を加圧して吐出する添加剤ポンプ15と、添加剤ポンプ15の吐出側配管29に介装された添加剤量調整弁24と、水源から水11を吸引して吐出する水ポンプ16と、水ポンプ16の吐出側に接続された第1の配管27に介装された微粉砕機側水量調整弁26と、前記第1の配管の微粉砕機側水量調整弁26の上流側に分岐して設けられ混練機側水量調整弁25を介装した第2の配管28と、前記複数の破砕炭ホッパ4のうちの一つと、吐出側配管29及び第1の配管27の下流端とに接続された微粉砕機5と、前記複数の破砕炭ホッパ4のうちの他の一つと、混練機5の出側と、前記第2の配管28の下流端と、石灰石22の貯槽とに接続して配置された混練機6と、混練機6の出側下方に配置され、混練機6の出側に配管30を介して接続されてCWPを貯蔵するタンク7と、該配管30に介装されたピン型粘度計23と、タンク7に設置されタンク7内部のCWPを撹拌するCWP撹拌機10と、タンク7からCWPを吸引して火炉9に送るCWPポンプ9と、を含んで構成されている。
【0018】
上記構成の装置の動作を次に説明する。原炭1は原炭コンベア2で破砕機3へ供給され、重量平均径1〜2mmになるように破砕され、破砕炭19となって破砕炭ホッパ4に投入される。破砕炭ホッパ4の破砕炭の一部は微粉砕機5に供給され、水ポンプ16に加圧され微粉砕機側水量調整弁26を経て供給される水11を混合しながら微粉砕されて微粉スラリ20となる。微粉砕機5には、添加剤タンク12から添加剤ポンプ15に加圧され添加剤量調整弁24を経て供給される界面活性剤17が、乾炭に対して0.01〜0.9%の割合で注入される。
【0019】
製造された微粉スラリ20は混練機6に送られ、同じく混練機6に供給される破砕炭19と石灰石22と水11とともに混練されてCWP21となる。その際、供給される水量は、製造されるCWPの粘度が所定の粘度となるように、混練機側水量調整弁25で調整しながら混練機6に供給される。製造されたCWP21はピン型粘度計23で粘度を計測され、その後タンク7に貯蔵される。タンク中のCWP21はCWPポンプ8で火炉9へ圧送される。
【0020】
混練機側水量調整弁25は、ピン型粘度計23で検出されるCWP粘度が、5〜15Pa・sの範囲となるように、混練機6に送る水量を制御している。原炭の水分が高いとCWP粘度が低くなる。ピン型粘度計23でCWP粘度が低いことが検知されると、添加剤量調整弁24が開かれ同時に微粉砕機側水量調整弁26の開度が絞られて、微粉スラリ20の石炭濃度を上げて粉砕が行われ、混練機6にその微粉スラリが供給される。この結果混練機6出口の水分が低減することから、CWP21の粘度は上昇する。これをピン型粘度計23が検知して、混練機側水量調整弁25で、混練機での注水割合が図6の全水分が領域Eの範囲内に入るように、言い替えると、図6の斜めの線で表されている混練機での注水割合とCWP全水分の関係が領域Eの範囲になるように、再びCWPの粘度が管理される。
【0021】
この方法によると、図6の実線のように、石炭の保有水分が14wt%あるものでも、混練機のみで水分調整が可能になる。また、微粉砕機に界面活性剤を入れると、微粉砕機の石炭濃度をあげて粉砕しても、図3の線Bで示されるように、石炭濃度がほぼ70%になるまでは微粉スラリ20の粒度が所望の粒度範囲に維持されていて、粉砕性能が低下していないことが分かる。
【0022】
燃料コストを抑えることも重要であるから、混練機で水を注入できないほどの水分を持つ石炭(保有水分が10%以上の石炭)のとき以外は、界面活性剤を使用しない方がよいが、保有水分10%以上の石炭のときは界面活性剤を使用しないと、適正な水分調整、粒度調整ができない。したがって、従来技術と本発明による運転方法を、受入れ石炭の水分量によって使い分ける必要がある。ただし、従来技術のように、水分量の多い微粉砕機中の微粉スラリに界面活性剤を急に入れると分散化が進んで石炭が分離しやすくなる。また、界面活性剤の入っていない微粉砕機中の微粉スラリの粉砕濃度(石炭濃度)を急に上げると、前述のように、粉砕能力が低下する。このため、界面活性剤を入れることと粉砕濃度を上げることとは、同時に行うことが重要となる。
【0023】
例えば、粉砕濃度50%から60%に上げ、添加剤を乾炭に対して0.35wt%添加する場合には、急に切り替えるのではなく、図7に示すように、徐々に添加剤量と粉砕濃度を上げるように運転する。
【0024】
次に図2を参照して本発明の第2の実施例を説明する。本実施例が図1に示す前記第1の実施例と異なるのは、微粉砕機側水量調整弁26及び添加剤量調整弁24の開度は、ピン型粘度計23の出力で制御されるのではなく、混練機側水量調整弁25の開度に基づいて制御されるように構成されている点である。他の構成要素は前記第1の実施例と同じなので、同一の符号を付し、説明は省略する。本実施例においてもピン型粘度計23の出力に基づき、CWP粘度が5〜15Pa・sの範囲となるように制御される。ピン型粘度計23が出力するCWP粘度が設定値以下に低下すると、混練機側水量調整弁25は注水量が少なくなるように制御される。混練機側水量調整弁25の開度が絞られたことが検知されると、添加剤量調整弁24が開かれ、同時に微粉砕機側水量調整弁26の開度が絞られる。 このようにして製造された微粉スラリ20が混練機6に供給されると、CWP粘度は上昇する。この粘度上昇をピン型粘度計23が検知して、混練機側水量調整弁25で図6の実線のように再びCWP21の粘度が管理される。
【0025】
【発明の効果】
本発明によれば、受入れ石炭の保有水分が10%を超えるような場合でも、界面活性剤の添加で微粉砕機での水分を抑えて粉砕することで、混練機で水分調整をすることが可能である。これにより、受入れ石炭の保有水分が10%を超えるような場合でも、微粉砕機で粉砕された石炭の粒度も低下しないCWPの製造が可能となった。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係るCWP製造装置の要部構成を示す系統図である。
【図2】本発明の第1の実施例に係るCWP製造装置の要部構成を示す系統図である。
【図3】従来技術と本発明の実施例に係る微粉砕機における石炭濃度と生成された微粉スラリ粒度との関係を比較して示すグラフである。
【図4】従来技術におけるCWP全水分と混練機での微粉スラリと破砕炭との混合割合(微粉混合割合)の関係を示すグラフである。
【図5】従来技術におけるCWP全水分とCWP粘度の関係を示すグラフである。
【図6】従来技術と本発明の実施例における混練機に入れる水の添加割合とCWP全水分との関係を微粉砕機の石炭保有水分をパラメータとして比較して示すグラフである。
【図7】従来技術と本発明の実施例における、微粉砕機の石炭濃度(粉砕濃度)と界面活性剤添加量の時間に対する変化を比較して示すグラフである。
【図8】従来技術に係るCWP製造装置の要部構成を示す系統図である。
【図9】ふるい分けにより測定した粒径分布を示す概念図である。
【符号の説明】
1 原炭
2 原炭コンベア
3 破砕機
4 破砕炭ホッパ
5 微粉砕機
6 混練機
7 タンク
8 CWPポンプ
9 火炉
10 CWP撹拌機
11 水
12 添加剤タンク
14 添加剤撹拌機
15 添加剤ポンプ
16 水ポンプ
17 界面活性剤
19 破砕炭
20 微粉スラリ
21 CWP
22 石灰石
23 ピン型粘度計
24 添加剤量調整弁
25 混練機側水量調整弁
26 微粉砕機側水量調整弁
27 第1の配管
28 第2の配管
29 吐出側配管
30 配管
[0001]
BACKGROUND OF THE INVENTION
In the present invention, solid fuel such as coal is burned in a pressurized fluidized bed, a steam turbine is driven by the generated steam, and a gas turbine is further driven by high-pressure and high-temperature combustion gas to obtain electric power with high efficiency. More particularly, the present invention relates to a method for producing a mixture of coal and water supplied to the combustion furnace.
[0002]
[Prior art]
Pressurized fluidized bed boilers can sell energy from the generated steam and high-pressure combustion gases. However, one of the problems is to supply the solid coal particles continuously and stably into the pressurized combustion furnace. Conventionally, as a method for supplying coal to a fluidized bed combustion furnace, coal particles and water are mixed to form a paste fluid (hereinafter referred to as CWP), and the CWP is pressurized and pumped by a pump and supplied from a spray nozzle. A supply system is known (for example, JP-A-62-155433). This wet supply method does not require a pretreatment such as drying as compared with a dry supply method, for example, a method in which the pressure is increased by a lock hopper and then pneumatically transported.
[0003]
As shown in FIG. 8, conventionally, the raw coal 1 is supplied to the crusher 3 by the raw coal conveyor 2 and is crushed to have a weight average diameter of 1 to 2 mm. Here, a calculation method of the weight average diameter is shown. In the particle size analysis by sieving, the relationship between the opening of the sieve as shown in FIG. 9 and the weight of particles passing through the sieve (hereinafter referred to as cumulative weight under the sieve) is drawn on the basis of dry coal. At this time, the opening of the sieve corresponds to the maximum value of the particle diameter that has passed through the sieve. From this relationship, the value of the particle size when the cumulative weight ratio under the sieve (= 100 × (cumulative weight under the sieve) / (crushed coal weight)) is 50% (the opening value of the sieve, F in FIG. 9) The weight average diameter is used.
[0004]
Part of the crushed coal obtained by crushing the raw coal 1 with the crusher 3 is introduced into the pulverizer 5 through the crushed coal hopper 4, and the weight average diameter 0. The finely divided slurry 20 is produced by wet pulverization at a coal concentration of 50% or less so as to be 03 to 0.07 mm. The produced fine slurry 20, crushed charcoal 19 and limestone 22 are mixed by the kneader 6 while adjusting the amount of water injected so as to have a predetermined viscosity to produce CWP 21. The CWP is stored in the tank 7 while being stirred by the CWP stirrer 10 and then pumped to the furnace 9 by the CWP pump 8. The viscosity of the CWP is adjusted with moisture so that clogging in the pipe does not occur, and water is injected and mixed with the kneader 6 so that the viscosity of the pin viscometer 23 is about 10 Pa · s at 100 rpm. ing. The water content of CWP at this time is about 20 to 30 wt% although it varies depending on the coal type.
[0005]
The viscosity of CWP is 5 to 15 Pa · s, preferably 10 Pa · s, using a pin type viscometer. When the viscosity is higher than this, the CWP is likely to be clogged in the pipe, and when the viscosity is lower, the coal and water are easily separated.
[0006]
Here, lines A and B shown in FIG. 3 indicate that particles having a size of 75 μm or less, that is, particles having passed through a sieve having a mesh size of 75 μm, pass through the fine powder slurry finely pulverized by the fine pulverizer 5. It shows what percentage is present, and if the ratio is in the range of 60-70%, it indicates that it is an acceptable range. When pulverizing at a coal concentration of 50% or more in the fine pulverizer 5, the viscosity of the fine powder slurry in the fine pulverizer 5 is increased and the coal particle size becomes coarse as shown by line A in FIG. Therefore, it becomes difficult to adjust the particle size. Accordingly, the coal concentration during pulverization is 50% or less.
[0007]
The mixing ratio of the fine slurry 20 and the crushed coal 19 in the kneader 6 is 20 to 25 wt% of the fine slurry on the basis of dry coal as shown in FIG. If it is outside this range, the moisture for making the viscosity 10 Pa · s cannot be lowered. If it is 20 wt% or less, coal and water are easily separated, and if it is 25 wt% or more, CWP tends to be high in viscosity. That is, mixing fine powder with a particle size of 60 to 70% of 75 μm or less with 20 to 25% of the coal particles of all CWP has the most moisture, so it has good combustibility, and there is almost no separation between water and coal, so transportability is improved. Is an excellent and optimal CWP.
[0008]
[Problems to be solved by the invention]
The moisture content of the raw coal 1 varies depending on the type of coal, the environment of the coal yard, the weather, and the like. Usually, it is about 9 wt%, but if raw coal is left in a high humidity state, it may be about 14 wt%. When the mixing ratio of coal and water in the pulverizer 5 and the kneader 6 in FIG. 8 is manufactured as in the prior art, moisture having a viscosity of 5 to 15 Pa · s as shown by the dotted line in FIG. 6 (see FIG. 5). When the amount of water injected in the kneading machine 6 becomes small and the water content of the raw coal 1 becomes 14 wt%, the kneading machine 6 cannot add water. Here, the water injection percentage in the kneader in FIG.
Water injection ratio in kneader = {(water addition amount in kneader) / (total CWP amount)} × 100
(The total amount of CWP is the weight of CWP including coal).
[0009]
At the same time, if the water is not reduced by a fine pulverizer, the water does not become moisture for making the viscosity of CWP21 5-15 Pa · s. However, as described above, when the coal concentration in the fine pulverizer is 50 wt% or more and pulverized, the pulverization ability is lowered. This is a problem.
[0010]
It is an object of the present invention to detect that the viscosity at the kneader outlet has decreased to adjust water with only a kneader, even when using raw coal whose water content exceeds 10 wt%, The moisture content is reduced to facilitate moisture adjustment in the kneader.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention detects a decrease in CWP viscosity at the kneader outlet when controlling the CWP properties at the kneader outlet and controlling the amount of water injected into the kneader. The amount of water supplied to the water is reduced. For this purpose, a surfactant is injected into the pulverizer together with water to reduce the viscosity of the pulverized slurry in the pulverizer, and the pulverization capacity is the same as when the surfactant is not injected or the water content is not decreased. Is to be manufactured.
[0012]
According to this method, conventionally, even if it is not possible to adjust the CWP viscosity to be easy to transport with a kneader because the moisture content of the raw coal exceeds 10 wt%, the moisture content of the raw coal is not directly controlled, It becomes possible to produce CWP whose properties are kept in a required range.
[0013]
This onset bright to achieve the above object, after crushing the raw coal, a portion of the crushed coal is mixed with water while pulverized using a fine grinding mill to produce a fine slurry, further remainder of crushed coal with a kneading machine In a method for producing a coal / water paste (hereinafter, referred to as CWP) by mixing limestone, limestone slurry, water, and water , a note to the kneader is based on the viscosity of the CWP at the kneader outlet. Controlling the amount of water, detecting a decrease in the amount of water injected into the kneader, adjusting the amount of surfactant supplied to the fine pulverizer, and adjusting the amount of water supplied to the fine pulverizer Features.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIG. The illustrated CWP manufacturing apparatus includes a raw coal conveyor 2 that conveys the raw coal 1, a crusher 3 that crushes the raw coal 1 conveyed by the raw coal conveyor 2 to a weight average diameter of 1 to 2 mm, and a crusher 3. A plurality of crushed coal hoppers 4 for storing the generated crushed coal 19, an additive tank 12 having an additive stirrer 14 for storing the surfactant 17, and an additive tank 12 connected to the suction side. The additive pump 15 that pressurizes and discharges the surfactant 17, the additive amount adjustment valve 24 interposed in the discharge side pipe 29 of the additive pump 15, and the water that sucks and discharges the water 11 from the water source. A pump 16, a fine pulverizer-side water amount adjustment valve 26 interposed in a first pipe 27 connected to the discharge side of the water pump 16, and an upstream of the pulverizer-side water amount adjustment valve 26 of the first pipe. A second branch provided on the side and provided with a kneader-side water amount adjustment valve 25. A fine crusher 5 connected to a pipe 28, one of the plurality of crushed coal hoppers 4, a downstream end of the discharge side pipe 29 and the first pipe 27, and among the plurality of crushed coal hoppers 4 The kneading machine 6 arranged in connection with the other side of the kneading machine 5, the downstream end of the second pipe 28, and the storage tank of the limestone 22; The tank 7 which is disposed and connected to the outlet side of the kneader 6 via a pipe 30 to store CWP, the pin viscometer 23 interposed in the pipe 30, and the tank 7 is installed inside the tank 7. A CWP stirrer 10 that stirs CWP and a CWP pump 9 that sucks CWP from the tank 7 and sends the CWP to the furnace 9 are configured.
[0018]
Next, the operation of the apparatus having the above configuration will be described. The raw coal 1 is supplied to the crusher 3 by the raw coal conveyor 2, is crushed so as to have a weight average diameter of 1 to 2 mm, becomes crushed coal 19, and is put into the crushed coal hopper 4. Part of the crushed coal in the crushed coal hopper 4 is supplied to the fine pulverizer 5, finely pulverized while mixing the water 11 that is pressurized by the water pump 16 and supplied via the fine pulverizer-side water amount adjustment valve 26. A slurry 20 is obtained. In the pulverizer 5, the surfactant 17 pressurized from the additive tank 12 to the additive pump 15 and supplied through the additive amount adjusting valve 24 is 0.01 to 0.9% with respect to the dry coal. Injected at a rate of
[0019]
The produced fine powder slurry 20 is sent to the kneader 6, and kneaded together with the crushed coal 19, limestone 22, and water 11 supplied to the kneader 6 to become a CWP 21. At that time, the amount of water to be supplied is supplied to the kneader 6 while being adjusted by the kneader-side water amount adjustment valve 25 so that the viscosity of the produced CWP becomes a predetermined viscosity. The manufactured CWP 21 is measured for viscosity by a pin viscometer 23 and then stored in the tank 7. The CWP 21 in the tank is pumped to the furnace 9 by the CWP pump 8.
[0020]
The kneader-side water amount adjustment valve 25 controls the amount of water sent to the kneader 6 so that the CWP viscosity detected by the pin viscometer 23 is in the range of 5 to 15 Pa · s. If the raw coal water is high, the CWP viscosity is low. When the pin type viscometer 23 detects that the CWP viscosity is low, the additive amount adjusting valve 24 is opened and the opening of the fine pulverizer side water amount adjusting valve 26 is simultaneously reduced to reduce the coal concentration of the fine slurry 20. The mixture is then pulverized and the fine slurry is supplied to the kneader 6. As a result, the water content at the outlet of the kneader 6 is reduced, so that the viscosity of the CWP 21 increases. This is detected by the pin-type viscometer 23, and the water injection ratio in the kneading machine is adjusted so that the total water content in FIG. The viscosity of CWP is managed again so that the relationship between the ratio of water injection in the kneader represented by the oblique line and the total water content of CWP falls within the range of region E.
[0021]
According to this method, as shown by the solid line in FIG. 6, even if the coal has a moisture content of 14 wt%, it is possible to adjust the moisture only with a kneader. In addition, when a surfactant is added to the fine pulverizer, even if the coal concentration of the fine pulverizer is increased and pulverized, as shown by the line B in FIG. It can be seen that the particle size of 20 is maintained in the desired particle size range, and the pulverization performance is not deteriorated.
[0022]
Since it is also important to reduce fuel costs, it is better not to use a surfactant except when the coal has water that cannot be injected with a kneader (coal with a water content of 10% or more). When coal has a moisture content of 10% or more, proper moisture adjustment and particle size adjustment cannot be performed unless a surfactant is used. Therefore, it is necessary to properly use the conventional technique and the operation method according to the present invention depending on the moisture content of the received coal. However, as in the prior art, when a surfactant is suddenly introduced into a fine powder slurry in a fine pulverizer with a large amount of water, dispersion is advanced and coal is easily separated. Moreover, if the grinding | pulverization density | concentration (coal density | concentration) of the fine powder slurry in the fine pulverizer which does not contain surfactant is raised rapidly, a grinding | pulverization capability will fall as mentioned above. For this reason, it is important to simultaneously add the surfactant and increase the pulverization concentration.
[0023]
For example, when the pulverization concentration is increased from 50% to 60% and the additive is added in an amount of 0.35 wt% with respect to the dry coal, the additive amount is gradually changed as shown in FIG. Operate to increase grinding density.
[0024]
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment shown in FIG. 1 in that the opening degree of the fine pulverizer side water amount adjusting valve 26 and the additive amount adjusting valve 24 is controlled by the output of the pin type viscometer 23. Instead, it is configured to be controlled based on the opening degree of the kneader-side water amount adjustment valve 25. Since the other components are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted. Also in this embodiment, based on the output of the pin viscometer 23, the CWP viscosity is controlled to be in the range of 5 to 15 Pa · s. When the CWP viscosity output from the pin type viscometer 23 falls below a set value, the kneader-side water amount adjustment valve 25 is controlled so that the amount of water injection decreases. When it is detected that the opening degree of the kneader-side water amount adjustment valve 25 is reduced, the additive amount adjustment valve 24 is opened, and at the same time, the opening degree of the fine pulverizer-side water amount adjustment valve 26 is reduced. When the fine powder slurry 20 manufactured in this way is supplied to the kneader 6, the CWP viscosity increases. This increase in viscosity is detected by the pin type viscometer 23, and the viscosity of the CWP 21 is again managed by the kneader-side water amount adjustment valve 25 as shown by the solid line in FIG.
[0025]
【The invention's effect】
According to the present invention, even when the moisture content of the received coal exceeds 10%, the moisture can be adjusted by the kneader by suppressing the moisture in the pulverizer by adding the surfactant. Is possible. As a result, even when the moisture content of the received coal exceeds 10%, it is possible to produce CWP without reducing the particle size of the coal pulverized by the fine pulverizer.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to a first embodiment of the present invention.
FIG. 3 is a graph showing a comparison of the relationship between the coal concentration and the generated fine powder slurry particle size in the pulverizer according to an embodiment of the present invention and the prior art.
FIG. 4 is a graph showing the relationship between the total water content of CWP in the prior art and the mixing ratio (fine powder mixing ratio) of fine slurry and crushed coal in a kneader.
FIG. 5 is a graph showing the relationship between CWP total moisture and CWP viscosity in the prior art.
FIG. 6 is a graph showing the relationship between the ratio of water added to the kneader and the total water content of CWP in the prior art and the example of the present invention, with the water content of coal in the pulverizer as a parameter.
FIG. 7 is a graph showing a comparison of changes over time in the coal concentration (pulverization concentration) and surfactant addition amount of a fine pulverizer in the prior art and an example of the present invention.
FIG. 8 is a system diagram showing a main configuration of a CWP manufacturing apparatus according to the prior art.
FIG. 9 is a conceptual diagram showing a particle size distribution measured by sieving.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw coal 2 Raw coal conveyor 3 Crusher 4 Crushing coal hopper 5 Fine crusher 6 Kneading machine 7 Tank 8 CWP pump 9 Furnace 10 CWP stirrer 11 Water 12 Additive tank 14 Additive stirrer 15 Additive pump 16 Water pump 17 Surfactant 19 Crushed coal 20 Fine powder slurry 21 CWP
22 Limestone 23 Pin type viscometer 24 Additive amount adjustment valve 25 Kneader side water amount adjustment valve 26 Fine crusher side water amount adjustment valve 27 First piping 28 Second piping 29 Discharge side piping 30 Piping

Claims (1)

原炭を破砕したのち、破砕炭の一部を微粉砕機で粉砕しながら水と混合して微粉スラリを製造し、さらに混練機で残部の破砕炭と石灰石と前記微粉スラリと水を混合して石炭・水ペースト(以下、CWPという)を製造する、石炭・水ペーストの製造方法において、
前記混練機出口のCWPの粘度に基づいて前記混練機への注水量を制御し、前記混練機への注水量が低下するのを検知して、前記微粉砕機へ供給する界面活性剤の量を調節するとともに、前記微粉砕機へ供給する水量を調節することを特徴とする石炭・水ペーストの製造方法。
After crushing the raw coal, a portion of the crushed coal is mixed with water while being pulverized with a fine pulverizer to produce a finely divided slurry, and the remaining crushed coal, limestone, the finely divided slurry and water are mixed with a kneader. In the method for producing coal / water paste, which produces coal / water paste (hereinafter referred to as CWP),
The amount of surfactant to be supplied to the fine pulverizer by controlling the amount of water injected to the kneader based on the viscosity of the CWP at the kneader outlet and detecting that the amount of water injected to the kneader decreases. And adjusting the amount of water supplied to the pulverizer .
JP04086898A 1998-02-23 1998-02-23 Coal / water paste manufacturing method Expired - Lifetime JP4029230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04086898A JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04086898A JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Publications (2)

Publication Number Publication Date
JPH11237032A JPH11237032A (en) 1999-08-31
JP4029230B2 true JP4029230B2 (en) 2008-01-09

Family

ID=12592513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04086898A Expired - Lifetime JP4029230B2 (en) 1998-02-23 1998-02-23 Coal / water paste manufacturing method

Country Status (1)

Country Link
JP (1) JP4029230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637658B2 (en) * 2005-06-16 2011-02-23 中国電力株式会社 CWP collection system and CWP collection method
JP2008014505A (en) * 2006-07-03 2008-01-24 Chugoku Electric Power Co Inc:The Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP2008190830A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2008190831A (en) * 2007-02-07 2008-08-21 Chugoku Electric Power Co Inc:The Boiler system, power generation system and operation method of boiler system
JP2010091481A (en) * 2008-10-09 2010-04-22 Chugoku Electric Power Co Inc:The Method of managing viscosity of slurry supplied to fluidized bed boiler as fuel, and slurry supply device for executing same
JP5143037B2 (en) * 2009-02-02 2013-02-13 中国電力株式会社 Woody biomass supply method to fluidized bed boiler

Also Published As

Publication number Publication date
JPH11237032A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
KR101280199B1 (en) Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler
CN101481631B (en) Fuel feed system for a gasifier and method of gasification systems start-up
KR101622582B1 (en) Method and installation for coal grinding in inert operation or in non-inert operation
JP4029230B2 (en) Coal / water paste manufacturing method
US5012984A (en) Process for production of coal-water mixture
JP2008208360A (en) Solid fuel and method for preparing the same
CN1034227C (en) Production method of high-concentration coal-water slurry
CN108192670A (en) A kind of biomass castoff liquefaction-gasification process method and gasification installation
JP5312073B2 (en) Crushing method of woody biomass for fluidized bed boiler
CN212523629U (en) Urea quantitative crushing and spraying reburning area denitration device
JP5143037B2 (en) Woody biomass supply method to fluidized bed boiler
CN205940120U (en) Coal -fired feed system of tunnel cave
EP0513159B1 (en) A method of supplying coal and sulphur absorbent to a combustor, and a power plant in which the method is applied
JP2631623B2 (en) Apparatus and method for producing coal / water slurry
JPH0469679B2 (en)
JPH09143519A (en) Method for operating blast furnace by blowing pulverized coal
JP3806851B2 (en) Method and apparatus for transporting fuel for pressurized fluidized bed boiler in piping
JP2622302B2 (en) Coal / water slurry production method
US5544596A (en) Method of supplying coal and sulphur absorbent to a combustor and a power plant in which the method is applied
JP4079285B2 (en) Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus
JP2611921B2 (en) Method and apparatus for producing high-concentration coal / water paste
JPH06108067A (en) Process and apparatus for producing coal/water paste
JPH08200648A (en) Coal slurry making equipment
JPH0465490A (en) Production of highly concentrated coal water slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term