JPH11236661A - Production of surface hardened parts - Google Patents

Production of surface hardened parts

Info

Publication number
JPH11236661A
JPH11236661A JP4157498A JP4157498A JPH11236661A JP H11236661 A JPH11236661 A JP H11236661A JP 4157498 A JP4157498 A JP 4157498A JP 4157498 A JP4157498 A JP 4157498A JP H11236661 A JPH11236661 A JP H11236661A
Authority
JP
Japan
Prior art keywords
layer
weight
thickness
base material
clad material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4157498A
Other languages
Japanese (ja)
Other versions
JP3551749B2 (en
Inventor
Junji Imai
順二 今井
Tadashi Hamada
糾 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP04157498A priority Critical patent/JP3551749B2/en
Publication of JPH11236661A publication Critical patent/JPH11236661A/en
Application granted granted Critical
Publication of JP3551749B2 publication Critical patent/JP3551749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing surface hardened parts having a surface hardening layer which has excellent rigidity and toughness and excellent wear resistance, has a thickness 1 to 10 μm and has a high adhesion property. SOLUTION: The surface of a base material 1 formed of steel is provided with an inner clad blank 2 formed of Ti or Ti alloy and the surface of the inner clad blank 2 is provided with an outer clad blank 3 formed of Fe or Fe alloy. These blanks are tightly adhered by clad rolling. Next, the rolled blanks are rolled to a thickness <=1 mm and are annealed in an atmosphere of gaseous Ar. After the rolled blanks are worked to a prescribed shape by plastic working, the blanks are heated for >=5 seconds at >=950 deg.C in an inert atmosphere or reducing atmosphere. The hardening of the base material 1 is made possible by the heat treatment by heating after plastic working.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い剛性、靱性と
高い表面硬度、耐摩耗性を必要とする部品、例えば歯車
や軸受等の機構部品や刃物、特に摺動を繰り返す刃物、
工具等に利用することができる表面硬化部品の製造方法
に関するものである。
The present invention relates to a component requiring high rigidity, toughness, high surface hardness and wear resistance, for example, a mechanical component such as a gear and a bearing, and a cutting tool, particularly a cutting tool which repeats sliding.
The present invention relates to a method for producing a surface-hardened component that can be used as a tool or the like.

【0002】[0002]

【従来の技術】歯車や軸受などの機構部品や刃物、特に
摺動を繰り返すような刃物や工具には工具鋼、高炭素ス
テンレス鋼、析出硬化型ステンレス鋼等が利用されてき
たが、これらの材料は靱性には優れるが、表面硬度はあ
まり高くないため、耐摩耗性が悪く、消耗が激しかっ
た。このため、表面硬度が高いセラミックスの利用も考
えられているが、靱性に欠け、また加工も困難であるた
め利用は難しい。そこで上記合金にアルミナなどをPV
DやCVD等によりコーティングした材料も存在する
が、形成される表面硬質層の厚さが0.1μmのオーダ
ーであり、密着性等の問題もあるため、耐摩耗性等の表
面硬質層が関係する特性の改善には至っていない。
2. Description of the Related Art Tool steel, high-carbon stainless steel, precipitation hardening stainless steel, and the like have been used for mechanical parts and blades such as gears and bearings, particularly for blades and tools that repeatedly slide. Although the material was excellent in toughness, the surface hardness was not so high, so the abrasion resistance was poor and the wear was severe. For this reason, use of ceramics having a high surface hardness is considered, but utilization is difficult because of lack of toughness and difficulty in processing. Therefore, alumina and PV are used for the above alloys.
Although there are materials coated by D or CVD, etc., the thickness of the formed hard surface layer is on the order of 0.1 μm, and there are problems such as adhesion. Characteristics have not been improved.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は上記の
点に鑑みてなされたものであり、剛性、靱性に優れ、且
つ耐摩耗性にも優れる厚さが1〜10μmで密着性の強
い表面硬質層を有する表面硬化部品の製造方法を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above points, and has a thickness of 1 to 10 .mu.m, which is excellent in rigidity, toughness, and abrasion resistance, and has strong adhesion. It is an object of the present invention to provide a method for producing a surface-hardened component having a hard layer.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に記載
の表面硬化部品の製造方法は、鋼で形成される基材1の
表面にTiあるいはTi合金で形成される内側クラッド
素材2を設けると共に内側クラッド素材2の表面にFe
あるいはFe合金で形成される外側クラッド素材3を設
け、これらをクラッド圧延により密着させ、次に、これ
を厚さ1mm以下に圧延すると共にArガスの雰囲気中
で焼鈍し、これを塑性加工により所定の形状に加工した
後、不活性雰囲気中あるいは還元性雰囲気中で950℃
以上に5秒以上加熱することを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a surface-hardened component, comprising: forming an inner clad material 2 made of Ti or a Ti alloy on a surface of a base material 1 made of steel; Provided and the surface of the inner cladding material 2 is made of Fe.
Alternatively, an outer clad material 3 formed of an Fe alloy is provided, and these are brought into close contact with each other by clad rolling. Then, this is rolled to a thickness of 1 mm or less and annealed in an atmosphere of Ar gas. 950 ° C in an inert atmosphere or a reducing atmosphere
As described above, the heating is performed for 5 seconds or more.

【0005】本発明の請求項2に記載の表面硬化部品の
製造方法は、鋼で形成される基材1の表面にTiあるい
はTi合金で形成される内側クラッド素材2を設けると
共に内側クラッド素材2の表面にCuあるいはCu合金
で形成される外側クラッド素材3を設け、これらをクラ
ッド圧延により密着させ、次に、これを厚さ1mm以下
に圧延すると共にArガスの雰囲気中で焼鈍し、これを
塑性加工により所定の形状に加工した後、不活性雰囲気
中あるいは還元性雰囲気中で950℃以上に5秒以上加
熱することを特徴とするものである。
According to a method of manufacturing a surface-hardened part according to a second aspect of the present invention, an inner clad material 2 made of Ti or a Ti alloy is provided on a surface of a base material 1 made of steel. An outer clad material 3 made of Cu or Cu alloy is provided on the surface of the substrate, and these are brought into close contact with each other by clad rolling. Then, this is rolled to a thickness of 1 mm or less and annealed in an atmosphere of Ar gas. After being processed into a predetermined shape by plastic working, it is heated to 950 ° C. or more for 5 seconds or more in an inert atmosphere or a reducing atmosphere.

【0006】本発明の請求項3に記載の表面硬化部品の
製造方法は、鋼で形成される基材1の表面にTiあるい
はTi合金で形成される内側クラッド素材2を設けると
共に内側クラッド素材2の表面にNiあるいはNi合金
で形成される外側クラッド素材3を設け、これらをクラ
ッド圧延により密着させ、次に、これを厚さ1mm以下
に圧延すると共にArガスの雰囲気中で焼鈍し、これを
塑性加工により所定の形状に加工した後、不活性雰囲気
中あるいは還元性雰囲気中で950℃以上に5秒以上加
熱することを特徴とするものである。
According to a third aspect of the present invention, there is provided a method of manufacturing a surface-hardened component, comprising: providing an inner clad material 2 made of Ti or a Ti alloy on a surface of a base material 1 made of steel; An outer cladding material 3 made of Ni or a Ni alloy is provided on the surface of the substrate, and these are brought into close contact with each other by clad rolling. Then, this is rolled to a thickness of 1 mm or less and annealed in an atmosphere of Ar gas. After being processed into a predetermined shape by plastic working, it is heated to 950 ° C. or more for 5 seconds or more in an inert atmosphere or a reducing atmosphere.

【0007】本発明の請求項4に記載の表面硬化部品の
製造方法は、請求項1の構成に加えて、基材1となる鋼
が、10〜15重量%のCrと2.5重量%以下のMo
と0.35〜1.2重量%のCとを含む焼入硬化型ステ
ンレス鋼、あるいは0.4〜1.0重量%のCと0.3
〜1.0重量%のMnとを含むばね鋼、あるいは0.4
〜1.2重量%のCを含む炭素鋼であり、外側クラッド
素材3と内側クラッド素材2の厚みの比が1:1〜1:
4の範囲内であり、焼鈍温度が700〜800℃であ
り、所定の形状に加工した後の加熱が950〜1150
℃で15秒〜10分であることを特徴とするものであ
る。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a surface-hardened part, wherein the steel serving as the base material 1 comprises 10 to 15% by weight of Cr and 2.5% by weight. Mo below
Hardening stainless steel containing 0.35 to 1.2% by weight of C, or 0.4 to 1.0% by weight of C and 0.3%
Spring steel containing ~ 1.0 wt% Mn, or 0.4
1.21.2% by weight of carbon steel, and the ratio of the thickness of the outer cladding material 3 to the thickness of the inner cladding material 2 is 1: 1 to 1:
4, the annealing temperature is 700 to 800 ° C., and the heating after processing into a predetermined shape is 950 to 1150.
C. for 15 seconds to 10 minutes.

【0008】本発明の請求項5に記載の表面硬化部品の
製造方法は、請求項2の構成に加えて、基材1となる鋼
が、10〜15重量%のCrと2.5重量%以下のMo
と0.35〜1.2重量%のCとを含む焼入硬化型ステ
ンレス鋼、あるいは0.4〜1.0重量%のCと0.3
〜1.0重量%のMnとを含むばね鋼、あるいは0.4
〜1.2重量%のCを含む炭素鋼であり、外側クラッド
素材3と内側クラッド素材2の厚みの比が1:1〜1:
5の範囲内であり、焼鈍温度が700〜800℃であ
り、所定の形状に加工した後の加熱が950〜1050
℃で15秒〜10分であることを特徴とするものであ
る。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a surface-hardened part, wherein the steel serving as the base material 1 comprises 10 to 15% by weight of Cr and 2.5% by weight. Mo below
Hardening stainless steel containing 0.35 to 1.2% by weight of C, or 0.4 to 1.0% by weight of C and 0.3%
Spring steel containing ~ 1.0 wt% Mn, or 0.4
1.21.2% by weight of carbon steel, and the ratio of the thickness of the outer cladding material 3 to the thickness of the inner cladding material 2 is 1: 1 to 1:
5, the annealing temperature is 700 to 800 ° C, and the heating after processing into a predetermined shape is 950 to 1050.
C. for 15 seconds to 10 minutes.

【0009】本発明の請求項6に記載の表面硬化部品の
製造方法は、請求項3の構成に加えて、基材1となる鋼
が、10〜15重量%のCrと2.5重量%以下のMo
と0.35〜1.2重量%のCとを含む焼入硬化型ステ
ンレス鋼、あるいは0.4〜1.0重量%のCと0.3
〜1.0重量%のMnとを含むばね鋼、あるいは0.4
〜1.2重量%のCを含む炭素鋼であり、外側クラッド
素材3と内側クラッド素材2の厚みの比が3:2〜1:
4の範囲内であり、焼鈍温度が700〜800℃であ
り、所定の形状に加工した後の加熱が950〜1150
℃で15秒〜10分であることを特徴とするものであ
る。
According to a sixth aspect of the present invention, in addition to the configuration of the third aspect, in addition to the constitution of the third aspect, the steel to be the base material 1 comprises 10 to 15% by weight of Cr and 2.5% by weight. Mo below
Hardening stainless steel containing 0.35 to 1.2% by weight of C, or 0.4 to 1.0% by weight of C and 0.3%
Spring steel containing ~ 1.0 wt% Mn, or 0.4
~ 1.2% by weight of carbon steel, and the ratio of the thickness of the outer cladding material 3 to the thickness of the inner cladding material 2 is 3: 2-1:
4, the annealing temperature is 700 to 800 ° C., and the heating after processing into a predetermined shape is 950 to 1150.
C. for 15 seconds to 10 minutes.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。基材1としては、靱性や剛性などを備えている任
意の合金を使用することができるが、焼入硬化型ステン
レス鋼、ばね鋼、高炭素鋼などの炭素鋼等の鋼で板状
(帯状)に基材1を形成するのが好ましい。焼入硬化型
ステンレス鋼としては、10〜15重量%のCrと、0
〜2.5重量%のMoと、0.35〜1.2重量%のC
と、0〜0.4重量%のVと、微量の不純物とを含み、
残部をFeで構成されるものなどを用いることができ
る。ばね鋼としては、0.4〜1.0重量%のCと、
0.3〜1.0重量%のMnと、0〜1.5重量%のC
rと、0〜0.4重量%のVあるいはMoと、微量の不
純物とを含み、残部をFeで構成されるものなどを用い
ることができる。炭素鋼としては、0.4〜1.2重量
%のCと、微量の不純物とを含み、残部をFeで構成さ
れるものなどを用いることができる。
Embodiments of the present invention will be described below. As the base material 1, any alloy having toughness, rigidity, etc. can be used. However, the base material 1 is made of steel such as quenched hardening stainless steel, spring steel, high carbon steel, or the like. It is preferable to form the base material 1 in (1). As a quench hardening type stainless steel, 10 to 15% by weight of Cr,
-2.5% by weight of Mo and 0.35-1.2% by weight of C
And 0 to 0.4% by weight of V and a trace amount of impurities,
A material whose remaining portion is made of Fe can be used. As spring steel, 0.4 to 1.0% by weight of C,
0.3-1.0 wt% Mn and 0-1.5 wt% C
It is possible to use one containing r, 0 to 0.4% by weight of V or Mo, and a trace amount of impurities, with the balance being Fe. As the carbon steel, one containing 0.4 to 1.2% by weight of C and a small amount of impurities and the balance being Fe can be used.

【0011】内側クラッド素材2は合金でないTi(純
Ti)あるいはTi合金で板状(帯状)に形成されるも
のを用いることができる。Ti合金としては、例えば、
Ti−0.2Pdなどの組成を有するものを用いること
ができる。外側クラッド素材3は、合金でないFe(純
Fe)、Fe合金、合金でないCu(純Cu)、Cu合
金、合金でないNi(純Ni)、Ni合金から選ばれる
材料で板状(帯状)に形成されるものを用いることがで
きる。Fe合金としては、例えば、Fe−17Cr−
0.3Si−0.3Mnなどの組成を有するもの(SU
Sなど)を用いることができる。またCu合金として
は、例えば、Cu−5Znなどの組成を有するものを用
いることができる。またNi合金としては、例えば、N
i−30Cu−2Feなどの組成を有するもの(モネル
メタルなど)を用いることができる。
The inner cladding material 2 may be a plate (strip) made of Ti (pure Ti) or a Ti alloy which is not an alloy. As a Ti alloy, for example,
A material having a composition such as Ti-0.2Pd can be used. The outer cladding material 3 is formed in a plate shape (strip shape) using a material selected from non-alloy Fe (pure Fe), Fe alloy, non-alloy Cu (pure Cu), Cu alloy, non-alloy Ni (pure Ni), and Ni alloy. Can be used. Examples of the Fe alloy include Fe-17Cr-
One having a composition such as 0.3Si-0.3Mn (SU
S etc.) can be used. As the Cu alloy, for example, an alloy having a composition such as Cu-5Zn can be used. As the Ni alloy, for example, N
A material having a composition such as i-30Cu-2Fe (such as monel metal) can be used.

【0012】そして上記基材1と内側クラッド素材2と
外側クラッド素材3を用いて表面硬化部品を製造するに
あたっては、まず、図2に示すように、基材1の表面
(片面あるいは両面)に内側クラッド素材2を重ね合わ
せて設けると共に内側クラッド素材2の表面に外側クラ
ッド素材3を重ね合わせて設ける。次に、基材1と内側
クラッド素材2と外側クラッド素材3を重ね合わせたも
のをクラッド圧延(圧延加工)することによって、基材
1と内側クラッド素材2と外側クラッド素材3を密着さ
せて接合一体化して積層材(クラッド材)を形成する。
次に、この積層材を冷間圧延などでさらに圧延して厚さ
1mm以下、好ましくは0.5mm以下にする。厚さが
1mmを超えると、基材1と内側クラッド素材2と外側
クラッド素材3の密着性が不足して積層材に層間剥離が
生じる恐れがある。尚、基材1と内側クラッド素材2と
外側クラッド素材3の密着性を高めるために、積層材を
より薄く圧延するのが好ましいが、実際には、厚さ0.
02mmに圧延するのが限界である。
In manufacturing a surface-hardened part using the base material 1, the inner clad material 2 and the outer clad material 3, first, as shown in FIG. The inner clad material 2 is provided in an overlapping manner, and the outer clad material 3 is provided on the surface of the inner clad material 2 in an overlapping manner. Next, the base material 1, the inner clad material 2 and the outer clad material 3 are superimposed on each other, and the base material 1, the inner clad material 2 and the outer clad material 3 are brought into close contact and joined by clad rolling (rolling). Integrated to form a laminated material (cladding material).
Next, the laminated material is further rolled by cold rolling or the like to a thickness of 1 mm or less, preferably 0.5 mm or less. When the thickness exceeds 1 mm, the adhesion between the base material 1, the inner clad material 2 and the outer clad material 3 is insufficient, and there is a possibility that delamination occurs in the laminated material. In order to increase the adhesion between the base material 1, the inner clad material 2 and the outer clad material 3, it is preferable to roll the laminated material thinner.
Rolling to 02 mm is the limit.

【0013】この後、厚さ1mm以下の積層材をArガ
ス(アルゴンガス)の雰囲気中で焼鈍する。積層材を厚
さ1mm以下にする上記のような圧延を行った後では、
基材1の加工硬化(加工歪み)や内側クラッド素材2及
び外側クラッド素材3の加工硬化(加工歪み)により積
層材を所定の形状に塑性加工するのは困難である。従っ
て、この焼鈍工程によって基材1や内側クラッド素材2
及び外側クラッド素材3の加工硬化を除去する必要があ
る。この焼鈍は使用する材料によっても異なるが、70
0〜800℃(800℃が最適)の温度条件で15秒〜
15分間保持するように設定することが好ましい。焼鈍
の際の温度が700℃未満であれば、基材の加工硬化を
除去するには不十分であり、焼鈍の際の温度が800℃
を超えると、外側クラッド素材3のFeやCuやNiの
拡散が進行し過ぎて積層材の表面が硬化し、塑性加工の
際に積層材の表面にクラックが生じる恐れがある。また
焼鈍の際の保持時間が15秒未満であれば、基材1の内
部の加熱が不十分となって加工硬化の除去にむらが生じ
る恐れがあり、焼鈍の際の保持時間が15分を超える
と、外側クラッド素材3と内側クラッド素材2の界面に
おいて、化合物が形成されて曲げ等の塑性加工の際に積
層材の表層部分が剥離する可能性がある。尚、上記積層
材を厚み1mm以下に圧延する工程と焼鈍工程とは、連
続的に交互に繰り返し行うようにしてもよい。
Thereafter, the laminated material having a thickness of 1 mm or less is annealed in an atmosphere of Ar gas (argon gas). After performing the above-mentioned rolling to reduce the thickness of the laminated material to 1 mm or less,
Due to the work hardening (work strain) of the base material 1 and the work hardening (work strain) of the inner clad material 2 and the outer clad material 3, it is difficult to plastically work the laminated material into a predetermined shape. Therefore, the base material 1 and the inner clad material 2
In addition, it is necessary to remove the work hardening of the outer clad material 3. This annealing depends on the material used,
15 seconds at a temperature of 0 to 800 ° C (800 ° C is optimal)
It is preferable to set so as to hold for 15 minutes. If the temperature at the time of annealing is less than 700 ° C., it is insufficient to remove the work hardening of the substrate, and the temperature at the time of annealing is 800 ° C.
If it exceeds, the diffusion of Fe, Cu or Ni in the outer cladding material 3 proceeds too much, and the surface of the laminated material is hardened, and cracks may be generated on the surface of the laminated material during plastic working. If the holding time during annealing is less than 15 seconds, the inside of the base material 1 may be insufficiently heated and uneven work removal may occur, and the holding time during annealing may be reduced to 15 minutes. If it exceeds, at the interface between the outer clad material 3 and the inner clad material 2, a compound may be formed, and the surface layer of the laminated material may peel off during plastic working such as bending. The step of rolling the laminate to a thickness of 1 mm or less and the step of annealing may be performed continuously and alternately.

【0014】この後、積層材を必要に応じて切断し、曲
げや深絞りなどの塑性加工を施すことによって、所定の
形状の部品材料に形成する。次に、部品材料を不活性雰
囲気中あるいは還元性雰囲気中で950〜1200℃、
5秒〜10分間加熱し、次に、室温による空冷(自然放
熱による冷却)以上の冷却速度で冷却することによっ
て、図1に示すように、表面に表面硬化層4を有する表
面硬化部品を形成することができる。上記の不活性雰囲
気中での加熱は、真空あるいはArガスなどの不活性ガ
ス中で加熱処理を行うものであり、上記の還元性雰囲気
中での加熱は、水素ガス中で加熱処理を行うものであ
る。
Thereafter, the laminated material is cut as necessary and subjected to plastic working such as bending or deep drawing to form a component material having a predetermined shape. Next, the component material is heated at 950 to 1200 ° C. in an inert atmosphere or a reducing atmosphere.
Heating for 5 seconds to 10 minutes, and then cooling at a cooling rate equal to or higher than air cooling at room temperature (cooling by natural heat radiation) to form a surface hardened component having a surface hardened layer 4 on the surface as shown in FIG. can do. The heating in the above-mentioned inert atmosphere is performed in a vacuum or an inert gas such as Ar gas, and the heating in the above-described reducing atmosphere is performed in a hydrogen gas. It is.

【0015】また上記の加熱温度の最適値は外側クラッ
ド素材3の種類などによって異なるものであり、外側ク
ラッド素材3がFeあるいはFe合金、又はNiあるい
はNi合金である場合には、上記加熱温度は、950〜
1150℃に設定するのが好ましく、外側クラッド素材
3がCuあるいはCu合金である場合には、上記加熱温
度は、950〜1050℃に設定するのが好ましい。加
熱温度が950℃未満であれば、焼入れ不十分により表
面硬化層4の強度や基材1の部分の硬度を十分に得るこ
とができない恐れがあり、加熱温度が1200℃を超え
ると、基材1の部分の再結晶が進行し過ぎて結晶粒が粗
大化し、表面硬化部品の靱性が低下する恐れがある。ま
た加熱時間が5秒未満であれば、部品材料に熱を均一に
かけることが困難であり、焼入れが入らない部分ができ
たり、拡散によるTi−Fe系金属間化合物、あるいは
Ti−Cu系金属間化合物、あるいはTi−Ni系金属
間化合物の生成が不十分となって表面硬化層4の硬度が
低下したりする恐れがある。加熱時間が10分を超える
と、内側クラッド素材2で形成されるTi層への基材1
のCの拡散(後述の中間層6が存在する場合は中間層6
の成分の拡散も)が進行して基材1のCの濃度が低下し
過ぎ、焼入れによる基材1の部分の硬化を果たすことが
できなくなる恐れがある。そこで上記加熱条件の中でも
950〜1100℃で5秒〜10分間加熱処理するのが
好ましく、最も好ましい条件は1050℃で1〜2分間
に設定される。また空冷に満たないような冷却速度で冷
却した場合も基材1の焼入れは困難であるので、例え
ば、5℃/分以上の冷却速度で冷却するのが好ましい。
The above-mentioned optimum value of the heating temperature differs depending on the type of the outer cladding material 3 and the like. When the outer cladding material 3 is made of Fe or an Fe alloy, or Ni or a Ni alloy, the above-mentioned heating temperature becomes 950
The heating temperature is preferably set to 1150 ° C, and when the outer cladding material 3 is made of Cu or a Cu alloy, the heating temperature is preferably set to 950 to 1050 ° C. If the heating temperature is lower than 950 ° C, the strength of the surface hardened layer 4 and the hardness of the portion of the substrate 1 may not be sufficiently obtained due to insufficient quenching. The recrystallization of the portion 1 may proceed too much, causing the crystal grains to become coarse and the toughness of the surface-hardened part to be reduced. If the heating time is less than 5 seconds, it is difficult to uniformly apply heat to the component material, and there is a portion where quenching does not occur, a Ti-Fe-based intermetallic compound due to diffusion, or a Ti-Cu-based metal. There is a possibility that the generation of the intermetallic compound or the Ti-Ni-based intermetallic compound becomes insufficient and the hardness of the surface hardened layer 4 is reduced. If the heating time exceeds 10 minutes, the base material 1 on the Ti layer formed by the inner clad material 2
(If the intermediate layer 6 described later exists, the intermediate layer 6
Of the base material 1), the C concentration of the base material 1 may be too low, and the hardening of the portion of the base material 1 by quenching may not be achieved. Therefore, among the above heating conditions, it is preferable to perform the heat treatment at 950 to 1100 ° C for 5 seconds to 10 minutes, and the most preferable condition is set to 1050 ° C for 1 to 2 minutes. Also, when the cooling is performed at a cooling rate lower than the air cooling, the quenching of the base material 1 is difficult.

【0016】上記のように形成される表面硬化部品は、
塑性加工後の加熱による熱処理によって基材1を焼入れ
することができ、剛性を高めるように改善することがで
きる。また塑性加工後の加熱による熱処理によって、外
側クラッド素材3と内側クラッド素材2の間で相互に拡
散が進み、表面にFeあるいはCuあるいはNiとTi
の金属間化合物、つまりTiFe、TiFe2 、Ti2
Cu、TiCu、TiNi3 、Ti2 Niなどの金属間
化合物を含む表面硬化層4を形成することができ、この
表面硬化層4によって表面硬度が高くなって耐磨耗性等
を高くすることができるものである。さらに塑性加工後
の加熱による熱処理によって、基材1と内側クラッド素
材2の間で相互に拡散が進み、表面硬化層4と基材1の
間にTiとCの金属間化合物、つまりTiCなどの金属
間化合物を含む密着層5を形成することができると共に
Ti、Zr、Ta、Nbなどの金属間化合物を含む密着
層5を形成することができ、この密着層5によって表面
硬化層4と基材1の密着性を高くすることができると共
に表面硬化層4と基材1を剥離しにくくすることができ
るものである。尚、用いる材料の成分によって密着層5
は図3に示すように生成されない場合があるが、この場
合でも、相互拡散によって表面硬化層4と基材1の密着
性を高めることができる。
The surface hardened part formed as described above is
The base material 1 can be quenched by heat treatment by heating after plastic working, and the rigidity can be improved to be increased. Further, due to the heat treatment by heating after the plastic working, the diffusion between the outer clad material 3 and the inner clad material 2 proceeds, and the surface is made of Fe or Cu or Ni and Ti.
Intermetallic compounds of TiFe, TiFe 2 , Ti 2
A surface hardened layer 4 containing an intermetallic compound such as Cu, TiCu, TiNi 3 , or Ti 2 Ni can be formed, and the surface hardened layer 4 can increase the surface hardness and increase abrasion resistance and the like. You can do it. Further, by heat treatment by heating after plastic working, diffusion between the base material 1 and the inner cladding material 2 proceeds mutually, and an intermetallic compound of Ti and C between the surface hardened layer 4 and the base material 1, that is, The adhesion layer 5 containing an intermetallic compound can be formed, and the adhesion layer 5 containing an intermetallic compound such as Ti, Zr, Ta, or Nb can be formed. The adhesiveness of the material 1 can be improved, and the hardened surface layer 4 and the substrate 1 can be hardly peeled off. The adhesion layer 5 depends on the components of the material used.
May not be generated as shown in FIG. 3, but even in this case, the adhesion between the surface hardened layer 4 and the substrate 1 can be enhanced by mutual diffusion.

【0017】表面硬化層4の厚みは1〜10μmである
ことが好ましい。表面硬化層4の厚みが1μm未満であ
れば、耐磨耗性を高くすることができなくなる恐れがあ
り、表面硬化層4の厚みが10μmを超えると、耐磨耗
性は大きく向上するものの、靱性を損なうようになっ
て、工具等の使用に適さなくなる恐れがある。つまり表
面硬化層4の厚みを1〜10μmにすることによって、
耐磨耗性が充分で靱性に優れる表面硬化部品を形成する
ことができる。そして表面硬化層4の厚みを1〜10μ
mにするために、基材1の成分や外側クラッド素材3の
成分、内側クラッド素材2と外側クラッド素材3の各厚
み、焼鈍や塑性加工後の加熱の温度条件などを諸処理条
件を設定する必要があるが、これら諸処理条件は表面硬
化層4の種類などによっても異なってくる。例えば、外
側クラッド素材3がFeあるいはFe合金である場合、
外側クラッド素材3と内側クラッド素材2の厚みの比は
1:1〜1:4の範囲内にするのが好ましく、外側クラ
ッド素材3がCuあるいはCu合金である場合、外側ク
ラッド素材3と内側クラッド素材2の厚みの比は1:1
〜1:5の範囲内にするのが好ましく、外側クラッド素
材3がNiあるいはNi合金である場合、外側クラッド
素材3と内側クラッド素材2の厚みの比は3:2〜1:
4の範囲内にするのが好ましい。
The thickness of the surface hardened layer 4 is preferably 1 to 10 μm. If the thickness of the surface hardened layer 4 is less than 1 μm, the abrasion resistance may not be able to be increased, and if the thickness of the surface hardened layer 4 exceeds 10 μm, the abrasion resistance is greatly improved, The toughness may be impaired, making the tool unsuitable for use. That is, by setting the thickness of the surface hardened layer 4 to 1 to 10 μm,
A surface-hardened part having sufficient abrasion resistance and excellent toughness can be formed. Then, the thickness of the surface hardened layer 4 is 1 to 10 μm.
In order to obtain m, various processing conditions are set such as a component of the base material 1 and a component of the outer cladding material 3, respective thicknesses of the inner cladding material 2 and the outer cladding material 3, temperature conditions of annealing and heating after plastic working. Although it is necessary, these various processing conditions differ depending on the type of the surface hardened layer 4 and the like. For example, when the outer cladding material 3 is Fe or an Fe alloy,
The ratio of the thickness of the outer clad material 3 to the thickness of the inner clad material 2 is preferably in the range of 1: 1 to 1: 4, and when the outer clad material 3 is Cu or a Cu alloy, the outer clad material 3 and the inner clad material 3 The ratio of the thickness of the material 2 is 1: 1
In a case where the outer cladding material 3 is Ni or a Ni alloy, the ratio of the thickness of the outer cladding material 3 to the thickness of the inner cladding material 2 is 3: 2 to 1:
It is preferable to be within the range of 4.

【0018】上記の実施の形態において、基材1と内側
クラッド素材2の間にさらに中間層6を挟んで設けるこ
とができる。つまり図4に示すように、基材1の表面
(片面あるいは両面)に中間層6を設け、この中間層6
の表面に内側クラッド素材2を重ね合わせると共に内側
クラッド素材2の表面に外側クラッド素材3を重ね合わ
せる。次に、基材1と中間層6と内側クラッド素材2と
外側クラッド素材3を重ね合わせたものをクラッド圧延
(圧延加工)することによって、基材1と中間層6と内
側クラッド素材2と外側クラッド素材3を密着させて接
合一体化して積層材(クラッド材)を形成する。この後
は上記実施の形態と同様にして図1や図3のような表面
硬化部品を形成するのである。中間層6は合金でないF
e(純Fe)、合金でないCu(純Cu)、合金でない
Ni(純Ni)から選ばれる材料で板状(帯状)に形成
されるものを用いることができる。
In the above embodiment, an intermediate layer 6 can be further provided between the base material 1 and the inner clad material 2. That is, as shown in FIG. 4, an intermediate layer 6 is provided on the surface (one side or both sides) of the substrate 1, and the intermediate layer 6
Of the inner clad material 2 and the outer clad material 3 on the surface of the inner clad material 2. Next, the substrate 1, the intermediate layer 6, the inner clad material 2, and the outer clad material 3 are superimposed on each other, and the resulting material is clad-rolled (rolled). The clad material 3 is brought into close contact and joined and integrated to form a laminated material (clad material). Thereafter, similarly to the above-described embodiment, a surface-hardened part as shown in FIGS. 1 and 3 is formed. Intermediate layer 6 is non-alloy F
A material selected from e (pure Fe), non-alloy Cu (pure Cu), and non-alloy Ni (pure Ni) and formed in a plate shape (strip shape) can be used.

【0019】このように中間層6を設けて形成される表
面硬化部品は、塑性加工後の加熱による熱処理によっ
て、基材1と中間層6と内側クラッド素材2の間で相互
に拡散が進み、表面硬化層4と基材1の間に中間層6に
含まれるFeあるいはCuあるいはNiと内側クラッド
素材2のTiとの金属間化合物、あるいはTiとCの金
属間化合物、つまりTiFe、TiFe2 、Ti2
u、TiCu、TiNi3、Ti2 Ni、TiCなどの
金属間化合物を含む密着層5を形成することができると
共にTi、Zr、Ta、Nbなどの金属間化合物を含む
密着層5を形成することができ、この密着層5によって
表面硬化層4と基材1の密着性を上記実施の形態よりも
さらに高くすることができると共に表面硬化層4と基材
1を上記実施の形態よりもさらに剥離しにくくすること
ができるものである。尚、用いる材料の成分によって密
着層5は図3に示すように生成されない場合があるが、
この場合でも、相互拡散によって表面硬化層4と基材1
の密着性を高めることができる。
The surface-hardened part formed by providing the intermediate layer 6 in this way diffuses between the base material 1, the intermediate layer 6 and the inner cladding material 2 by heat treatment by heating after plastic working, An intermetallic compound of Fe or Cu or Ni contained in the intermediate layer 6 between the surface hardened layer 4 and the base material 1 and Ti of the inner cladding material 2 or an intermetallic compound of Ti and C, that is, TiFe, TiFe 2 , Ti 2 C
It is possible to form the adhesion layer 5 containing an intermetallic compound such as u, TiCu, TiNi 3 , Ti 2 Ni, and TiC, and to form the adhesion layer 5 containing an intermetallic compound such as Ti, Zr, Ta, and Nb. The adhesion between the surface hardened layer 4 and the base material 1 can be further enhanced by the adhesion layer 5 as compared with the above embodiment, and the surface hardened layer 4 and the base material 1 can be further peeled off than in the above embodiment. It is possible to make it difficult. Although the adhesion layer 5 may not be formed as shown in FIG. 3 depending on the components of the material used,
Also in this case, the surface hardened layer 4 and the substrate 1 are interdiffused.
Can be improved in adhesion.

【0020】尚、図2、4に示す外側クラッド素材3で
ある最表面層のFe、Cu、Niあるいはその合金層が
なくても、内側クラッド素材2のTiあるいはTi合金
が基材1や中間層6とが加熱により反応して表面硬化層
4を形成することは可能である。しかし、Tiあるいは
Ti合金の層が最表面にあると、連続炉で達成できるレ
ベルのAr雰囲気純度では、焼鈍時に酸素、窒素がTi
あるいはTi合金中に吸収され、表面層の延性を損な
う。その結果、曲げ等の塑性加工でクラックを生じる恐
れが出てくる。また、バッチ式の炉で、ガス置換を十分
に行い、密封を完全に行えば、TiあるいはTi合金中
への酸素、窒素の吸収は十分に抑制される。しかし、本
発明のような0.5mm以下の厚さでは、巻付ければ相
互に焼付く恐れがあり、フリーに近い状態で焼鈍を行う
と変形は避けられない。従って、バッチ炉での生産は困
難である。以上の点から外側クラッド素材3の層がなけ
れば延性の確保は困難である。
In addition, even if there is no outermost clad material Fe, Cu, Ni or its alloy layer as the outer clad material 3 shown in FIGS. It is possible that the layer 6 reacts with the heating to form the hardened surface layer 4. However, if the layer of Ti or Ti alloy is on the outermost surface, oxygen and nitrogen will be reduced during annealing at a level of Ar atmosphere purity that can be achieved in a continuous furnace.
Alternatively, it is absorbed in the Ti alloy and impairs the ductility of the surface layer. As a result, there is a possibility that cracks may occur in plastic working such as bending. Further, if the gas exchange is sufficiently performed and the sealing is completely performed in a batch furnace, the absorption of oxygen and nitrogen into Ti or a Ti alloy is sufficiently suppressed. However, in the case of a thickness of 0.5 mm or less as in the present invention, there is a risk of seizure when wound, and deformation is inevitable when annealing is performed in a state close to free. Therefore, production in a batch furnace is difficult. From the above points, it is difficult to ensure ductility without the layer of the outer cladding material 3.

【0021】次に、上記実施の形態の具体例を示す。基
材1としてはFe−Cr−C系の焼入硬化型ステンレス
鋼で形成されるものを用い、その組成はFe−13.5
Cr−0.4C−1.2Moであった。この基材1の表
面に中間層6としてNi層を形成し、Ni層の表面に内
側クラッド素材2としてTi層を形成し、Ti層の表面
に外側クラッド素材3としてFe層を形成する。次に、
これをクラッド圧延して接合して密着させることによっ
て積層材を形成すると共にさらに積層材を、Fe層の厚
みが2μm、Ti層の厚みが3μm、Ni層の厚みが1
μm、全体の厚みが厚み100μmとなるまで圧延し
た。
Next, a specific example of the above embodiment will be described. The base material 1 is made of a quenching-hardening stainless steel of the Fe-Cr-C type, and its composition is Fe-13.5.
Cr-0.4C-1.2Mo. An Ni layer is formed as an intermediate layer 6 on the surface of the base material 1, a Ti layer is formed as an inner cladding material 2 on the surface of the Ni layer, and an Fe layer is formed as an outer cladding material 3 on the surface of the Ti layer. next,
This is clad-rolled, joined and adhered to form a laminated material. Further, the laminated material is further composed of a Fe layer having a thickness of 2 μm, a Ti layer having a thickness of 3 μm, and a Ni layer having a thickness of 1 μm.
The thickness was rolled until the total thickness became 100 μm.

【0022】次に、99.99%Arガス雰囲気中で7
00〜800℃(800℃が最適)の温度条件で15秒
〜15分間保持して積層材を焼鈍する。次に、これを切
断したり塑性加工したりして所定の形状の部品材料に形
成する。次に、部品材料を不活性雰囲気中あるいは還元
性雰囲気中で950〜1200℃、5秒〜10分間加熱
し、次に、空冷(自然放熱による冷却)以上の冷却速度
で冷却することによって、図1に示すように、表面に表
面硬化層4を有する表面硬化部品を形成することができ
る。この表面硬化層4はTi−Fe系金属間化合物層で
あり、またこの内側にはFeとTiCが相互に拡散し結
合して表面のTi−Fe系金属間化合物層が基材1に密
着するための密着層5が形成されている。
Next, 7 in a 99.99% Ar gas atmosphere.
The laminated material is annealed while being kept at a temperature condition of 00 to 800 ° C. (800 ° C. is optimal) for 15 seconds to 15 minutes. Next, this is cut or subjected to plastic working to form a component material having a predetermined shape. Next, the component material is heated at 950 to 1200 ° C. for 5 seconds to 10 minutes in an inert atmosphere or a reducing atmosphere, and then cooled at a cooling rate of air cooling (cooling by natural heat radiation) or more. As shown in FIG. 1, a surface-hardened component having a surface-hardened layer 4 on the surface can be formed. The surface hardened layer 4 is a Ti-Fe-based intermetallic compound layer, and Fe and TiC are diffused and bonded to each other, and the Ti-Fe-based intermetallic compound layer on the surface is in close contact with the substrate 1. Adhesion layer 5 is formed.

【0023】[0023]

【実施例】以下、本発明を実施例によって詳述する。 [実施例1]焼入硬化型ステンレス鋼(Fe−13.5
Cr−1.2Mo−0.4C−0.3Si−0.3M
n)の基材1の両側の表面に純Niで形成される中間層
6を重ね合わせて設け、中間層6の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設けて基材1
と内側クラッド素材2の間に中間層6を挟み、内側クラ
ッド素材2の外側に純Feで形成される外側クラッド素
材3を重ね合わせて設け、これらをクラッド圧延により
接合して積層材とした。この積層材を圧延して全体の厚
さが0.2mm、片側のNi層、Ti層、Fe層の厚さ
がそれぞれ0.5μm、4μm、2μmとなったシート
フープを形成した。次に、これを99.99%Arガス
フローの連続炉で750℃、1分間焼鈍してから所定の
形に切断し、曲げ加工を行った。この際、曲げR部(曲
げ屈曲部)にクラックは確認されなかった。このように
して所定の形状に形成した部品材料を、99.99%の
Ar雰囲気中で1050℃×5分加熱後、空冷した。こ
れにより表面に約5μmのTiFeとTiFe2 の金属
間化合物からなる表面硬化層4を有する表面硬化部品を
得た。
The present invention will be described below in detail with reference to examples. [Example 1] Quench hardening type stainless steel (Fe-13.5)
Cr-1.2Mo-0.4C-0.3Si-0.3M
n) The intermediate layer 6 formed of pure Ni is provided on both surfaces of the base material 1 on both sides thereof, and the inner cladding material 2 formed of pure Ti is provided on the surface of the intermediate layer 6 on the base material. 1
An intermediate layer 6 was sandwiched between the inner clad material 2 and the outer clad material 3 formed of pure Fe on the outer side of the inner clad material 2, and these were joined by clad rolling to form a laminated material. The laminated material was rolled to form a sheet hoop having an overall thickness of 0.2 mm, and the thickness of one side of the Ni layer, Ti layer, and Fe layer was 0.5 μm, 4 μm, and 2 μm, respectively. Next, this was annealed at 750 ° C. for 1 minute in a continuous furnace with a 99.99% Ar gas flow, cut into a predetermined shape, and bent. At this time, no crack was observed at the bending R portion (bending bending portion). The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 1050 ° C. for 5 minutes and then air-cooled. As a result, a surface-hardened part having a surface hardened layer 4 of about 5 μm made of an intermetallic compound of TiFe and TiFe 2 was obtained.

【0024】[実施例2]焼入硬化型ステンレス鋼(F
e−13.5Cr−0.15Mo−0.6C−0.3S
i−0.3Mn)の基材1の両側の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設け、内側ク
ラッド素材2の外側にSUS430(Fe−17Cr−
0.3Si−0.3Mn)で形成される外側クラッド素
材3を重ね合わせて設け、これらをクラッド圧延により
接合して積層材とした。この積層材を圧延して全体の厚
さが0.5mm、片側のTi層、SUS430層の厚さ
がそれぞれ2μm、2μmのシートフープを形成した。
次に、これを99.99%Arガスフローの連続炉で8
00℃、2分間焼鈍してから所定の形状に切断し、曲げ
加工を行った。この際、曲げR部にクラックは確認され
なかった。このようにして所定の形状に形成した部品材
料を99.99%Ar雰囲気中で950℃×1分加熱
後、空冷した。これにより表面に約3μmのTiFeと
TiFe2 の金属間化合物からなる表面硬化層4を有す
る表面硬化部品を得た。
[Example 2] Quench hardening type stainless steel (F
e-13.5Cr-0.15Mo-0.6C-0.3S
i-0.3Mn) base material 1 on both sides of an inner clad material 2 made of pure Ti is provided in an overlapping manner, and SUS430 (Fe-17Cr-
An outer clad material 3 made of 0.3Si-0.3Mn) was provided in an overlapping manner, and these were joined by clad rolling to form a laminated material. This laminated material was rolled to form a sheet hoop having an overall thickness of 0.5 mm and a thickness of one side of the Ti layer and SUS430 layer of 2 μm and 2 μm, respectively.
Next, this was placed in a continuous furnace with a 99.99% Ar gas flow for 8 hours.
After annealing at 00 ° C. for 2 minutes, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated at 950 ° C. for 1 minute in an atmosphere of 99.99% Ar and then air-cooled. As a result, a surface-hardened component having a surface hardened layer 4 of about 3 μm made of an intermetallic compound of TiFe and TiFe 2 was obtained.

【0025】[実施例3]焼入硬化型ステンレス鋼(F
e−14.0Cr−1.25Mo−0.4C−0.3S
i−0.3Mn)の基材1の両側の表面に純Cuで形成
される中間層6を重ね合わせて設け、中間層6の表面に
純Tiで形成される内側クラッド素材2を重ね合わせて
設けて基材1と内側クラッド素材2の間に中間層6を挟
み、内側クラッド素材2の外側に純Cuで形成される外
側クラッド素材3を重ね合わせて設け、これらをクラッ
ド圧延により接合して積層材とした。この積層材を圧延
して全体の厚さが0.4mm、片側のCu層、Ti層、
Cu層の厚さがそれぞれ1μm、3μm、1μmのシー
トフープを形成した。次に、これを99.99%Arガ
スフローの連続炉で700℃、5分間焼鈍してから所定
の形状に切断し、曲げ加工を行った。この際、曲げR部
にクラックは確認されなかった。このようにして所定の
形状に形成した部品材料を99.99%Ar雰囲気中で
1000℃×4分加熱後、空冷した。これにより表面に
約4μmのTi2 Cu、TiCuの金属間化合物からな
る表面硬化層4を有する表面硬化部品を得た。
[Example 3] Quench hardening type stainless steel (F
e-14.0Cr-1.25Mo-0.4C-0.3S
(i-0.3 Mn) The intermediate layer 6 made of pure Cu is provided on both surfaces of the base material 1 on both sides thereof, and the inner clad material 2 made of pure Ti is superposed on the surface of the intermediate layer 6. The intermediate layer 6 is sandwiched between the base material 1 and the inner clad material 2, and the outer clad material 3 made of pure Cu is provided on the outer side of the inner clad material 2 by overlapping, and these are joined by clad rolling. It was a laminated material. This laminated material is rolled to have a total thickness of 0.4 mm, a Cu layer on one side, a Ti layer,
Sheet hoops having a Cu layer thickness of 1 μm, 3 μm, and 1 μm, respectively, were formed. Next, this was annealed in a continuous furnace with a 99.99% Ar gas flow at 700 ° C. for 5 minutes, cut into a predetermined shape, and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 1000 ° C. for 4 minutes and then air-cooled. As a result, a surface hardened component having a surface hardened layer 4 of about 4 μm made of an intermetallic compound of Ti 2 Cu and TiCu was obtained.

【0026】[実施例4]焼入硬化型ステンレス鋼(F
e−13.5Cr−0.3C−0.4Si−0.5M
n)の基材1の両側の表面に純Niで形成される中間層
6を重ね合わせて設け、中間層6の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設けて基材1
と内側クラッド素材2の間に中間層6を挟み、内側クラ
ッド素材2の外側に純Cuで形成される外側クラッド素
材3を重ね合わせて設け、これらをクラッド圧延により
接合して積層材とした。この積層材を圧延して全体の厚
さ0.5mm、片側のNi層、Ti層、Cu層の厚さが
それぞれ1μm、4μm、2μmのシートフープを形成
した。次に、これを99.99%Arガスフローの連続
炉で750℃、4分間焼鈍してから所定の形に切断し、
曲げ加工を行った。この際、曲げR部にクラックは確認
されなかった。このようにして所定の形状に形成した部
品材料を99.99%Ar雰囲気中で1000℃×4分
加熱後、空冷した。これにより表面に約5μmのTi2
Cu、TiCuの金属間化合物からなる表面硬化層4を
有する表面硬化部品を得た。
[Example 4] Quench hardening type stainless steel (F
e-13.5Cr-0.3C-0.4Si-0.5M
n) The intermediate layer 6 formed of pure Ni is provided on both surfaces of the base material 1 on both sides thereof, and the inner cladding material 2 formed of pure Ti is provided on the surface of the intermediate layer 6 on the base material. 1
An intermediate layer 6 was sandwiched between the inner clad material 2 and the outer clad material 3 formed of pure Cu on the outer side of the inner clad material 2, and these were joined by clad rolling to form a laminated material. This laminated material was rolled to form a sheet hoop having an overall thickness of 0.5 mm and a thickness of one side of the Ni layer, Ti layer, and Cu layer of 1 μm, 4 μm, and 2 μm, respectively. Next, this was annealed at 750 ° C. for 4 minutes in a continuous furnace with a 99.99% Ar gas flow, and then cut into a predetermined shape.
Bending was performed. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 1000 ° C. for 4 minutes and then air-cooled. As a result, about 5 μm of Ti 2
A surface-hardened component having a surface-hardened layer 4 made of an intermetallic compound of Cu and TiCu was obtained.

【0027】[実施例5]焼入硬化型ステンレス鋼(F
e−13.5Cr−0.15Mo−0.6C−0.3S
i−0.3Mn)の基材1の両側の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設け、内側ク
ラッド素材2の外側にC2100(Cu−5Zn)を重
ね合わせて設け、これらをクラッド圧延により接合して
積層材とした。この積層材を圧延して全体の厚さ0.0
5mm、片側のTi層、C2100層の厚さがそれぞれ
4μm、2μmのシートフープを形成した。これを9
9.99%Arガスフローの連続炉で800℃、5秒間
焼鈍してから所定の形状に切断し、曲げ加工を行った。
この際、曲げR部にクラックは確認されなかった。この
ようにして所定の形状に形成した部品材料を99.99
%Ar雰囲気中で950℃×15秒加熱後、空冷した。
これにより表面に約5μmのTi2 Cu、TiCuの金
属間化合物からなる表面硬化層4を有する表面硬化部品
を得た。
[Example 5] Quench hardening type stainless steel (F
e-13.5Cr-0.15Mo-0.6C-0.3S
i-0.3Mn), an inner cladding material 2 formed of pure Ti is provided on both surfaces of the base material 1 on both sides thereof, and C2100 (Cu-5Zn) is provided on the outer surface of the inner cladding material 2 so as to be provided, These were joined by clad rolling to form a laminated material. This laminate is rolled to a total thickness of 0.0
Sheet hoops having a thickness of 5 mm, a thickness of one side of the Ti layer and a thickness of the C2100 layer of 4 μm and 2 μm, respectively, were formed. This is 9
After annealing in a continuous furnace with a 9.99% Ar gas flow at 800 ° C. for 5 seconds, the resultant was cut into a predetermined shape and bent.
At this time, no crack was observed at the bending R portion. The component material formed in a predetermined shape in this way is 99.99.
After heating at 950 ° C. for 15 seconds in a% Ar atmosphere, the mixture was air-cooled.
As a result, a surface-hardened component having a surface hardened layer 4 of about 5 μm made of an intermetallic compound of Ti 2 Cu and TiCu was obtained.

【0028】[実施例6]焼入硬化型ステンレス鋼(F
e−13.5Cr−0.15Mo−0.6C−0.3S
i−0.3Mn)の基材1の両側の表面にに純Niで形
成される中間層6を重ね合わせて設け、中間層6の表面
に純Tiで形成される内側クラッド素材2を重ね合わせ
て設けて基材1と内側クラッド素材2の間に中間層6を
挟み、内側クラッド素材2の外側に純Niで形成される
外側クラッド素材3を重ね合わせて設け、これらをクラ
ッド圧延により接合して積層材とした。この積層材を圧
延して全体の厚さが0.1mm、片側のNi層、Ti
層、Ni層の厚さがそれぞれ0.2μm、2μm、3μ
mのシートフープを形成した。次に、これを99.99
%Arガスフローの連続炉で800℃、2分間焼鈍して
から所定の形状に切断し、曲げ加工を行った。この際、
曲げR部にクラックは確認されなかった。このようにし
て所定の形状に形成した部品材料を99.99%Ar雰
囲気中で1150℃×10分加熱後、空冷した。これに
より表面に約4μmのTiNi3 の金属間化合物からな
る表面硬化層4を有する表面硬化部品を得た。
[Example 6] Quench hardening type stainless steel (F
e-13.5Cr-0.15Mo-0.6C-0.3S
(i-0.3 Mn), an intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 on both sides thereof, and an inner cladding material 2 made of pure Ti is provided on the surface of the intermediate layer 6. The intermediate layer 6 is sandwiched between the base material 1 and the inner clad material 2, and the outer clad material 3 formed of pure Ni is provided on the outer side of the inner clad material 2, and these are joined by clad rolling. To form a laminated material. This laminated material is rolled to have a total thickness of 0.1 mm, a Ni layer on one side, Ti
Layer and Ni layer have a thickness of 0.2 μm, 2 μm, and 3 μm, respectively.
m sheet hoops were formed. Next, this is 99.99
Annealed at 800 ° C. for 2 minutes in a continuous furnace with a% Ar gas flow, cut into a predetermined shape, and bent. On this occasion,
No crack was observed in the bending R portion. The component material thus formed into a predetermined shape was heated at 1150 ° C. for 10 minutes in an atmosphere of 99.99% Ar and then air-cooled. As a result, a surface-hardened part having a surface hardened layer 4 of about 4 μm of an intermetallic compound of TiNi 3 was obtained.

【0029】[実施例7]焼入硬化型ステンレス鋼(F
e−10.5Cr−0.5C−0.3Si−0.3M
n)の基材1の両側の表面に純Niで形成される中間層
6を重ね合わせて設け、中間層6の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設けて基材1
と内側クラッド素材2の間に中間層6を挟み、内側クラ
ッド素材2の外側に純Niで形成される外側クラッド素
材3を重ね合わせて設け、これらをクラッド圧延により
接合して積層材とした。この積層材を圧延して全体の厚
さが0.1mm、片側のNi層、Ti層、Ni層の厚さ
がそれぞれ0.2μm、4μm、1μmのシートフープ
を形成した。次に、これを99.99%Arガスフロー
の連続炉で750℃、30秒間焼鈍してから所定の形状
に切断し、曲げ加工を行った。この際、曲げR部にクラ
ックは確認されなかった。このようにして所定の形状に
形成した部品材料を99.99%Ar雰囲気中で120
0℃×5分加熱後、空冷した。これにより表面に約4μ
mのTi2 Niの金属間化合物からなる表面硬化層4を
有する表面硬化部品を得た。
[Example 7] Quench hardening type stainless steel (F
e-10.5Cr-0.5C-0.3Si-0.3M
n) The intermediate layer 6 formed of pure Ni is provided on both surfaces of the base material 1 on both sides thereof, and the inner cladding material 2 formed of pure Ti is provided on the surface of the intermediate layer 6 on the base material. 1
An intermediate layer 6 is sandwiched between the inner clad material 2 and the outer clad material 3 formed of pure Ni on the outer side of the inner clad material 2, and these are joined by clad rolling to form a laminated material. This laminated material was rolled to form a sheet hoop having an overall thickness of 0.1 mm and a thickness of one side of the Ni layer, Ti layer, and Ni layer of 0.2 μm, 4 μm, and 1 μm, respectively. Next, this was annealed at 750 ° C. for 30 seconds in a continuous furnace with a 99.99% Ar gas flow, cut into a predetermined shape, and bent. At this time, no crack was observed at the bending R portion. The component material formed in a predetermined shape in this way is subjected to 120% in a 99.99% Ar atmosphere.
After heating at 0 ° C for 5 minutes, the mixture was air-cooled. This makes the surface approximately 4μ
Thus, a surface-hardened component having a surface-hardened layer 4 made of m 2 Ti 2 Ni intermetallic compound was obtained.

【0030】[実施例8]焼入硬化型ステンレス鋼(F
e−10.5Cr−0.5C−0.3Si−0.3M
n)の基材1の両側の表面に純Niで形成されるを中間
層6を重ね合わせて設け、中間層6の表面に純Tiで形
成される内側クラッド素材2を重ね合わせて設けて基材
1と内側クラッド素材2の間に中間層6を挟み、内側ク
ラッド素材2の外側にモネルメタル(Ni−30Cu−
2Fe)を重ね合わせて設け、これらをクラッド圧延に
より接合して積層材とした。この積層材を圧延して全体
の厚さ0.1mm、片側のNi層、Ti層、モネルメタ
ル層の厚さがそれぞれ0.2μm、4μm、1μmのシ
ートフープを形成した。次に、これを99.99%Ar
ガスフローの連続炉で750℃、1分間焼鈍してから所
定の形状に切断し、曲げ加工を行った。この際、曲げR
部にクラックは確認されなかった。このようにして所定
の形状に形成した部品材料を99.99%Ar雰囲気中
で1100℃×5分加熱後、空冷した。これにより表面
に約4μmのTi2 Ni、Ti2 Cu、TiCuの金属
間化合物からなる表面硬化層4を有する表面硬化部品を
得た。
Example 8 A quench-hardening stainless steel (F
e-10.5Cr-0.5C-0.3Si-0.3M
n) The intermediate layer 6 formed of pure Ni is provided on both surfaces of the base material 1 on both sides thereof, and the inner cladding material 2 formed of pure Ti is provided on the surface of the intermediate layer 6 so as to be provided thereon. An intermediate layer 6 is sandwiched between the material 1 and the inner clad material 2, and a monel metal (Ni-30Cu-
2Fe) were provided in an overlapping manner, and these were joined by clad rolling to obtain a laminated material. The laminated material was rolled to form a sheet hoop having an overall thickness of 0.1 mm and a thickness of one side of the Ni layer, Ti layer, and Monel metal layer of 0.2 μm, 4 μm, and 1 μm, respectively. Next, this was mixed with 99.99% Ar
Annealed at 750 ° C. for 1 minute in a continuous gas flow furnace, cut into a predetermined shape, and bent. At this time, bending R
No crack was found in the part. The component material thus formed into a predetermined shape was heated at 1100 ° C. for 5 minutes in an atmosphere of 99.99% Ar and then air-cooled. Thus, a surface-hardened component having a surface hardened layer 4 of about 4 μm of an intermetallic compound of Ti 2 Ni, Ti 2 Cu, and TiCu was obtained.

【0031】[実施例9]焼入硬化型ステンレス鋼(F
e−13.5Cr−1.2Mo−0.4C−0.3Si
−0.3Mn)の基材1の両側の表面に純Niで形成さ
れる中間層6を重ね合わせて設け、中間層6の表面にT
i合金(Ti−0.2Pd)で形成される内側クラッド
素材2を重ね合わせて設けて基材1と内側クラッド素材
2の間に中間層6を挟み、内側クラッド素材2の外側に
純Feで形成される外側クラッド素材3を重ね合わせて
設け、これらをクラッド圧延により接合して積層材とし
た。この積層材を圧延して全体の厚さ0.5mm、片側
のNi層、Ti合金層、Fe層の厚さがそれぞれ0.5
μm、7μm、4μmのシートフープを形成した。次
に、これを99.99%Arガスフローの連続炉で75
0℃、5分間焼鈍してから所定の形状に切断し、曲げ加
工を行った。この際、曲げR部にクラックは確認されな
かった。このようにして所定の形状に形成した部品材料
を99.99%Ar雰囲気中で1050℃×5分加熱
後、空冷した。これにより表面に約10μmのTiFe
とTiFe2 の金属間化合物からなる表面硬化層を有す
る表面硬化部品を得た。
Example 9 A quench-hardening stainless steel (F
e-13.5Cr-1.2Mo-0.4C-0.3Si
−0.3 Mn), an intermediate layer 6 made of pure Ni is provided on both surfaces of the substrate 1 so as to overlap with each other.
An inner cladding material 2 made of an i-alloy (Ti-0.2Pd) is provided in an overlapping manner, an intermediate layer 6 is sandwiched between the base material 1 and the inner cladding material 2, and pure Fe is applied outside the inner cladding material 2. The outer clad material 3 to be formed was provided in an overlapping manner, and these were joined by clad rolling to form a laminated material. This laminated material was rolled to a total thickness of 0.5 mm, and the thickness of each of the Ni layer, Ti alloy layer and Fe layer on one side was 0.5 mm.
μm, 7 μm, and 4 μm sheet hoops were formed. Next, this was placed in a continuous furnace with a 99.99% Ar gas flow for 75%.
After annealing at 0 ° C. for 5 minutes, it was cut into a predetermined shape and subjected to bending. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 1050 ° C. for 5 minutes and then air-cooled. As a result, about 10 μm of TiFe
A hardened part having a hardened layer made of an intermetallic compound of TiFe 2 and TiFe 2 was obtained.

【0032】[実施例10]ばね鋼(Fe−2.0Si
−0.9Mn−0.6C)の基材1の両側の表面に純N
iで形成される中間層6を重ね合わせて設け、中間層6
の表面に純Tiで形成される内側クラッド素材2を重ね
合わせて設けて基材1と内側クラッド素材2の間に中間
層6を挟み、内側クラッド素材2の外側に純Feで形成
される外側クラッド素材3を重ね合わせて設け、これら
をクラッド圧延により接合して積層材とした。この積層
材を圧延して全体の厚さ0.5mm、片側のNi層、T
i層、Fe層の厚さがそれぞれ2μm、6μm、4μm
のシートフープを形成した。次に、これを99.99%
Arガスフローの連続炉で750℃、1分間焼鈍してか
ら所定の形状に切断し、曲げ加工を行った。この際、曲
げR部にクラックは確認されなかった。このようにして
所定の形状に形成した部品材料を99.99%Ar雰囲
気中で1050℃×10分加熱後、空冷した。これによ
り表面に約10μmのTiFeとTiFe2 の金属間化
合物からなる表面硬化層4を有する表面硬化部品を得
た。
Example 10 Spring steel (Fe-2.0Si)
-0.9Mn-0.6C) on both sides of the substrate 1 with pure N
i, the intermediate layer 6 formed of
An inner cladding material 2 made of pure Ti is superposed on the surface of the substrate 1 and an intermediate layer 6 is sandwiched between the base material 1 and the inner cladding material 2. An outer layer formed of pure Fe is formed outside the inner cladding material 2. The clad material 3 was provided in an overlapping manner, and these were joined by clad rolling to form a laminated material. This laminated material is rolled to a total thickness of 0.5 mm, a Ni layer on one side, and T
The thicknesses of the i layer and the Fe layer are 2 μm, 6 μm, and 4 μm, respectively.
Sheet hoop was formed. Next, this is 99.99%
After annealing at 750 ° C. for 1 minute in a continuous furnace with an Ar gas flow, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated at 1050 ° C. × 10 minutes in an atmosphere of 99.99% Ar and then air-cooled. As a result, a surface hardened component having a surface hardened layer 4 of about 10 μm of an intermetallic compound of TiFe and TiFe 2 was obtained.

【0033】[実施例11]炭素鋼(Fe−0.55
C)の基材1の両側の表面に純Niで形成される中間層
6を重ね合わせて設け、中間層6の表面に純Tiで形成
される内側クラッド素材2を重ね合わせて設けて基材1
と内側クラッド素材2の間に中間層6を挟み、内側クラ
ッド素材2の外側に純Feを重ね合わせて設け、これら
をクラッド圧延により接合して積層材とした。この積層
材を圧延して全体の厚さ0.5mm、片側のNi層、T
i層、Fe層の厚さがそれぞれ1μm、5μm、5μm
のシートフープを形成した。次に、これを99.99%
Arガスフローの連続炉で790℃、4分間焼鈍してか
ら所定の形状に切断し、曲げ加工を行った。この際、曲
げR部にクラックは確認されなかった。このようにして
所定の形状に形成した部品材料を99.99%Ar雰囲
気中で950℃×2分加熱後、空冷した。これにより表
面に約10μmのTiFeとTiFe2 の金属間化合物
からなる表面硬化層4を有する表面硬化部品を得た。
Example 11 Carbon steel (Fe-0.55)
C) An intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 in an overlapping manner, and an inner clad material 2 made of pure Ti is provided on the surface of the intermediate layer 6 in an overlapping manner. 1
The intermediate layer 6 was sandwiched between the inner clad material 2 and pure Fe was superposed on the outer surface of the inner clad material 2, and these were joined by clad rolling to form a laminated material. This laminated material is rolled to a total thickness of 0.5 mm, a Ni layer on one side, and T
The thickness of the i layer and the Fe layer is 1 μm, 5 μm, and 5 μm, respectively.
Sheet hoop was formed. Next, this is 99.99%
After annealing at 790 ° C. for 4 minutes in a continuous furnace with an Ar gas flow, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated at 950 ° C. for 2 minutes in an atmosphere of 99.99% Ar and then air-cooled. As a result, a surface hardened component having a surface hardened layer 4 of about 10 μm of an intermetallic compound of TiFe and TiFe 2 was obtained.

【0034】[実施例12]焼入硬化型ステンレス鋼
(Fe−13.5Cr−1.2Mo−0.4C−0.3
Si−0.3Mn)の基材1の両側の表面に純Niで形
成される中間層6を重ね合わせて設け、中間層6の表面
に純Tiで形成される内側クラッド素材2を重ね合わせ
て設けて基材1と内側クラッド素材2の間に中間層6を
挟み、内側クラッド素材2の外側に純Feを重ね合わせ
て設け、これらをクラッド圧延により接合して積層材と
した。この積層材を圧延して全体の厚さが0.2mm、
片側のNi層、Ti層、Fe層の厚さがそれぞれ0.5
μm、4μm、2μmのシートフープを形成した。次
に、これを99.99%Arガスフローの連続炉で75
0℃、1分間焼鈍してから所定の形状に切断し、曲げ加
工を行った。この際、曲げR部にクラックは確認されな
かった。このようにして所定の形状に形成した部品材料
を99.99%Ar雰囲気中で1250℃×5分加熱
後、空冷した。これにより表面に約5μmのTiFeと
TiFe2 の金属間化合物からなる表面硬化層4を有す
る表面硬化部品を得た。但し、この表面硬化部品の基材
1の靭性がやや落ちる。
[Example 12] Quench hardening type stainless steel (Fe-13.5Cr-1.2Mo-0.4C-0.3)
An intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 made of Si-0.3Mn), and an inner clad material 2 made of pure Ti is provided on the surface of the intermediate layer 6 by overlapping. The intermediate layer 6 was sandwiched between the base material 1 and the inner clad material 2, pure Fe was superposed on the outer side of the inner clad material 2, and these were joined by clad rolling to form a laminated material. This laminated material is rolled to a total thickness of 0.2 mm,
The thickness of each of the Ni layer, Ti layer and Fe layer on one side is 0.5
μm, 4 μm, and 2 μm sheet hoops were formed. Next, this was placed in a continuous furnace with a 99.99% Ar gas flow for 75%.
After annealing at 0 ° C. for 1 minute, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 1250 ° C. for 5 minutes and then air-cooled. As a result, a surface-hardened part having a surface hardened layer 4 of about 5 μm made of an intermetallic compound of TiFe and TiFe 2 was obtained. However, the toughness of the substrate 1 of the surface hardened part is slightly reduced.

【0035】[実施例13]焼入硬化型ステンレス鋼
(Fe−13.5Cr−1.2Mo−0.4C−0.3
Si−0.3Mn)の基材1の両側の表面に純Niで形
成される中間層6を重ね合わせて設け、中間層6の表面
に純Tiで形成される内側クラッド素材2を重ね合わせ
て設けて基材1と内側クラッド素材2の間に中間層6を
挟み、内側クラッド素材2の外側に純Feを重ね合わせ
て設け、これらをクラッド圧延により接合して積層材と
した。この積層材を圧延して全体の厚さ1.0mm、片
側のNi層、Ti層、Fe層の厚さがそれぞれ1μm、
6μm、4μmのシートフープを形成した。次に、これ
を99.99%Arガスフローの連続炉で750℃、5
分間焼鈍してから所定の形に切断し、曲げ加工を行っ
た。この際、曲げR部にクラックは確認されなかった。
このようにして形状の得られた部品を99.99%Ar
雰囲気中で1050℃×10分加熱後、空冷した。これ
により表面に約9μmのTiFeとTiFe2 の金属間
化合物からなる表面硬化層4を有する表面硬化部品を得
た。
Example 13 A quenching-hardening stainless steel (Fe-13.5Cr-1.2Mo-0.4C-0.3)
An intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 made of Si-0.3Mn), and an inner clad material 2 made of pure Ti is provided on the surface of the intermediate layer 6 by overlapping. The intermediate layer 6 was sandwiched between the base material 1 and the inner clad material 2, pure Fe was superposed on the outer side of the inner clad material 2, and these were joined by clad rolling to form a laminated material. This laminated material is rolled to obtain a total thickness of 1.0 mm, and the thickness of one side of the Ni layer, the Ti layer, and the Fe layer is 1 μm, respectively.
6 μm and 4 μm sheet hoops were formed. Next, this was heated in a continuous furnace with a 99.99% Ar gas flow at 750 ° C.
After annealing for a minute, it was cut into a predetermined shape and subjected to bending. At this time, no crack was observed at the bending R portion.
The part having the shape obtained in this way is 99.99% Ar
After heating in an atmosphere at 1050 ° C. for 10 minutes, it was air-cooled. As a result, a surface-hardened component having a surface hardened layer 4 of about 9 μm made of an intermetallic compound of TiFe and TiFe 2 was obtained.

【0036】[比較例1]焼入硬化型ステンレス鋼(F
e−13.5Cr−1.2Mo−0.4C−0.3Si
−0.3Mn)の厚さ0.1mmのシートを圧延加工に
より用意し、99.99%水素ガスフローの連続炉で8
00℃、2分間焼鈍してから所定の形状に切断し、曲げ
加工を行った。この際、曲げR部にクラックは確認され
なかった。このようにして所定の形状に形成した部品材
料をAr:50%、窒素:50%の混合ガス雰囲気中で
1050℃×1分保持後、空冷した。これにより鋼を基
材とする部品を得た。
[Comparative Example 1] Quench hardening type stainless steel (F
e-13.5Cr-1.2Mo-0.4C-0.3Si
-0.3Mn), a sheet having a thickness of 0.1 mm is prepared by rolling, and is subjected to 89.99% in a continuous furnace with a 99.99% hydrogen gas flow.
After annealing at 00 ° C. for 2 minutes, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was kept at 1050 ° C. for 1 minute in a mixed gas atmosphere of Ar: 50% and nitrogen: 50%, and then air-cooled. As a result, a component having a steel base was obtained.

【0037】[比較例2]焼入硬化型ステンレス鋼(F
e−13.5Cr−1.2Mo−0.4C−0.3Si
−0.3Mn)の厚さ0.1mmのシートを圧延加工に
より用意し、99.99%水素ガスフローの連続炉で8
00℃、2分間焼鈍してから所定の形状に切断し、曲げ
加工を行った。この際、曲げR部にクラックは確認され
なかった。このようにして所定の形状に形成した部品材
料をAr:50%、窒素:50%の混合ガス雰囲気中で
1050℃×1分保持後、空冷した。この部品にスパッ
タリングで表面にAl2 3 をコーティングした。これ
により表面に約0.2μmのAl2 3 の表面硬化層を
有する部品を得た。
[Comparative Example 2] Quench hardening type stainless steel (F
e-13.5Cr-1.2Mo-0.4C-0.3Si
-0.3Mn), a sheet having a thickness of 0.1 mm is prepared by rolling, and is subjected to 89.99% in a continuous furnace with a 99.99% hydrogen gas flow.
After annealing at 00 ° C. for 2 minutes, it was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was kept at 1050 ° C. for 1 minute in a mixed gas atmosphere of Ar: 50% and nitrogen: 50%, and then air-cooled. The surface of this part was coated with Al 2 O 3 by sputtering. As a result, a component having a surface hardened layer of Al 2 O 3 of about 0.2 μm was obtained.

【0038】[比較例3]焼入硬化型ステンレス鋼(F
e−13.5Cr−0.6C−0.2Mo−0.2V)
の基材1の両側の表面に純Tiをクラッド圧延により接
合して積層材とした。この積層材を圧延して全体の厚さ
0.1mm、片側のTi層の厚さが4μmのシートフー
プを形成した。次に、これを99.99%Arガスフロ
ーの連続炉で800℃、2分間焼鈍してから所定の形状
に切断し、曲げ加工を行った。この際、曲げR部にクラ
ックが発生した。このようにして所定の形状に形成した
部品材料を99.99%Ar雰囲気中で950℃×30
秒加熱後、空冷した。これにより表面に約6μmのTi
FeとTiFe2 の金属間化合物からなる表面硬化層を
有する部品を得た。
[Comparative Example 3] Quench hardening type stainless steel (F
e-13.5Cr-0.6C-0.2Mo-0.2V)
Pure Ti was joined to both surfaces of the base material 1 by clad rolling to obtain a laminated material. The laminated material was rolled to form a sheet hoop having a total thickness of 0.1 mm and a thickness of one side of the Ti layer of 4 μm. Next, this was annealed in a continuous furnace with a 99.99% Ar gas flow at 800 ° C. for 2 minutes, cut into a predetermined shape, and bent. At this time, cracks occurred in the bending R portion. The component material formed in a predetermined shape in this manner is placed in a 99.99% Ar atmosphere at 950 ° C. × 30.
After heating for 2 seconds, it was air-cooled. As a result, about 6 μm of Ti
A component having a surface hardened layer made of an intermetallic compound of Fe and TiFe 2 was obtained.

【0039】[比較例4]焼入硬化型ステンレス鋼(F
e−13.5Cr−1.2Mo−0.4C−0.3Si
−0.3Mn)の基材1の両側の表面に純Niで形成さ
れる中間層6を重ね合わせて設け、中間層6の表面に純
Tiで形成される内側クラッド素材2を重ね合わせて設
けて基材1と内側クラッド素材2の間に中間層6を挟
み、内側クラッド素材2の外側に純Feで形成される外
側クラッド素材3を重ね合わせて設け、これをクラッド
圧延により接合して積層材とした。この積層材を圧延し
て全体の厚さが0.2mm、片側のNi層、Ti層、F
e層の厚さがそれぞれ0.5μm、7μm、4μmのシ
ートフープを形成した。次に、これを99.99%Ar
ガスフローの連続炉で750℃、1分間焼鈍してから所
定の形に切断し、曲げ加工を行った。この際、曲げR部
にクラックは確認されなかった。このようにして所定の
形状に形成した部品材料を99.99%Ar雰囲気中で
900℃×10分加熱後、空冷した。これにより、Ti
FeとTiFe2 の金属間化合物からなる表面硬化層4
がFeとTiの界面には生成したが、表面には達せず、
表面が軟質の鋼を基材とする部品となり、基材1の硬度
も不足していた。
[Comparative Example 4] Quench hardening type stainless steel (F
e-13.5Cr-1.2Mo-0.4C-0.3Si
An intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 of −0.3 Mn) in an overlapping manner, and an inner cladding material 2 made of pure Ti is provided on the surface of the intermediate layer 6 in an overlapping manner. The intermediate layer 6 is sandwiched between the base material 1 and the inner clad material 2, and the outer clad material 3 made of pure Fe is provided on the outer side of the inner clad material 2 by laminating and bonding by clad rolling. Material. This laminated material is rolled to have a total thickness of 0.2 mm, a Ni layer on one side, a Ti layer,
Sheet hoops having an e-layer thickness of 0.5 μm, 7 μm, and 4 μm, respectively, were formed. Next, this was mixed with 99.99% Ar
After annealing at 750 ° C. for 1 minute in a continuous gas flow furnace, the resultant was cut into a predetermined shape and bent. At this time, no crack was observed at the bending R portion. The component material thus formed into a predetermined shape was heated in a 99.99% Ar atmosphere at 900 ° C. for 10 minutes and then air-cooled. Thereby, Ti
Surface hardened layer 4 made of an intermetallic compound of Fe and TiFe 2
Was formed at the interface between Fe and Ti, but did not reach the surface.
A component having a soft steel surface as a base material was used, and the hardness of the base material 1 was insufficient.

【0040】[比較例5]焼入硬化型ステンレス鋼(F
e−13.5Cr−1.2Mo−0.4C−0.3Si
−0.3Mn)の基材1の両側の表面に純Niで形成さ
れる中間層6を重ね合わせて設け、中間層6の表面に純
Tiで形成される内側クラッド素材2を重ね合わせて設
けて基材1と内側クラッド素材2の間に中間層6を挟
み、内側クラッド素材2の外側に純Feで形成される外
側クラッド素材3を重ね合わせて設け、これらをクラッ
ド圧延により接合して積層材とした。この積層材を圧延
して全体の厚さ0.2mm、片側のNi層、Ti層、F
e層の厚さがそれぞれ0.5μm、7μm、4μmのシ
ートフープを形成した。次に、これを99.99%Ar
ガスフローの連続炉で750℃、1分間焼鈍してから所
定の形状に切断し、曲げ加工を行った。この際、曲げR
部にクラックは確認されなかった。このようにして所定
の形状に形成した部品材料を99.99%Ar雰囲気中
で1050℃×3秒加熱後、空冷した。これにより、T
iFeとTiFe2 の金属間化合物からなる硬化層がF
eとTiの界面には生成したが、表面には達せず、表面
が軟質の鋼を基材とする部品となり、基材1の硬度も局
所的にしか焼きが入らずに、全体的には不足していた。
[Comparative Example 5] Quench hardening type stainless steel (F
e-13.5Cr-1.2Mo-0.4C-0.3Si
An intermediate layer 6 made of pure Ni is provided on both surfaces of the base material 1 of −0.3 Mn) in an overlapping manner, and an inner clad material 2 made of pure Ti is provided on the surface of the intermediate layer 6 in an overlapping manner. The intermediate layer 6 is sandwiched between the base material 1 and the inner clad material 2, and the outer clad material 3 made of pure Fe is provided on the outer side of the inner clad material 2, and these are joined by clad rolling and laminated. Material. This laminated material is rolled to obtain a total thickness of 0.2 mm, a Ni layer on one side, a Ti layer,
Sheet hoops having an e-layer thickness of 0.5 μm, 7 μm, and 4 μm, respectively, were formed. Next, this was mixed with 99.99% Ar
Annealed at 750 ° C. for 1 minute in a continuous gas flow furnace, cut into a predetermined shape, and bent. At this time, bending R
No crack was found in the part. The component material thus formed into a predetermined shape was heated at 1050 ° C. for 3 seconds in an atmosphere of 99.99% Ar and then air-cooled. This gives T
The hardened layer made of the intermetallic compound of iFe and TiFe 2
Although formed at the interface between e and Ti, it did not reach the surface and became a component having a soft surface as a base material, and the hardness of the base material 1 was hardened only locally. I was short.

【0041】上記実施例1乃至13及び比較例1乃至5
の諸性能を表1に示す。尚、表1の「素材構成」の欄は
積層材の層の構成及び各層の成分を示し、左側から、外
側クラッド素材3/内側クラッド素材2/中間層6/基
材1の順に並べて記載した。また、表1の「部品構成」
の欄は実施例1乃至13及び比較例1乃至5の層の構成
及び各層の成分を示し、左側から、表面硬化層4/密着
層5(これは無い場合がある)/基材1の順に並べて記
載した。
Examples 1 to 13 and Comparative Examples 1 to 5
Are shown in Table 1. In addition, the column of "material composition" in Table 1 shows the composition of the layers of the laminated material and the components of each layer, and is described in the order of outer clad material 3 / inner clad material 2 / intermediate layer 6 / base material 1 from the left. . Also, “Parts configuration” in Table 1
Column shows the composition of layers and components of each layer of Examples 1 to 13 and Comparative Examples 1 to 5, and from the left side, in the order of the surface hardened layer 4 / the adhesion layer 5 (this may not be present) / the substrate 1 They are listed side by side.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から明らかなように、実施例1乃至1
3では、塑性加工の時にクラックが発生せず、表面硬化
層4の厚みが十分に得られ、表面硬化層4と基材1の密
着性が高く、基材1の硬度や表面硬化層の硬度が高くな
った。一方、比較例1では内側クラッド素材2や外側ク
ラッド素材3からなる表面硬化層4が形成されないの
で、表面硬度が低くなり、比較例2ではスパッタリング
で表面硬化層4を形成したので、表面硬化層4の厚みが
薄くなり、基材1と表面硬化層4の密着性が低くなり、
比較例3では外側クラッド素材3を使用しなかったため
に、塑性加工の際にクラックが発生し、比較例4、5で
は塑性加工後の加熱による熱処理が不足したために、基
材1の硬度や表面硬化層4の硬度が低くなった。
As is clear from Table 1, Examples 1 to 1
In No. 3, cracks did not occur during plastic working, the thickness of the surface hardened layer 4 was sufficiently obtained, the adhesion between the surface hardened layer 4 and the substrate 1 was high, and the hardness of the substrate 1 and the hardness of the surface hardened layer were high. Became higher. On the other hand, in Comparative Example 1, since the surface hardened layer 4 composed of the inner clad material 2 and the outer clad material 3 was not formed, the surface hardness was low. In Comparative Example 2, the surface hardened layer 4 was formed by sputtering. 4, the adhesiveness between the substrate 1 and the surface hardened layer 4 is reduced,
In Comparative Example 3, cracks were generated during plastic working because the outer clad material 3 was not used. In Comparative Examples 4 and 5, the heat treatment by heating after plastic working was insufficient, and the hardness and surface of the base material 1 were reduced. The hardness of the hardened layer 4 became low.

【0044】[0044]

【発明の効果】上記のように本発明の請求項1、2、3
に記載の発明は、鋼で形成される基材の表面にTiある
いはTi合金で形成される内側クラッド素材を設けると
共に内側クラッド素材の表面にFeあるいはFe合金、
またはCuあるいはCu合金、またはNiあるいはNi
合金で形成される外側クラッド素材を設け、これらをク
ラッド圧延により密着させ、次に、これを厚さ1mm以
下に圧延すると共にArガスの雰囲気中で焼鈍し、これ
を塑性加工により所定の形状に加工した後、不活性雰囲
気中あるいは還元性雰囲気中で950℃以上に5秒以上
加熱したので、塑性加工後の加熱による熱処理によって
基材を焼入れすることができ、剛性を高めるように改善
することができるものである。また塑性加工後の加熱に
よる熱処理によって、外側クラッド素材と内側クラッド
素材の間で相互に拡散が進み、表面にFeあるいはCu
あるいはNiとTiの金属間化合物、つまりTiFe、
TiFe2 、Ti2 Cu、TiCu、TiNi3 、Ti
2 Niなどの金属間化合物を含む表面硬化層を形成する
ことができ、この表面硬化層によって表面硬度が高くな
って耐磨耗性等を高くすることができるものである。さ
らに塑性加工後の加熱による熱処理によって、基材と内
側クラッド素材の間で相互に拡散が進み、表面硬化層と
基材の間にTiとCの金属間化合物、つまりTiCなど
の金属間化合物を含む密着層を形成することができると
共にTi、Zr、Ta、Nbなどの金属間化合物を含む
密着層を形成することができ、この密着層によって表面
硬化層と基材の密着性を高くすることができると共に表
面硬化層と基材を剥離しにくくすることができるもので
ある。
As described above, the first, second and third aspects of the present invention are described.
The invention described in is to provide an inner clad material formed of Ti or Ti alloy on the surface of the base material formed of steel and Fe or Fe alloy on the surface of the inner clad material,
Or Cu or Cu alloy, or Ni or Ni
An outer clad material made of an alloy is provided, and these are brought into close contact with each other by clad rolling. Then, this is rolled to a thickness of 1 mm or less and annealed in an atmosphere of Ar gas, which is formed into a predetermined shape by plastic working. After processing, the substrate was heated to 950 ° C. or more for 5 seconds or more in an inert atmosphere or a reducing atmosphere, so that the base material can be quenched by heat treatment by heating after plastic working, and the rigidity is improved so as to be improved. Can be done. In addition, due to heat treatment by heating after plastic working, the diffusion between the outer clad material and the inner clad material proceeds mutually, and Fe or Cu
Alternatively, an intermetallic compound of Ni and Ti, that is, TiFe,
TiFe 2 , Ti 2 Cu, TiCu, TiNi 3 , Ti
It is possible to form a surface hardened layer containing the intermetallic compound such as 2 Ni, in which it is possible to increase the abrasion resistance and the like becomes high surface hardness by the surface hardening layer. Further, by heat treatment by heating after plastic working, diffusion between the base material and the inner clad material proceeds mutually, and an intermetallic compound of Ti and C, that is, an intermetallic compound such as TiC is interposed between the surface hardened layer and the base material. And an adhesion layer containing an intermetallic compound such as Ti, Zr, Ta, and Nb can be formed, and the adhesion between the surface hardened layer and the substrate can be enhanced by the adhesion layer. And it is possible to make it difficult for the surface hardened layer and the substrate to peel off.

【0045】また本発明の請求項4に記載の発明は、請
求項1の発明において、基材となる鋼が、10〜15重
量%のCrと2.5重量%以下のMoと0.35〜1.
2重量%のCとを含む焼入硬化型ステンレス鋼、あるい
は0.4〜1.0重量%のCと0.3〜1.0重量%の
Mnとを含むばね鋼、あるいは0.4〜1.2重量%の
Cを含む炭素鋼であり、外側クラッド素材と内側クラッ
ド素材の厚みの比が1:1〜1:4の範囲内であり、焼
鈍温度が700〜800℃であり、所定の形状に加工し
た後の加熱が950〜1150℃で15秒〜10分であ
るので、剛性を高める効果や、耐磨耗性等を高くする効
果や、表面硬化層と基材の密着性を高くする効果や、表
面硬化層と基材を剥離しにくくする効果を確実に得るこ
とができるものである。
According to a fourth aspect of the present invention, in the first aspect of the invention, the steel as a base material comprises 10 to 15% by weight of Cr, 2.5% by weight or less of Mo and 0.35% by weight. ~ 1.
Quench-hardening stainless steel containing 2% by weight of C, or spring steel containing 0.4-1.0% by weight of C and 0.3-1.0% by weight of Mn, or 0.4-1.0% 1.2% by weight of carbon steel, the ratio of the thickness of the outer clad material to the inner clad material is in the range of 1: 1 to 1: 4, the annealing temperature is 700 to 800 ° C, Heating after processing into a shape of 950 to 1150 ° C for 15 seconds to 10 minutes, the effect of increasing the rigidity, the effect of increasing the abrasion resistance, and the adhesion between the surface hardened layer and the substrate The effect of increasing the height and the effect of making the surface hardened layer and the base material difficult to peel off can be reliably obtained.

【0046】また本発明の請求項5に記載の発明は、請
求項2の発明において、基材となる鋼が、10〜15重
量%のCrと2.5重量%以下のMoと0.35〜1.
2重量%のCとを含む焼入硬化型ステンレス鋼、あるい
は0.4〜1.0重量%のCと0.3〜1.0重量%の
Mnとを含むばね鋼、あるいは0.4〜1.2重量%の
Cを含む炭素鋼であり、外側クラッド素材と内側クラッ
ド素材の厚みの比が1:1〜1:5の範囲内であり、焼
鈍温度が700〜800℃であり、所定の形状に加工し
た後の加熱が950〜1050℃で15秒〜10分であ
るので、剛性を高める効果や、耐磨耗性等を高くする効
果や、表面硬化層と基材の密着性を高くする効果や、表
面硬化層と基材を剥離しにくくする効果を確実に得るこ
とができるものである。
According to a fifth aspect of the present invention, in the second aspect, the steel as a base material is composed of 10 to 15% by weight of Cr, 2.5% by weight or less of Mo and 0.35% by weight. ~ 1.
Quench-hardening stainless steel containing 2% by weight of C, or spring steel containing 0.4-1.0% by weight of C and 0.3-1.0% by weight of Mn, or 0.4-1.0% 1.2% by weight of carbon steel, the ratio of the thickness of the outer clad material to the thickness of the inner clad material is in the range of 1: 1 to 1: 5, and the annealing temperature is 700 to 800 ° C. Heating after processing into a shape of 950 to 1050 ° C. for 15 seconds to 10 minutes, the effect of increasing rigidity, the effect of increasing abrasion resistance, and the adhesion between the surface hardened layer and the substrate The effect of increasing the height and the effect of making the surface hardened layer and the base material difficult to peel off can be reliably obtained.

【0047】また本発明の請求項6に記載の発明は、請
求項3の発明において、基材となる鋼が、10〜15重
量%のCrと2.5重量%以下のMoと0.35〜1.
2重量%のCとを含む焼入硬化型ステンレス鋼、あるい
は0.4〜1.0重量%のCと0.3〜1.0重量%の
Mnとを含むばね鋼、あるいは0.4〜1.2重量%の
Cを含む炭素鋼であり、外側クラッド素材と内側クラッ
ド素材の厚みの比が3:2〜1:4の範囲内であり、焼
鈍温度が700〜800℃であり、所定の形状に加工し
た後の加熱が950〜1150℃で15秒〜10分であ
るので、剛性を高める効果や、耐磨耗性等を高くする効
果や、表面硬化層と基材の密着性を高くする効果や、表
面硬化層と基材を剥離しにくくする効果を確実に得るこ
とができるものである。
According to a sixth aspect of the present invention, in the third aspect of the invention, the steel as a base material comprises 10 to 15% by weight of Cr, 2.5% by weight or less of Mo and 0.35% by weight. ~ 1.
Quench-hardening stainless steel containing 2% by weight of C, or spring steel containing 0.4-1.0% by weight of C and 0.3-1.0% by weight of Mn, or 0.4-1.0% A carbon steel containing 1.2% by weight of C, a thickness ratio of the outer clad material to the inner clad material being in the range of 3: 2 to 1: 4, an annealing temperature of 700 to 800 ° C, and a predetermined Heating after processing into a shape of 950 to 1150 ° C for 15 seconds to 10 minutes, the effect of increasing the rigidity, the effect of increasing the abrasion resistance, and the adhesion between the surface hardened layer and the substrate The effect of increasing the height and the effect of making the surface hardened layer and the base material difficult to peel off can be reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す一部の断面図
である。
FIG. 1 is a partial cross-sectional view illustrating an example of an embodiment of the present invention.

【図2】同上の積層材を示す一部の断面図である。FIG. 2 is a partial cross-sectional view showing the laminated material according to the first embodiment.

【図3】同上の他の実施の形態の一例を示す一部の断面
図である。
FIG. 3 is a partial cross-sectional view showing an example of another embodiment of the above.

【図4】同上の他の積層材を示す一部の断面図である。FIG. 4 is a partial cross-sectional view showing another laminated material according to the first embodiment.

【符号の説明】[Explanation of symbols]

1 基材 2 内側クラッド素材 3 外側クラッド素材 1 Base material 2 Inner clad material 3 Outer clad material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋼で形成される基材の表面にTiあるい
はTi合金で形成される内側クラッド素材を設けると共
に内側クラッド素材の表面にFeあるいはFe合金で形
成される外側クラッド素材を設け、これらをクラッド圧
延により密着させ、次に、これを厚さ1mm以下に圧延
すると共にArガスの雰囲気中で焼鈍し、これを塑性加
工により所定の形状に加工した後、不活性雰囲気中ある
いは還元性雰囲気中で950℃以上に5秒以上加熱する
ことを特徴とする表面硬化部品の製造方法。
An inner clad material formed of Ti or a Ti alloy is provided on a surface of a base material formed of steel, and an outer clad material formed of Fe or an Fe alloy is provided on a surface of the inner clad material. Then, it is rolled to a thickness of 1 mm or less, annealed in an atmosphere of Ar gas, processed into a predetermined shape by plastic working, and then placed in an inert atmosphere or a reducing atmosphere. A method for producing a surface-hardened component, wherein the component is heated to 950 ° C. or more for 5 seconds or more.
【請求項2】 鋼で形成される基材の表面にTiあるい
はTi合金で形成される内側クラッド素材を設けると共
に内側クラッド素材の表面にCuあるいはCu合金で形
成される外側クラッド素材を設け、これらをクラッド圧
延により密着させ、次に、これを厚さ1mm以下に圧延
すると共にArガスの雰囲気中で焼鈍し、これを塑性加
工により所定の形状に加工した後、不活性雰囲気中ある
いは還元性雰囲気中で950℃以上に5秒以上加熱する
ことを特徴とする表面硬化部品の製造方法。
2. An inner clad material made of Ti or Ti alloy is provided on a surface of a base material made of steel, and an outer clad material made of Cu or Cu alloy is provided on a surface of the inner clad material. Then, it is rolled to a thickness of 1 mm or less, annealed in an atmosphere of Ar gas, processed into a predetermined shape by plastic working, and then placed in an inert atmosphere or a reducing atmosphere. A method for producing a surface-hardened component, wherein the component is heated to 950 ° C. or more for 5 seconds or more.
【請求項3】 鋼で形成される基材の表面にTiあるい
はTi合金で形成される内側クラッド素材を設けると共
に内側クラッド素材の表面にNiあるいはNi合金で形
成される外側クラッド素材を設け、これらをクラッド圧
延により密着させ、次に、これを厚さ1mm以下に圧延
すると共にArガスの雰囲気中で焼鈍し、これを塑性加
工により所定の形状に加工した後、不活性雰囲気中ある
いは還元性雰囲気中で950℃以上に5秒以上加熱する
ことを特徴とする表面硬化部品の製造方法。
3. An inner clad material made of Ti or a Ti alloy is provided on a surface of a base material made of steel, and an outer clad material made of Ni or a Ni alloy is provided on a surface of the inner clad material. Then, it is rolled to a thickness of 1 mm or less, annealed in an atmosphere of Ar gas, processed into a predetermined shape by plastic working, and then placed in an inert atmosphere or a reducing atmosphere. A method for producing a surface-hardened component, wherein the component is heated to 950 ° C. or more for 5 seconds or more.
【請求項4】 基材となる鋼が、10〜15重量%のC
rと2.5重量%以下のMoと0.35〜1.2重量%
のCとを含む焼入硬化型ステンレス鋼、あるいは0.4
〜1.0重量%のCと0.3〜1.0重量%のMnとを
含むばね鋼、あるいは0.4〜1.2重量%のCを含む
炭素鋼であり、外側クラッド素材と内側クラッド素材の
厚みの比が1:1〜1:4の範囲内であり、焼鈍温度が
700〜800℃であり、所定の形状に加工した後の加
熱が950〜1150℃で15秒〜10分であることを
特徴とする請求項1に記載の表面硬化部品の製造方法。
4. The steel as a base material has a carbon content of 10 to 15% by weight.
r and up to 2.5% by weight of Mo and 0.35 to 1.2% by weight
Hardened stainless steel containing C and 0.4 or 0.4
A spring steel containing 1.0% by weight of C and 0.3% to 1.0% by weight of Mn, or a carbon steel containing 0.4% to 1.2% by weight of C; The thickness ratio of the clad material is in the range of 1: 1 to 1: 4, the annealing temperature is 700 to 800 ° C, and the heating after processing into a predetermined shape is 950 to 1150 ° C for 15 seconds to 10 minutes. The method for producing a surface-hardened component according to claim 1, wherein:
【請求項5】 基材となる鋼が、10〜15重量%のC
rと2.5重量%以下のMoと0.35〜1.2重量%
のCとを含む焼入硬化型ステンレス鋼、あるいは0.4
〜1.0重量%のCと0.3〜1.0重量%のMnとを
含むばね鋼、あるいは0.4〜1.2重量%のCを含む
炭素鋼であり、外側クラッド素材と内側クラッド素材の
厚みの比が1:1〜1:5の範囲内であり、焼鈍温度が
700〜800℃であり、所定の形状に加工した後の加
熱が950〜1050℃で15秒〜10分であることを
特徴とする請求項2に記載の表面硬化部品の製造方法。
5. The steel as a base material has a C content of 10 to 15% by weight.
r and up to 2.5% by weight of Mo and 0.35 to 1.2% by weight
Hardened stainless steel containing C and 0.4 or 0.4
A spring steel containing 1.0% by weight of C and 0.3% to 1.0% by weight of Mn, or a carbon steel containing 0.4% to 1.2% by weight of C; The thickness ratio of the clad material is in the range of 1: 1 to 1: 5, the annealing temperature is 700 to 800 ° C, and the heating after processing into a predetermined shape is 950 to 1050 ° C for 15 seconds to 10 minutes. The method for producing a surface-hardened component according to claim 2, wherein:
【請求項6】 基材となる鋼が、10〜15重量%のC
rと2.5重量%以下のMoと0.35〜1.2重量%
のCとを含む焼入硬化型ステンレス鋼、あるいは0.4
〜1.0重量%のCと0.3〜1.0重量%のMnとを
含むばね鋼、あるいは0.4〜1.2重量%のCを含む
炭素鋼であり、外側クラッド素材と内側クラッド素材の
厚みの比が3:2〜1:4の範囲内であり、焼鈍温度が
700〜800℃であり、所定の形状に加工した後の加
熱が950〜1150℃で15秒〜10分であることを
特徴とする請求項3に記載の表面硬化部品の製造方法。
6. The steel as a base material contains 10 to 15% by weight of C.
r and up to 2.5% by weight of Mo and 0.35 to 1.2% by weight
Hardened stainless steel containing C and 0.4 or 0.4
A spring steel containing 1.0% by weight of C and 0.3% to 1.0% by weight of Mn, or a carbon steel containing 0.4% to 1.2% by weight of C; The thickness ratio of the clad material is in the range of 3: 2 to 1: 4, the annealing temperature is 700 to 800 ° C, and the heating after processing into a predetermined shape is 950 to 1150 ° C for 15 seconds to 10 minutes. The method for manufacturing a surface-hardened component according to claim 3, wherein
JP04157498A 1998-02-24 1998-02-24 Manufacturing method of surface hardened parts Expired - Fee Related JP3551749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04157498A JP3551749B2 (en) 1998-02-24 1998-02-24 Manufacturing method of surface hardened parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04157498A JP3551749B2 (en) 1998-02-24 1998-02-24 Manufacturing method of surface hardened parts

Publications (2)

Publication Number Publication Date
JPH11236661A true JPH11236661A (en) 1999-08-31
JP3551749B2 JP3551749B2 (en) 2004-08-11

Family

ID=12612224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04157498A Expired - Fee Related JP3551749B2 (en) 1998-02-24 1998-02-24 Manufacturing method of surface hardened parts

Country Status (1)

Country Link
JP (1) JP3551749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059319A (en) * 2000-08-22 2002-02-26 Marusho Kogyo Kk Method of manufacturing blade body, blade body, and cutting tool
CN1297366C (en) * 2004-08-11 2007-01-31 高文辉 Flux powder high-speed steel cutting edge welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059319A (en) * 2000-08-22 2002-02-26 Marusho Kogyo Kk Method of manufacturing blade body, blade body, and cutting tool
CN1297366C (en) * 2004-08-11 2007-01-31 高文辉 Flux powder high-speed steel cutting edge welding method

Also Published As

Publication number Publication date
JP3551749B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP5390104B2 (en) Method for coating steel strip and steel strip with said coating
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
US6194088B1 (en) Stainless steel coated with intermetallic compound and process for producing the same
JP6515359B2 (en) Titanium composite material and titanium material for hot rolling
TWI627285B (en) Titanium composite and titanium for hot rolling
JPS59182952A (en) Case hardening steel
JP3551749B2 (en) Manufacturing method of surface hardened parts
JP6787428B2 (en) Titanium material for hot rolling
JPH0726192B2 (en) Manufacturing method of high Al content stainless steel plate
JP3017237B2 (en) Method for producing Fe-Si-Al alloy soft magnetic thin plate
JP2555821B2 (en) Method for producing hot dip galvanized steel sheet
JPH09104962A (en) Ferrous alloy member having iron-aluminum diffused layer and its production
TWI626093B (en) Titanium composite and titanium for hot rolling
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
JP6086178B1 (en) Titanium material for hot rolling
JPH0353077B2 (en)
JPH03199343A (en) Cold rolled steel sheet for press working having extremely good chemical conversion treatability, weldability, punchability and slidability
JP2681395B2 (en) Manufacturing method of composite type damping steel sheet
JP6848991B2 (en) Titanium material for hot rolling
WO2020255563A1 (en) Aluminum-based plated stainless steel sheet, and method for manufacturing ferritic stainless steel sheet
JP2818675B2 (en) Manufacturing method of surface-conditioned cold-rolled steel sheet
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JPH0480746B2 (en)
KR20100064503A (en) Manufacturing method of high manganese hot-dip galvanized steel sheet having excellent coatability
JPS63203288A (en) Ti clad steel and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Effective date: 20040308

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Effective date: 20040419

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090514

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514

LAPS Cancellation because of no payment of annual fees