JPH1123443A - Method and equipment for measuring density of liquid in tank - Google Patents

Method and equipment for measuring density of liquid in tank

Info

Publication number
JPH1123443A
JPH1123443A JP19649297A JP19649297A JPH1123443A JP H1123443 A JPH1123443 A JP H1123443A JP 19649297 A JP19649297 A JP 19649297A JP 19649297 A JP19649297 A JP 19649297A JP H1123443 A JPH1123443 A JP H1123443A
Authority
JP
Japan
Prior art keywords
liquid
pressure
float
tank
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19649297A
Other languages
Japanese (ja)
Other versions
JP3176323B2 (en
Inventor
Tokio Sugi
時夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP19649297A priority Critical patent/JP3176323B2/en
Publication of JPH1123443A publication Critical patent/JPH1123443A/en
Application granted granted Critical
Publication of JP3176323B2 publication Critical patent/JP3176323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an equipment for measuring the density of a liquid in a tank at a low facility cost in which the density can be measured at high accuracy regardless of the liquid level with no problem even for a tank in a vessel (principally, tanker) where no apparatus can be mounted on the side wall of the tank. SOLUTION: A differential pressure detector A having pressure receiving/ acting parts 2a, 2b on two sides is provided in a measured liquid such that the pressure of the liquid acts on one pressure receiving/acting part 2a while the total buoyance being applied to a float 10 provided in the liquid acts on the other pressure receiving/acting part 2b along with the pressure of the liquid. Pressures acting on both pressure receiving/acting parts are outputted as electric signals and a bouyance action on the float is determined from the difference between both signals. Density of the liquid in the tank is measured by dividing the buoyance by the volume of the float.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタンク内の液体の密
度を測定する装置に関する。
The present invention relates to an apparatus for measuring the density of a liquid in a tank.

【0002】[0002]

【従来の技術とその問題点】タンク内に貯蔵されている
液の量的な管理においては、貯蔵液の総質量が最も重要
な数量であるが、とくに大型タンクでは液の総質量を直
接測定することが困難なため、液の体積と密度を別々に
求め、両者の積を質量とする方法が一般的である。
2. Description of the Related Art In the quantitative management of liquid stored in a tank, the total weight of the stored liquid is the most important quantity, but especially in a large tank, the total weight of the liquid is directly measured. Since it is difficult to perform the measurement, it is common to separately determine the volume and density of the liquid and use the product of the two as the mass.

【0003】通常、液の体積はレベル計による液位の計
測値を用い、あらかじめ測量された液位と液の体積の関
係から求めるが、液の密度は測定装置が複雑で、設置に
費用がかかること、また高い精度を得ることが技術的に
難しい等の理由により実測されることは少なく、液の温
度を測定し、別途あらかじめ測定された同種の液の温度
と密度の相関デ−タを用いて密度を推定することが多
い。しかしこの方法は相関デ−タが既知の液には適用で
きるが、未知の場合には適用できない。
[0003] Usually, the volume of a liquid is obtained from the relationship between the liquid level and the volume of the liquid measured in advance using the measured value of the liquid level by a level meter. This is rarely measured due to reasons such as technical difficulty in obtaining high accuracy, and the temperature of the liquid is measured, and the correlation data between the temperature and the density of the same liquid separately measured in advance is obtained. It is often used to estimate density. However, this method can be applied to a liquid whose correlation data is known, but cannot be applied to a liquid whose correlation data is unknown.

【0004】現在実用に供せられているタンク内液の密
度を実測する方法には次ぎの方法がある。図7(a) 、
(b) のように、タンク底に差圧計を設け、タンク底とタ
ンク上部のガス相の差圧を測定し、これを別にレベル計
によって測定した液位値で除して密度を算出する方法。
[0004] There are the following methods for actually measuring the density of a liquid in a tank which are currently put into practical use. FIG. 7 (a),
As shown in (b), a differential pressure gauge is provided at the tank bottom, the differential pressure between the gas phase at the tank bottom and the gas phase at the top of the tank is measured, and this is divided by the liquid level value separately measured by the level meter to calculate the density. .

【0005】図8のように、タンク底とタンクの中間の
高さにそれぞれ圧力計を設け、タンク底の圧力とタンク
中間高さの圧力の差を求め、これを2個の圧力計の感圧
部の垂直距離で除して密度を算出する方法。
As shown in FIG. 8, a pressure gauge is provided at a height between the tank bottom and the tank, and a difference between the pressure at the tank bottom and the pressure at the intermediate height of the tank is obtained. A method of calculating the density by dividing by the vertical distance of the pressure part.

【0006】図9のように、タンクの側壁に液を抽出す
る戻し管を設け、ポンプによりタンク内液のサンプルを
タンクの外部の密度測定装置に導き、密度を求める方
法。
As shown in FIG. 9, a method is provided in which a return pipe for extracting a liquid is provided on a side wall of a tank, and a sample of the liquid in the tank is guided to a density measuring device outside the tank by a pump to determine the density.

【0007】しかし、これらの在来の方法にはそれぞれ
次ぎのような問題点がある。図7(a) 、(b) の方法の問
題点 (a) 差圧計は最高液位における差圧が測定できる測定範
囲の広いものを用いる必要があり、液位が低い時には精
度が低下する。 (b) 船舶(タンカ−)のタンク等、差圧計をタンク側壁
に取り付けることができないタンクの場合、図7(b) の
ような設置方法となるが、ガス層の圧力を導く導圧管内
で結露したガスが液体となって差圧計のガス圧受圧部に
溜ると液圧により測定誤差が生じ、ドレインバルブが設
置できないために復旧が困難となる。 (c) 密度の演算に用いるレベルデ−タの精度が低いと、
密度の測定精度も低くなる。
However, each of these conventional methods has the following problems. Problems of the methods of FIGS. 7A and 7B (a) It is necessary to use a differential pressure gauge having a wide measuring range capable of measuring the differential pressure at the highest liquid level, and the accuracy is reduced when the liquid level is low. (b) In the case of a tank, such as a tank of a ship (tanker), in which a differential pressure gauge cannot be attached to the tank side wall, the installation method is as shown in Fig. 7 (b). If the condensed gas turns into a liquid and accumulates in the gas pressure receiving portion of the differential pressure gauge, a measurement error occurs due to the liquid pressure, and it is difficult to recover because the drain valve cannot be installed. (c) If the accuracy of the level data used for calculating the density is low,
Density measurement accuracy is also reduced.

【0008】図8の方法の問題点 (a) タンクの中間の高さの圧力計が液に没しないと密度
の計測ができない。また、図7(a) 、(b) と同様、液位
が低い時には測定精度が低下する。 (b) 圧力計が2個必要なためコストが高い。 図9の方法の問題点 (a) 戻し管やポンプ等の付帯設備が必要になり、コスト
高になる。 (b) 船舶(タンカ−)のタンク等、タンク側壁に戻し管
を取り付けることができないタンクの場合、タンク頂部
から戻し管をタンク内に配設することになり、設備コス
トがさらに高くなる。
Problems with the method of FIG. 8 (a) The density cannot be measured unless the pressure gauge at the middle height of the tank is immersed in the liquid. Also, as in FIGS. 7A and 7B, when the liquid level is low, the measurement accuracy decreases. (b) The cost is high because two pressure gauges are required. Problems of the method of FIG. 9 (a) Ancillary equipment such as a return pipe and a pump is required, which increases the cost. (b) In the case of a tank such as a tank of a ship (tanker), in which a return pipe cannot be attached to the tank side wall, the return pipe is disposed in the tank from the top of the tank, which further increases the equipment cost.

【0009】[0009]

【発明の目的】本発明の目的は、液位の高低にかかわら
ず高精度の密度計測ができ、また、船舶(主としてタン
カ−)のタンク等、タンク側壁に機器が設置できないタ
ンクにおいて問題なく使用でき、かつ設備コストを安く
できるタンク内液の密度測定方法及びその装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-precision density measurement regardless of the level of a liquid level, and to be used without problems in a tank such as a tank of a ship (mainly a tanker) in which equipment cannot be installed on a tank side wall. An object of the present invention is to provide a method and an apparatus for measuring the density of a liquid in a tank which can be performed at a low cost.

【0010】[0010]

【手段】上記目的を達成するために、本発明の方法は、
受圧作動部を2面備える差圧検出器を測定液中に設け
て、一方の受圧作動部には測定液の液圧が、他方の受圧
作動部には測定液の液圧と測定液中に設けたフロートに
掛かる全浮力が作用するようにし、両受圧作動部に作用
する圧力を電気信号として出力せしめ、かつ両信号の差
を求めることによりフロートに作用する浮力を求め、こ
の浮力をフロートの体積で除することによりタンク内液
の密度を測定するようにした。
To achieve the above object, the method of the present invention comprises:
A differential pressure detector having two pressure receiving operation parts is provided in the measurement liquid, one of the pressure reception operation parts receives the liquid pressure of the measurement liquid, and the other receives the pressure of the measurement liquid and the measurement liquid. The buoyancy acting on the float is determined by allowing the total buoyancy acting on the float to act, outputting the pressure acting on both pressure receiving operation parts as an electric signal, and determining the difference between the two signals to determine the buoyancy acting on the float. The density of the liquid in the tank was measured by dividing by the volume.

【0011】また、本発明のタンク内液の密度測定装置
は、受圧作動部を2面備えるハウジング内にセンサデバ
イスが設けられ、各受圧作動部に作用する圧力を電気信
号として出力する差圧検出器を測定液中に設置し、差圧
検出器の一方の受圧作動部には測定液の液圧が作用する
ようにし、他方の受圧作動部には測定液の液圧と測定液
中に設けたフロートの浮力が作用するようにして、両受
圧作動部に作用する圧力が電気信号として出力されるよ
うにし、前記両圧力の電気信号を演算器にて演算して密
度が求められるようにしたものとしてある。
Further, in the apparatus for measuring the density of a liquid in a tank according to the present invention, a sensor device is provided in a housing provided with two pressure receiving operation portions, and a differential pressure detection for outputting pressure acting on each pressure receiving operation portion as an electric signal. The differential pressure detector is installed in the measuring liquid so that the liquid pressure of the measuring liquid acts on one of the pressure receiving operating parts of the differential pressure detector, and the other pressure receiving operating part is provided with the liquid pressure of the measuring liquid and the measuring liquid. The buoyancy of the float is applied, so that the pressure acting on both pressure receiving operation sections is output as an electric signal, and the electric signal of both pressures is calculated by an arithmetic unit to obtain the density. There are things.

【0012】[0012]

【実施例】図1は本発明に使用する差圧検出器を示す。
この差圧検出器Aはハウジング1の相対する開口部(上
下の開口部)がそれぞれ受圧作動部たるダイヤフラム2
a,2bにより塞がれており、ハウジング内に2つのダ
イヤフラム2a,2bに作用する力を電気信号に変換す
るセンサデバイスを備える。センサデバイスはセンサボ
ックス3の一内壁に設けた片持ビーム4の両面(上下
面)にストレインゲージ5a,5bを貼り付けたものと
してあり、各ストレインゲージには信号線6a,6bを
接続してあり、これらの信号線は1本の被覆電線6とし
てハウジング外に引き出されている。
FIG. 1 shows a differential pressure detector used in the present invention.
The differential pressure detector A has a diaphragm 2 whose opposing openings (upper and lower openings) of the housing 1 are pressure receiving operating portions.
a, a sensor device for converting a force acting on the two diaphragms 2a, 2b into an electric signal in the housing. The sensor device has a structure in which strain gauges 5a and 5b are attached to both surfaces (upper and lower surfaces) of a cantilever beam 4 provided on one inner wall of the sensor box 3, and signal lines 6a and 6b are connected to each strain gauge. In addition, these signal lines are led out of the housing as one covered electric wire 6.

【0013】また、各ダイヤフラム2a,2bの内面に
はロッドよりなるアクチエータ7a,7bの一端が取り
付けられていて、各アクチエータの他端(先端)が前記
ビームの両面に接触しており、各アクチエータの押圧力
によるビームの各面の歪み量をストレインゲージ5a,
5bが電気信号として出力する。なお、センサボックス
3は2枚の仕切板8a,8bによって保持されてハウジ
ング内に取り付けられており、アクチエータは仕切板、
センサボックスの各孔を通っている。図1はストレイン
ゲ−ジ式の例であるが、センサの原理、構造は静電容量
式、光センサ式、磁気センサ式、差動トランス式など種
々のものが適用できる。
One end of each of actuators 7a and 7b made of a rod is attached to the inner surface of each of the diaphragms 2a and 2b, and the other end (tip) of each actuator is in contact with both surfaces of the beam. The strain amount of each surface of the beam due to the pressing force of
5b outputs as an electric signal. The sensor box 3 is held by two partition plates 8a and 8b and mounted in the housing, and the actuator is a partition plate,
It passes through each hole in the sensor box. FIG. 1 shows an example of a strain gauge type, but various types of sensors such as a capacitance type, an optical sensor type, a magnetic sensor type, and a differential transformer type can be applied to the principle and structure of the sensor.

【0014】センサに供給する電力、センサからの出力
信号の伝送は、図2のように、一端が差圧検出器Aのハ
ウジングに気密に接続され、他端がタンク天板を貫通し
てタンク外に導出された垂直電線管9を設け、その内部
に配線された電線6によって行なう。また、ストレイン
ゲージからの信号は図示省略の演算器に入力し、ここで
後述の(4) 式または図(5) 式の演算が行われて密度とし
て表示される。
As shown in FIG. 2, the power supplied to the sensor and the transmission of the output signal from the sensor are air-tightly connected at one end to the housing of the differential pressure detector A, and at the other end through the tank top plate. A vertical conduit 9 led out is provided, and the electric wire 6 is routed inside the conduit. Also, the signal from the strain gauge is input to a calculator (not shown), where the calculation of the expression (4) or the expression of FIG.

【0015】差圧検出器Aの近傍に、見かけ比重(重量
を体積で除した値)がタンク内の被測定液より小さいフ
ロ−ト10と、フロ−トの浮力の伝達機構を設け、上記
の差圧検出器の一方のダイヤフラムにフロ−トの浮力を
作用させる。
In the vicinity of the differential pressure detector A, a float 10 whose apparent specific gravity (value obtained by dividing weight by volume) is smaller than the liquid to be measured in the tank, and a mechanism for transmitting the float buoyancy are provided. The float buoyancy acts on one of the diaphragms of the differential pressure detector.

【0016】図3、図5はフロ−トと浮力の伝達機構の
具体的な例である。図3は垂直なガイド棒11にフロー
トの耳部12の縦孔(図示略)が嵌ってフロ−ト10は
水平方向の移動が防止され、フロ−トの浮力を突部10
aにて直接一方の(下部の)ダイヤフラム2bに加える
方式である。しかして同図中の符号13はガイド棒取付
ホルダ枠で、センサボックス3に接続した電線管9aの
接続用フランジ14aに取り付けてある。なお、電線管
9aのフランジ14aは、垂直電線管9の分岐管9aの
フランジ14bに接続してある。
FIGS. 3 and 5 show specific examples of the mechanism for transmitting the float and buoyancy. FIG. 3 shows that the vertical hole (not shown) of the ear 12 of the float is fitted in the vertical guide rod 11 so that the float 10 is prevented from moving in the horizontal direction and the buoyancy of the float is reduced by the protrusion 10.
This is a method of directly adding one (lower) diaphragm 2b at (a). Reference numeral 13 in the figure denotes a guide rod mounting holder frame which is mounted on the connection flange 14a of the conduit tube 9a connected to the sensor box 3. The flange 14a of the conduit 9a is connected to the flange 14b of the branch pipe 9a of the vertical conduit 9.

【0017】図5はリンク機構によってフロ−トの浮力
を一方のダイヤフラムに伝達する方式である。例えば、
センサボックスの電線管9aのフランジ14aに設けた
軸受15に、水平部16aの端部にフロート10を有す
る逆さL形のリンク16の曲部を水平回転軸17にて回
転自在に取り付け、垂直部16bの端部に設けた突部1
8がフロートの上昇により一方のアクチエータ7bへダ
イヤフラム2bを介して作用するようにしてある。な
お、図中の符号19はフロート10の下限位置を規制す
るストッパを示している。
FIG. 5 shows a method of transmitting the buoyancy of the float to one of the diaphragms by a link mechanism. For example,
A curved portion of an inverted L-shaped link 16 having a float 10 at an end of a horizontal portion 16a is rotatably attached to a bearing 15 provided on a flange 14a of a conduit tube 9a of the sensor box by a horizontal rotating shaft 17, and a vertical portion is provided. Projection 1 provided at the end of 16b
8 acts on one actuator 7b via the diaphragm 2b when the float rises. Reference numeral 19 in the drawing indicates a stopper that regulates the lower limit position of the float 10.

【0018】図3の方式はフロ−ト10に作用する機械
的な摩擦力が小さく、測定精度が高いが、構造はやや複
雑になる。逆に図5の方法は構造は簡単になるが、リン
ク16の水平回転軸17に働く摩擦トルクがフロ−トの
浮力に比例して大きくなり、精度の点では図3の方法よ
り不利となり、いずれの方式においても一長一短があ
る。
In the method shown in FIG. 3, the mechanical friction acting on the float 10 is small and the measurement accuracy is high, but the structure is slightly complicated. Conversely, the method of FIG. 5 has a simple structure, but the friction torque acting on the horizontal rotating shaft 17 of the link 16 increases in proportion to the buoyancy of the float, and is less advantageous than the method of FIG. Each system has advantages and disadvantages.

【0019】次ぎに図3の方式による密度測定の原理を
説明する。図3の方法で差圧検出器Aに作用する力は液
の圧力、ガス相の圧力およびフロ−トからの力であるか
ら、図4のようになる。同図で、 F;フロ−トの浮力 S;ダイヤフラムの実効面積 Wf;フロ−トの重量 PG ;ガス相の圧力 ρ;液の密度 Δh;2つのダイヤフラムの間隔 hA ;上側ダイヤフラムからの液位 である。
Next, the principle of density measurement by the method shown in FIG. 3 will be described. Since the forces acting on the differential pressure detector A in the method of FIG. 3 are the pressure of the liquid, the pressure of the gas phase, and the force from the float, they are as shown in FIG. In the same figure, F: buoyancy of the float S; effective area of the diaphragm Wf; weight of the float P G ; pressure of the gas phase ρ; density of the liquid Δh; interval between two diaphragms h A : from the upper diaphragm The liquid level.

【0020】差圧検出器の出力をEO とすると、EO
上下のダイヤフラムの働く力の差に比例する。フロ−ト
がないときには、 下側ダイヤフラムに働く力は f1 =S{ρ(hA +Δ
h)+PG } 上側ダイヤフラムに働く力は f2 =S(ρ・hA +P
G ) であるから EO =k(f1 −f2 )=k・ρ・S・Δh・・・・・・・・・・(1) で表わされる。ここでkはセンサの感度を表す定数であ
る。
Assuming that the output of the differential pressure detector is E O , E O is proportional to the difference between the forces acting on the upper and lower diaphragms. When there is no float, the force acting on the lower diaphragm is f 1 = S {ρ (h A + Δ
h) + P G力 The force acting on the upper diaphragm is f 2 = S (ρ · h A + P
G ), E O = k (f 1 −f 2 ) = k · ρ · S · Δh (1) Here, k is a constant representing the sensitivity of the sensor.

【0021】フロ−トがあるときには、下側ダイヤフラ
ムにはフロ−トによる力が付加される。フロ−トによっ
て下側ダイヤフラムに作用する上向きの力はF−Wf
あるから、フロ−トがあるときには(f1 −f2 )はF
−Wf だけ増加し、出力EO は EO =k(ρ・s・Δh+F−Wf )・・・・・・・(2) で与えられる。
When there is a float, a force by the float is applied to the lower diaphragm. Flow - Since the upward force acting on the lower diaphragm by preparative an F-W f, flow - when there is bets (f 1 -f 2) is F
Increased by -W f, the output E O is given by E O = k (ρ · s · Δh + F-W f) ······· (2).

【0022】一方フロ−トの浮力Fは F=ρ・V・・・・・・・・・・・・・・・・・・・(3) ここで V;フロ−トの体積であるから、(3)式を
(2)式に代入して整頓すると ρ=1/(V+S・Δh)・(EO /k+Wf )・・・・・(4) となる。V,S,Δh,Wf は既知であり、kはセンサ
の感度を表す定数であって、センサごとにあらかじめ求
めることができるから、(4)式により差圧検出器の出
力Eo から液の密度ρを知ることができる。
On the other hand, the buoyancy F of the float is as follows: F = ρ · V (3) where V is the volume of the float. , (3) is substituted into the expression (2), and the data is arranged as follows: ρ = 1 / (V + SΔh) · (E O / k + W f ) (4) V, S, Delta] h, W f is known, k is a constant representing the sensitivity of the sensor, because it is pre-determined that for each sensor, (4) the liquid from the output E o of the differential pressure detector by formula Can be known.

【0023】フロ−トの体積VがS・Δhにくらべて大
きい場合、(4)式は近似的に ρ−Wf/V=EO /Vk・・・・・・・・・・・・・(5) で表される。Wf/Vはフロ−トの見かけの比重または
密度を意味する。なお(4)式の計算は検出器の出力E
O をディジタル量に変換した後、マイクロプロセッサよ
りなる演算器で行えば技術的困難はない。
If the volume V of the float is larger than S · Δh, equation (4) is approximately calculated as follows: ρ−Wf / V = E O / Vk (5) is represented by Wf / V means the apparent specific gravity or density of the float. The calculation of the equation (4) is based on the output E of the detector.
After converting O into a digital quantity, there is no technical difficulty if it is performed by an arithmetic unit composed of a microprocessor.

【0024】以上は図3の方式についての説明である
が、図5の方式においても実質的作用効果は同じであ
る。図5の方式の場合は、ダイヤフラム面を液面に垂直
にし、かつ2つのダイヤフラムの高さが等しくなるよう
に検出器を設置すれば、(1)式のΔhは0となるか
ら、密度ρは検出器の出力Eから次式によって求められ
る。 ρ−ρO =(ρmax −ρO )・E/Emax ・・・・・・・・(6) ここで、 ρO :レバ−によってダイヤフラムに加えられる力がち
ょうど0になる液の密度 ρmax :測定可能な液の密度の最大値 Emax :液密度ρmax における出力 であり、密度ρmax の液を用いて換算を行い、あらかじ
めEmax を求めておけばよい。
The above is a description of the system shown in FIG. 3, but the same effect is obtained in the system shown in FIG. In the case of the method shown in FIG. 5, if the diaphragm surface is perpendicular to the liquid surface and the detectors are installed so that the heights of the two diaphragms are equal, Δh in equation (1) becomes 0, and the density ρ Is obtained from the output E of the detector by the following equation. ρ−ρ O = (ρ max −ρ O ) · E / E max (6) where ρ O is the density of the liquid at which the force applied to the diaphragm by the lever is exactly zero. ρ max : maximum value of measurable liquid density E max : output at liquid density ρ max , conversion using a liquid of density ρ max is performed, and E max may be obtained in advance.

【0025】[0025]

【発明の効果】本発明は在来の方法にくらべて次ぎのよ
うな特徴を備えている。 (1) フロ−ト及び差圧検出器が液に没すれば計測が可能
であり、これらをタンク底付近に設置すれば、タンクの
液位の如何によらず密度の計測ができ、計測精度は液位
の影響を受けない。また、図6のようにタンク内の異な
る高さに本発明の密度測定装置を複数個設置すれば、密
度が均一でない液の密度分布を知ることも可能である。
The present invention has the following features as compared with the conventional method. (1) Measurement is possible if the float and differential pressure detector are immersed in the liquid, and if these are installed near the tank bottom, the density can be measured regardless of the liquid level in the tank and the measurement accuracy Is not affected by the liquid level. Further, if a plurality of density measuring devices of the present invention are installed at different heights in the tank as shown in FIG. 6, it is possible to know the density distribution of the liquid having non-uniform density.

【0026】(2) 本発明の場合、上記(5)式からわか
るように、差圧検出器の出力EO は液の密度とフロ−ト
の見かけ密度の差に比例する。したがって、フロ−トの
見かけ密度が密度測定範囲の下限となるようにフロ−ト
を製作すれば、差圧検出器は下限値からの増加分を検出
することになり、容易に高精度が得られる。いま密度の
測定範囲が0.7〜1.2g/cmであるとすると、
本装置のフロ−トの見かけ密度を0.7g/cmとな
るように製作すれば、差圧検出器は液の密度の0.7g
/cmからの増加分だけを測定すればよいから、測定
範囲の狭い、高分解能のセンサが使用できることにな
る。
(2) In the case of the present invention, as can be seen from the above equation (5), the output E O of the differential pressure detector is proportional to the difference between the density of the liquid and the apparent density of the float. Therefore, if the float is manufactured so that the apparent density of the float is at the lower limit of the density measurement range, the differential pressure detector will detect the increase from the lower limit and easily obtain high accuracy. Can be Assuming now that the measurement range of the density is 0.7 to 1.2 g / cm 3 ,
If the float of this apparatus is manufactured to have an apparent density of 0.7 g / cm 3 , the differential pressure detector will have a liquid density of 0.7 g / cm 3.
Since only the increment from / cm 3 needs to be measured, a high-resolution sensor with a narrow measurement range can be used.

【0027】これに対して図7(a)、(b) に示される従来
の方法では、差圧計の測定範囲は0から最大液位におけ
る液圧であり、きわめて測定範囲が広く、液位が低いと
きには測定される液の圧力が測定可能な最大圧力にくら
べてはるかに小さいため高精度を得ることが困難とな
る。また、在来の図8の方法も図7(a)、(b) と同様に圧
力計の測定範囲は液位0から最大液位までの液圧であ
り、測定範囲が広いためにとくに液位が低いときの精度
が問題になる。なお、本発明でのフロ−トの見かけ密度
の調節は、フロ−ト内に重錘を付加することで容易に、
かつ正確に行うことができる。
On the other hand, in the conventional method shown in FIGS. 7 (a) and 7 (b), the measuring range of the differential pressure gauge is from 0 to the liquid pressure at the maximum liquid level. When the pressure is low, the pressure of the liquid to be measured is much smaller than the maximum measurable pressure, so that it is difficult to obtain high accuracy. Also, in the conventional method of FIG. 8, similarly to FIGS. 7 (a) and 7 (b), the measurement range of the pressure gauge is the liquid pressure from the liquid level 0 to the maximum liquid level. The accuracy when the position is low becomes a problem. The apparent density of the float in the present invention can be easily adjusted by adding a weight to the float.
And can be performed accurately.

【0028】(3) 図3、図5から明らかなように、本発
明の装置をタンク頂より略垂直にタンク内に挿入した垂
直電線管に取り付け、同管内を通して差圧検出器からの
信号線をタンク頂からタンク外に導出すれば、船舶など
タンクの側壁からの取り付けが不可能なタンクにも容易
に設置できる。
(3) As is clear from FIGS. 3 and 5, the apparatus of the present invention is mounted on a vertical conduit inserted into the tank substantially vertically from the top of the tank, and a signal line from the differential pressure detector is passed through the pipe. If it is led out of the tank from the tank top, it can be easily installed in a tank such as a ship that cannot be attached from the side wall of the tank.

【0029】(4) 本発明の装置は1台の差圧検出器、1
個のフロ−ト及び簡単なフロ−トのガイド機構で構成さ
れ、タンクへの設置を在来の方法にくらべて特に煩雑で
はないから、設備コストを従来の手段のものに較べはる
かに低減できる。
(4) The apparatus according to the present invention comprises one differential pressure detector,
Since it is composed of individual floats and a simple float guide mechanism, installation in the tank is not particularly complicated as compared with the conventional method, so that the equipment cost can be reduced far as compared with the conventional means. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る装置の実施例における差圧検出器
の縦断面図。
FIG. 1 is a longitudinal sectional view of a differential pressure detector in an embodiment of an apparatus according to the present invention.

【図2】本発明に係る装置の実施例を示す正面図。FIG. 2 is a front view showing an embodiment of the device according to the present invention.

【図3】本発明に係る装置の実施例における差圧検出器
とフロートを拡大して示す一部破断面図。
FIG. 3 is an enlarged fragmentary sectional view showing a differential pressure detector and a float in an embodiment of the apparatus according to the present invention.

【図4】差圧検出器の受圧作動部に作用する力を示す縦
断面図。
FIG. 4 is a longitudinal sectional view showing a force acting on a pressure receiving operation portion of the differential pressure detector.

【図5】本発明に係る装置の他の実施例における差圧検
出器とフロートを拡大して示す一部破断面図。
FIG. 5 is an enlarged fragmentary sectional view showing a differential pressure detector and a float in another embodiment of the device according to the present invention.

【図6】本発明に係る装置のさらに他の実施例を示す正
面図。
FIG. 6 is a front view showing still another embodiment of the device according to the present invention.

【図7】従来例を示す正面図。FIG. 7 is a front view showing a conventional example.

【図8】他の従来例を示す正面図。FIG. 8 is a front view showing another conventional example.

【図9】さらに他の従来例を示す正面図。FIG. 9 is a front view showing still another conventional example.

【符号の説明】[Explanation of symbols]

A 差圧検出器 1 ハウジング 2a、2b 受圧作動部(ダイヤフラム) 3 センサボックス 4 片持ビーム 5a、5b ストレインゲージ 6 被覆電線 6a、6b 信号線 7a、7b アクチエータ 8a、8b 仕切板 9 垂直電線管 9a センサボックスの電線管 9b 分岐管 10 フロート 11 ガイド棒 12 フロートの耳部 13 ガイド棒取付ホルダ枠 14a 電線管の接続用フランジ 14b 分岐管の接続用フランジ 15 軸受 16 リンク 16a リンクの水平部 16b リンクの垂直部 17 リンクの回転軸 18 リンクの突部 19 ストッパ A Differential pressure detector 1 Housing 2a, 2b Pressure receiving operation section (diaphragm) 3 Sensor box 4 Cantilever beam 5a, 5b Strain gauge 6 Insulated wire 6a, 6b Signal wire 7a, 7b Actuator 8a, 8b Partition plate 9 Vertical conduit 9a Sensor tube conduit 9b Branch pipe 10 Float 11 Guide rod 12 Float ear 13 Guide rod mounting holder frame 14a Conduit pipe connection flange 14b Branch pipe connection flange 15 Bearing 16 Link 16a Link horizontal part 16b Link Vertical part 17 Rotation axis of link 18 Projection of link 19 Stopper

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】受圧作動部を2面備える差圧検出器を測定
液中に設けて、一方の受圧作動部には測定液の液圧が、
他方の受圧作動部には測定液の液圧と測定液中に設けた
フロートに掛かる全浮力が作用するようにし、両受圧作
動部に作用する圧力を電気信号として出力せしめ、かつ
両信号の差を求めることによりフロートに作用する浮力
を求め、この浮力をフロートの体積で除することにより
測定液の密度を求めるタンク内液の密度測定方法。
1. A differential pressure detector having two pressure receiving operation parts is provided in a measurement liquid, and one of the pressure reception operation parts has a liquid pressure of the measurement liquid,
The other pressure receiving operating part is made to apply the liquid pressure of the measuring liquid and the total buoyancy acting on the float provided in the measuring liquid, and the pressure acting on both the pressure receiving operating parts is output as an electric signal, and the difference between the two signals is output. , The buoyancy acting on the float is determined, and the buoyancy is divided by the volume of the float to determine the density of the measurement liquid.
【請求項2】受圧作動部を2面備えるハウジング内にセ
ンサデバイスが設けられ、各受圧作動部に作用する圧力
を電気信号として出力する差圧検出器を測定液中に設置
し、差圧検出器の一方の受圧作動部には測定液の液圧が
作用するようにし、他方の受圧作動部には測定液の液圧
と測定液中に設けたフロートの浮力が作用するようにし
て、両受圧作動部に作用する圧力が電気信号として出力
されるようにし、前記両圧力の電気信号を演算器にて演
算して密度が求められるようにしたタンク内液の密度測
定装置。
2. A differential pressure detector, wherein a sensor device is provided in a housing having two pressure receiving operating portions, and a differential pressure detector for outputting a pressure acting on each pressure receiving operating portion as an electric signal is provided in the measurement liquid, and the differential pressure is detected. The liquid pressure of the measurement liquid acts on one of the pressure-receiving parts of the vessel, and the other pressure-receiving part receives the liquid pressure of the measurement liquid and the buoyancy of the float provided in the measurement liquid. An apparatus for measuring the density of a liquid in a tank, wherein the pressure acting on the pressure receiving operation section is output as an electric signal, and the electric signal of both pressures is calculated by an arithmetic unit to obtain the density.
JP19649297A 1997-07-07 1997-07-07 Method and apparatus for measuring density of liquid in tank Expired - Fee Related JP3176323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19649297A JP3176323B2 (en) 1997-07-07 1997-07-07 Method and apparatus for measuring density of liquid in tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19649297A JP3176323B2 (en) 1997-07-07 1997-07-07 Method and apparatus for measuring density of liquid in tank

Publications (2)

Publication Number Publication Date
JPH1123443A true JPH1123443A (en) 1999-01-29
JP3176323B2 JP3176323B2 (en) 2001-06-18

Family

ID=16358682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19649297A Expired - Fee Related JP3176323B2 (en) 1997-07-07 1997-07-07 Method and apparatus for measuring density of liquid in tank

Country Status (1)

Country Link
JP (1) JP3176323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085519A (en) * 2009-10-16 2011-04-28 Tokyo Gas Co Ltd Device for measuring liquid density in storage tank
JP2011179949A (en) * 2010-03-01 2011-09-15 Tokyo Gas Co Ltd Instrument for measuring liquid density in storage tank
CN105571984A (en) * 2016-01-14 2016-05-11 郑州轻工业学院 High-temperature and high-pressure liquid density measuring device and method
EP2972196A4 (en) * 2013-03-14 2016-11-09 Command Alkon Dutch Tech B V Method and probe for measuring buoyancy in concrete
CN111289691A (en) * 2018-12-10 2020-06-16 泰连公司 Fluid sensor assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085519A (en) * 2009-10-16 2011-04-28 Tokyo Gas Co Ltd Device for measuring liquid density in storage tank
JP2011179949A (en) * 2010-03-01 2011-09-15 Tokyo Gas Co Ltd Instrument for measuring liquid density in storage tank
EP2972196A4 (en) * 2013-03-14 2016-11-09 Command Alkon Dutch Tech B V Method and probe for measuring buoyancy in concrete
US9702863B2 (en) 2013-03-14 2017-07-11 Command Alkon Dutch Tech B.V. Method and probe for measuring buoyancy in concrete
CN105571984A (en) * 2016-01-14 2016-05-11 郑州轻工业学院 High-temperature and high-pressure liquid density measuring device and method
CN111289691A (en) * 2018-12-10 2020-06-16 泰连公司 Fluid sensor assembly

Also Published As

Publication number Publication date
JP3176323B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
US9500513B2 (en) Magnetic liquid level gauge for boiler drum water level measurement
US6606905B2 (en) Liquid level and weight sensor
US20090272188A1 (en) Binary Liquid Analyzer For Storage Tank
US11555733B2 (en) Apparatus for determining a vertical level or density profile of a fluid column
US4307609A (en) Liquid density meter
GB2412734A (en) Measurement of fluid level and density with acoustic transducers
JP3176323B2 (en) Method and apparatus for measuring density of liquid in tank
US5661228A (en) Liquid pressure and level sensing instruments
US20150052997A1 (en) Hydrostatic Interface Measuring Device
JPH05272951A (en) Displacement gage
US4745807A (en) Density meter for continuous fluid flow
JPH09229842A (en) On-line type liquid density measuring apparatus
US20030029236A1 (en) Liquid volume measurement
JP2929159B2 (en) Pressure type liquid level measuring device
US4739663A (en) Acoustically monitored manometer
KR101089275B1 (en) Electronic flow meter for partially filled pipeline
KR20060112925A (en) Ultrasonic and pressure complex level measuring type flow meter for partially filled pipeline
RU2307327C2 (en) Flow meter for measuring fluid flow in open reservoirs
RU2260776C1 (en) Method of measuring density and level of liquid
JPH1194545A (en) Method and system for measuring displacement in vertical direction
SE512510C2 (en) Measuring device for level of medium inside tank, uses sensor to record changes in distance between tank roof and the device, in order to compensate for any tank roof movement
JPH0216417A (en) Liquid amount measuring instrument
CN201083516Y (en) Steam drum water level electrode measuring apparatus
KR102230587B1 (en) Apparatus for measuring quantity of fluid using fbg
US3495464A (en) Device for measuring liquid density

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees