JP2929159B2 - Pressure type liquid level measuring device - Google Patents

Pressure type liquid level measuring device

Info

Publication number
JP2929159B2
JP2929159B2 JP6445394A JP6445394A JP2929159B2 JP 2929159 B2 JP2929159 B2 JP 2929159B2 JP 6445394 A JP6445394 A JP 6445394A JP 6445394 A JP6445394 A JP 6445394A JP 2929159 B2 JP2929159 B2 JP 2929159B2
Authority
JP
Japan
Prior art keywords
pressure
liquid
tank
sensor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6445394A
Other languages
Japanese (ja)
Other versions
JPH07243893A (en
Inventor
時夫 杉
繁実 加藤
毅 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYO INSUTSURUMENTO KK
Tokyo Keiso Co Ltd
Original Assignee
KYO INSUTSURUMENTO KK
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYO INSUTSURUMENTO KK, Tokyo Keiso Co Ltd filed Critical KYO INSUTSURUMENTO KK
Priority to JP6445394A priority Critical patent/JP2929159B2/en
Publication of JPH07243893A publication Critical patent/JPH07243893A/en
Application granted granted Critical
Publication of JP2929159B2 publication Critical patent/JP2929159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉式タンク用の圧力式
液位計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure type liquid level measuring device for a closed tank.

【0002】[0002]

【従来の技術】タンク内の貯蔵液量を計測する方法の一
つとして、タンク底における液相部の圧力とタンク上部
における気相部の圧力の差を液の比重で除して液位を求
める、いわゆる圧力式液位計測装置が広く実用に供され
ている。
2. Description of the Related Art As one method of measuring the amount of liquid stored in a tank, the difference between the pressure in the liquid phase at the bottom of the tank and the pressure in the gas phase at the top of the tank is divided by the specific gravity of the liquid to determine the liquid level. The so-called pressure type liquid level measuring device to be sought is widely used in practice.

【0003】圧力式液位計測装置においてタンク底の圧
力を測定するセンサの装着方法としては、 (1)図4のように圧力センサ2をタンク1の側面に取り
付ける方法 (2)図5のように圧力センサ2をタンク頂部からタンク
内に挿入する方法 があり、またタンクの構造上の分類としては、 (A)タンクの気相部が大気に開放されているもの (B)タンクが密閉されており、タンクの気相部の圧力が
大気圧と異なるもの の2つがある。
[0003] A method for mounting a sensor for measuring the pressure at the tank bottom in the pressure type liquid level measuring device is as follows: (1) A method of attaching the pressure sensor 2 to the side surface of the tank 1 as shown in FIG. 4 (2) As shown in FIG. There is a method in which the pressure sensor 2 is inserted into the tank from the top of the tank. The tanks are classified according to their structural classification as follows: (A) a tank whose gas phase is open to the atmosphere; And the pressure in the gas phase of the tank is different from the atmospheric pressure.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記(2)、(B)
の手段を備えるタイプの圧力式液位計測装置の改良に関
する。このタイプの液位計測装置においては、タンク底
の液相部の圧力と、密閉されたタンク内の気相部の圧力
の差を求める必要があり、それには次ぎの2つの方式が
実用に供されてきた。
The present invention relates to the above (2) and (B)
The present invention relates to an improvement in a pressure type liquid level measuring device of the type having the above-mentioned means. In this type of liquid level measuring device, it is necessary to find the difference between the pressure in the liquid phase at the bottom of the tank and the pressure in the gas phase in the closed tank. The following two methods are practically used. It has been.

【0005】(a)図6のように差圧センサ3をタンク1
の底に設け、ダイヤフラム4を介してタンク底の液相部
の圧力を一方の受圧部3aに伝え、もう一方の受圧部3
b(背圧部)には導圧管5によってタンク内上部空間の
気相部の圧力を導いて圧力の差を検出し、計器6で指示
する。
(A) As shown in FIG.
The pressure of the liquid phase at the bottom of the tank is transmitted to one pressure receiving portion 3a via the diaphragm 4 and the other pressure receiving portion 3a
The pressure of the gas phase in the upper space in the tank is guided to b (back pressure part) by the pressure guiding pipe 5 to detect the pressure difference, and the meter 6 indicates the difference.

【0006】(b)図7のようにタンク底の液中とタンク
内上部空間の気相部にそれぞれ絶対圧測定用の圧力セン
サ2A、2Bを設け、それぞれの圧力を電気信号に変換
し、電子回路7で演算を行って圧力の差を求める。
(B) As shown in FIG. 7, pressure sensors 2A and 2B for measuring the absolute pressure are provided in the liquid at the bottom of the tank and in the gas phase in the upper space in the tank, respectively, to convert the respective pressures into electric signals. An operation is performed by the electronic circuit 7 to obtain a pressure difference.

【0007】(a) の方法は差圧センサ1個で計測がで
き、差圧センサに加わる差圧は液圧に等しいので、液位
計測の精度が高く、コスト、精度面で優れているが、導
圧管内にタンク内液の気化したガス等が流入するためし
ばしば導圧管内に結露による液滴が発生し、これが導圧
管内を降下して差圧センサの背圧部に侵入することによ
り精度不良を生じたり、故障の発生につながることが大
きな欠点となっている。特に図6の構造の装置では一旦
液滴が受圧部に溜まると、これを除去することがなかな
か容易ではなく、メンテナンスが難しい。
In the method (a), the measurement can be performed with one differential pressure sensor, and the differential pressure applied to the differential pressure sensor is equal to the hydraulic pressure. Therefore, the accuracy of the liquid level measurement is high, and the cost and accuracy are excellent. Since the vaporized gas of the liquid in the tank flows into the impulse pipe, droplets often occur due to dew condensation in the impulse pipe. A major drawback is that inaccuracy or failure may occur. In particular, in the apparatus having the structure shown in FIG. 6, once the liquid droplets accumulate in the pressure receiving portion, it is not easy to remove the liquid droplets, and maintenance is difficult.

【0008】一方(b) の方法はセンサが絶対圧を測定す
る圧力計であるため、導圧管を必要とせず、(a) の方法
のような液滴の滞留による問題はないが、タンク底の圧
力センサには液による圧力と気相部の圧力とを加えた圧
力が作用するため測定範囲の広いセンサを使用する必要
があり、液位を高精度で測定することが(a) の方法に比
べて難しくなる。
On the other hand, the method (b) does not require a pressure guiding tube because the sensor is a pressure gauge for measuring the absolute pressure, and there is no problem due to the accumulation of droplets as in the method (a). Since the pressure of the liquid plus the pressure of the gas phase acts on the pressure sensor, it is necessary to use a sensor with a wide measurement range, and it is necessary to measure the liquid level with high accuracy by the method (a). Is more difficult than

【0009】特に気相部の圧力が高い場合、またはタン
クが浅く液圧の測定範囲が比較的小さい場合には、タン
ク底のセンサの出力に液圧分が占める比率が小さくなる
ため液位の精度が低くなる。
In particular, when the pressure in the gas phase is high, or when the tank is shallow and the measurement range of the fluid pressure is relatively small, the ratio of the fluid pressure to the output of the sensor at the bottom of the tank is small, so that the liquid level is low. Accuracy is reduced.

【0010】本発明は上記の(a)、(b) の方法の問題点を
ともに解決できる新しい方式の圧力式液位計測装置を提
供できるようにした。
The present invention provides a new type of pressure type liquid level measuring apparatus which can solve both the problems of the above methods (a) and (b).

【0011】[0011]

【課題を解決するための手段】本発明の手段は次のとお
りである。 <手段>タンク内の液中に圧力センサを設け、タンク内
の液によって圧力センサに加えられる圧力からタンク内
の液量または液位を求める圧力式液位計測装置におい
て、 (a) タンク底の液相部に設けられ、一方の受圧部でタン
ク底の液相圧力を受け、他方の受圧部に導圧管が接続さ
れて液相圧力と導圧管内の圧力差を検出する液相部の差
圧センサ (b) タンク上部空間の気相部に設けられ、一方の受圧部
にはタンク内の気相圧力を受け、他方の受圧部に導圧管
が接続されて気相圧力と導圧管内の圧力差を検出する気
相部の差圧センサ (c) 内部が可動隔壁によりX室およびY室の2つの可変
容積室に仕切られ、大気から遮断された背圧箱 を備え、一端が液相部の差圧センサに接続された導圧管
の他端、および一端が気相部の差圧センサに接続された
各導圧管の他端をともに前記X室に接続し、また、前記
Y室を導管によってタンク内の気相部と連通させ、液相
部の差圧センサで検出される差圧と気相部の差圧センサ
で検出される差圧との差が演算回路で減じられて、液相
部のセンサが受ける液による圧力が求められ、液量また
は液位が測定される。
The means of the present invention are as follows. <Means> A pressure-type liquid level measuring device that provides a pressure sensor in the liquid in the tank and obtains the liquid amount or liquid level in the tank from the pressure applied to the pressure sensor by the liquid in the tank. The liquid pressure part is provided with one pressure receiving part for receiving the liquid pressure at the tank bottom, and the other pressure receiving part is connected to a pressure guiding tube to detect the difference between the liquid pressure and the pressure difference in the pressure guiding pipe. Pressure sensor (b) Provided in the gas phase in the upper space of the tank, one pressure receiving part receives the gas phase pressure in the tank, and the other pressure receiving part is connected to the impulse line so that the gas pressure and the pressure in the impulse line A differential pressure sensor in the gas phase that detects the pressure difference. (C) The interior is partitioned by a movable partition into two variable volume chambers, X chamber and Y chamber. The other end of the pressure guiding tube connected to the differential pressure sensor of the part, and one end were connected to the differential pressure sensor of the gas phase part The other end of each pressure guiding tube is connected to the X chamber, and the Y chamber is connected to the gas phase in the tank by a conduit. The difference from the differential pressure detected by the differential pressure sensor is reduced by an arithmetic circuit, the pressure of the liquid received by the sensor in the liquid phase portion is obtained, and the liquid amount or liquid level is measured.

【0012】[0012]

【実施例】図1に本発明の圧力式液位計測装置の原理構
造を示す。タンク底の液相部と、タンク内上部空間の気
相部とにそれぞれ差圧測定用圧力センサA、Bを設け、
センサAは一方の受圧部にタンク底の液相圧力P1 を導
き、他方の受圧部である背圧部には垂直な導圧管Cを接
続する。また、センサBは一方の受圧部にタンク内の気
相圧力P2 を導き、他方の受圧部である背圧部には導圧
管Dを接続する。
1 shows the principle structure of a pressure type liquid level measuring apparatus according to the present invention. Pressure sensors A and B for measuring differential pressure are provided in the liquid phase portion at the bottom of the tank and the gas phase portion in the upper space in the tank, respectively.
Sensor A leads to liquid phase pressure P 1 of the tank bottom on one of the pressure receiving portion, the back-pressure portion is the other of the pressure receiving portion connecting the vertical impulse line C. The sensor B guides the gas phase pressure P 2 in the tank to one pressure receiving portion, and connects a pressure guiding tube D to the back pressure portion, which is the other pressure receiving portion.

【0013】タンクトップには密閉容器からなる背圧箱
10を設け、この背圧箱内に、ダイヤフラムや、あるい
は図1に示すようにシール体11で気密にシールされた
可動隔壁12により二つの可変容積室X、Yを形成して
あり、図中12aはガイド棒、12bはその案内部を示
す。
A back pressure box 10 composed of a closed container is provided on the tank top. In the back pressure box, two diaphragms or a movable partition 12 hermetically sealed by a seal body 11 as shown in FIG. Variable volume chambers X and Y are formed. In the figure, 12a indicates a guide rod, and 12b indicates a guide portion thereof.

【0014】しかして前記センサA、Bの各導圧管C、
Dを背圧箱10のX室内へ接続せしめ、また、Y室は導
管Eでタンク内上部空間の気相部へ接続する。したがっ
て2個のセンサAおよびBの背圧部に加わる圧力は導圧
管CとDとが連通し、かつ両導圧管がX室内へ接続され
ていることにより常にX室内の圧力P3 と等しく、ま
た、Y室は導管Eで気相部と接続されているので常に気
相部の圧力P2 と等しくなる。
Thus, the pressure guiding tubes C,
D is connected to the X chamber of the back pressure box 10, and the Y chamber is connected by a conduit E to the gas phase in the upper space in the tank. Therefore, the pressure applied to the back pressure portions of the two sensors A and B is always equal to the pressure P 3 in the X chamber because the pressure guiding tubes C and D communicate with each other and both pressure guiding tubes are connected to the X chamber. Further, since the Y chamber is connected to the gas phase by the conduit E, the pressure is always equal to the pressure P 2 of the gas phase.

【0015】液位の変動にともなって変化する液圧Pは
センサAに掛かる液相圧力P1 から気相圧力P2 を減じ
た値であり、それはセンサAの受圧部(下面)までの液
深Hに比重ρを乗じたものであり、したがって液圧Pが
検出されれば、その値を比重ρで除することにより液深
すなわち液位Hを得ることができる。
The hydraulic pressure P that changes with the fluctuation of the liquid level is a value obtained by subtracting the gas-phase pressure P 2 from the liquid-phase pressure P 1 applied to the sensor A. This is obtained by multiplying the depth H by the specific gravity ρ. Therefore, when the hydraulic pressure P is detected, the liquid depth, that is, the liquid level H can be obtained by dividing the value by the specific gravity ρ.

【0016】ここで液圧Pは、 P =P1 −P2 ・・・・・(1) で表され、またセンサAおよびセンサBでそれぞれ検出
される差圧PA 、PB はそれぞれ、 PA =P1 −P3 ・・・・・(2) PB =P2 −P3 ・・・・・(3) であり、(2) 式から(3) 式を減じて、 PA −PB =P1 −P2 ・・・(4) となり、(1)、(4) 式から、 P =PA −PB ・・・(5) が得られる。したがって液位Hは、 H =P/ρ=(PA −PB )/ρ ・・・(6) により求められる。
Here, the hydraulic pressure P is represented by P = P 1 -P 2 (1), and the differential pressures P A and P B detected by the sensors A and B are respectively: P A = P 1 −P 3 (2) P B = P 2 −P 3 (3), and subtracting equation (3) from equation (2) gives P A −P B = P 1 −P 2 (4), and P = P A −P B (5) is obtained from the equations (1) and (4). Thus the liquid level H is determined by H = P / ρ = (P A -P B) / ρ ··· (6).

【0017】本発明の装置においては、背圧箱内の2室
X、Yの内部圧力に差が生じると、可動隔壁12が変位
することによってX室の圧力P3 が増減し、Y室内の圧
力P2 との圧力差が小さく抑えられる。したがってX室
の圧力P3 はY室内の圧力P2 、すなわち気相の圧力に
大方等しく、差圧センサA、Bの背圧部の圧力も気相の
圧力にほぼ等しく保たれる。
In the apparatus of the present invention, when a difference occurs between the internal pressures of the two chambers X and Y in the back pressure box, the movable partition 12 is displaced, so that the pressure P 3 in the X chamber increases and decreases. pressure difference between the pressure P 2 is kept small. Therefore, the pressure P 3 in the X chamber is substantially equal to the pressure P 2 in the Y chamber, that is, the pressure of the gas phase, and the pressures of the back pressure portions of the differential pressure sensors A and B are also maintained substantially equal to the pressure of the gas phase.

【0018】可動隔壁は気密構造であり、X室と導圧管
C、Dで形成される空間は完全に密閉されているので、
この空間に乾燥状態でかつ構造物を侵さない気体(例え
ば窒素ガス)を封入すれば、図6に示した従来の手段の
欠点である圧力センサの背圧部への液の滞留の問題は解
決される。
The movable partition has an airtight structure, and the space formed by the X chamber and the pressure guiding tubes C and D is completely sealed.
If a gas (for example, nitrogen gas) which is dry and does not attack the structure is sealed in this space, the problem of the liquid remaining in the back pressure portion of the pressure sensor, which is a drawback of the conventional means shown in FIG. 6, is solved. Is done.

【0019】X室の内圧P3 は室内の気体の温度によっ
て変化し、またタンク内の気相の圧力P2 もタンクの使
用条件によって変化するので、実用上起こりうる両者の
圧力変動の範囲を基準にX室に封入する気体の量と背圧
室の可動隔壁の変位量を選定し、X室の内圧P3 が常に
タンク内の気相圧力P2 にほぼ等しく保たれるようにす
れば、差圧センサAに加わる差圧PA はほぼ液圧Pに等
しいので、図7に示した従来の手段が持つ精度上の問題
も著しく改善される。
The internal pressure P 3 of the X chamber changes according to the temperature of the gas in the chamber, and the pressure P 2 of the gas phase in the tank also changes depending on the operating conditions of the tank. If the amount of gas to be sealed in the X chamber and the displacement of the movable partition in the back pressure chamber are selected based on the standard, the internal pressure P 3 in the X chamber is always kept substantially equal to the gas phase pressure P 2 in the tank. since the differential pressure P a applied to the differential pressure sensor a equals approximately a hydraulic P, the accuracy problems of traditional means shown in FIG. 7 is also significantly improved.

【0020】センサBで検出される差圧PB はセンサA
で検出される差圧PB に比べて小さく、PB に含まれる
計測誤差が液圧の精度に及ぼす影響は小さいので、セン
サBには高精度のものを使用する必要がなく、コスト的
にも図7に示す従来の手段に比べて有利である。
The differential pressure P B detected by the sensor B is
In smaller than the differential pressure P B is detected, the measurement error included in P B is the effect on the accuracy of the fluid pressure low, the sensor B is not necessary to use a high-precision, cost- Is also advantageous as compared to the conventional means shown in FIG.

【0021】図2は本発明に係る圧力式液位計の具体的
構造例である。センサAで検出された液相部での差圧P
A の信号を送る信号線13とセンサBで検出された気相
部での差圧PB の信号を送る信号線14を、タンク1外
に設けた演算回路15に接続し、センサAからの信号線
13と導圧管Cを入れる保護パイプ16をタンク内に垂
設してセンサAを保護パイプ下部から突設する。
FIG. 2 shows a specific example of the structure of the pressure type liquid level meter according to the present invention. Differential pressure P in the liquid phase detected by sensor A
A signal line 14 for sending a signal of the differential pressure P B in the gas phase portion detected by the signal line 13 and the sensor B to send a signal of A, connected to the arithmetic circuit 15 provided outside the tank 1, from sensor A A protection pipe 16 for accommodating the signal line 13 and the pressure guiding pipe C is vertically provided in the tank, and a sensor A is protruded from a lower portion of the protection pipe.

【0022】演算回路15では、信号線13、14から
差圧PA 、PB の信号が入力されると、上述した(6) 式
に基づいて差圧PA から差圧PB を減じて液圧Pを求
め、この液圧Pを液の比重ρで除し、液位Hを出力す
る。背圧箱内の可動隔壁にはステンレス製の溶接ベロー
ズ17を使用し、十分な耐久性と高い可撓性、十分な変
位を得ている。
When the signals of the differential pressures P A and P B are input from the signal lines 13 and 14, the arithmetic circuit 15 subtracts the differential pressure P B from the differential pressure P A based on the above equation (6). The liquid pressure P is obtained, and the liquid pressure P is divided by the specific gravity ρ of the liquid to output a liquid level H. A stainless steel welding bellows 17 is used for the movable partition in the back pressure box, and sufficient durability, high flexibility and sufficient displacement are obtained.

【0023】なお、従来から大型で液位の測定範囲が大
きいタンク等では、液相圧力を受けるセンサをタンク底
以外にも設け、各センサの測定範囲を分割、切り換える
ことにより測定精度を向上させる手段が実用化されてい
るが、本発明の装置はこのように複数のセンサA1 、A
2 、A3 を備える場合にも各センサの背圧部と背圧箱の
X室を導圧管Fで連通させることにより適用できる。
In a conventional tank or the like which is large and has a large measuring range of liquid level, a sensor for receiving the liquid phase pressure is provided at a position other than the bottom of the tank, and the measuring range of each sensor is divided and switched to improve the measuring accuracy. Although the means has been put to practical use, the apparatus of the present invention thus has a plurality of sensors A 1 , A
2, even when armed with the A 3 can be applied by communicating the X chamber of back-pressure portion and the back圧箱of each sensor in the impulse line F.

【0024】[0024]

【発明の効果】本発明に係る圧力式液位計測装置は上述
した構成のものとしてあるので、従来の装置にはない次
のような効果を奏し得る。 (1) 可動隔壁は気密構造であり、X室と導圧管で形成さ
れる空間は完全に密閉されているので、圧力センサの背
圧部へ液が滞留するようなことがない。 (2) センサBで検出される差圧PB はセンサAで検出さ
れる差圧PB に比べて小さく、PB に含まれる計測誤差
が液圧の精度に及ぼす影響は小さいので、センサBには
高精度のものを使用しなくても、信頼性の高い測定結果
を得ることができる。 (3) 動作が正常であれば差圧センサBが検出する差圧は
可動隔壁が変位するときの抵抗力によって生じるX室と
Y室間の圧力差となるので、可動隔壁の動作異常やX室
に充填した気体の、洩れなどの異常が生じるとセンサB
の出力値が正常範囲を超えることになり、センサBの出
力値によって異常の自己診断ができる。 (4) 背圧箱のX室に吸引ポンプと負圧測定器を接続して
X室の圧力を降下させることにより、差圧センサに人為
的に差圧を加えることができるので、差圧センサを取り
外すことなく動作確認及び再校正を行うことができ、メ
ンテナンスが容易である。
Since the pressure type liquid level measuring apparatus according to the present invention has the above-described configuration, the following effects not provided by the conventional apparatus can be obtained. (1) Since the movable partition has an airtight structure and the space formed by the X chamber and the pressure guiding tube is completely sealed, the liquid does not stay in the back pressure portion of the pressure sensor. (2) The differential pressure P B detected by the sensor B is smaller than the differential pressure P B detected by the sensor A, and the measurement error contained in P B has a small effect on the accuracy of the hydraulic pressure. A highly reliable measurement result can be obtained without using a high-precision device. (3) If the operation is normal, the differential pressure detected by the differential pressure sensor B is a pressure difference between the X chamber and the Y chamber caused by the resistance force when the movable partition is displaced. When the gas filled in the chamber has an abnormality such as leakage, the sensor B
Output value exceeds the normal range, and the self-diagnosis of abnormality can be performed by the output value of the sensor B. (4) By connecting a suction pump and a negative pressure measuring device to the X chamber of the back pressure box and lowering the pressure in the X chamber, a differential pressure can be artificially applied to the differential pressure sensor. Operation check and re-calibration can be performed without removing the, and maintenance is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る装置の原理構造を示す縦断面図。FIG. 1 is a longitudinal sectional view showing the principle structure of an apparatus according to the present invention.

【図2】本発明の実施例を示す縦断面図。FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention.

【図3】本発明の他の実施例を示す縦断面図。FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention.

【図4】従来例を示す縦断面図。FIG. 4 is a longitudinal sectional view showing a conventional example.

【図5】他の従来例を示す縦断面図。FIG. 5 is a longitudinal sectional view showing another conventional example.

【図6】さらに他の従来例を示す縦断面図。FIG. 6 is a longitudinal sectional view showing still another conventional example.

【図7】さらに他の従来例を示す縦断面図。FIG. 7 is a longitudinal sectional view showing still another conventional example.

【符号の説明】[Explanation of symbols]

1 タンク 10 背圧箱 11 シール体 12 可動隔壁 13、14 信号線 15 演算回路 16 保護パイプ 17 ベローズ A、B 差圧センサ C、D 導圧管 E 導管 F 導圧管 Reference Signs List 1 tank 10 back pressure box 11 seal body 12 movable partition 13, 14 signal line 15 arithmetic circuit 16 protection pipe 17 bellows A, B differential pressure sensor C, D impulse pipe E conduit F impulse pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】タンク内の液中に圧力センサを設け、タン
ク内の液によって圧力センサに加えられる圧力からタン
ク内の液量または液位を求める圧力式液位計測装置にお
いて、 (a) タンク底の液相部に設けられ、一方の受圧部でタン
ク底の液相圧力を受け、他方の受圧部に導圧管が接続さ
れて液相圧力と導圧管内の圧力差を検出する液相部の差
圧センサ (b) タンク上部空間の気相部に設けられ、一方の受圧部
にはタンク内の気相圧力を受け、他方の受圧部に導圧管
が接続されて気相圧力と導圧管内の圧力差を検出する気
相部の差圧センサ (c) 内部が可動隔壁によりX室およびY室の2つの可変
容積室に仕切られ、大気から遮断された背圧箱 を備え、一端が液相部の差圧センサに接続された導圧管
の他端、および一端が気相部の差圧センサに接続された
各導圧管の他端をともに前記X室に接続し、また、前記
Y室を導管によってタンク内の気相部と連通させ、液相
部の差圧センサで検出される差圧と気相部の差圧センサ
で検出される差圧との差が演算回路で減じられて、液相
部のセンサが受ける液による圧力が求められ、液量また
は液位が測定されるようにした圧力式液位計測装置。
A pressure type liquid level measuring device for providing a pressure sensor in a liquid in a tank and obtaining a liquid amount or a liquid level in the tank from a pressure applied to the pressure sensor by the liquid in the tank. A liquid-phase part provided at the bottom liquid-phase part, receives liquid-phase pressure at the tank bottom at one pressure-receiving part, and is connected to a pressure-guiding tube at the other pressure-receiving part to detect a liquid-phase pressure and a pressure difference within the pressure-guiding pipe. (B) Provided in the gas phase in the upper space of the tank, one pressure receiving part receives the gas phase pressure in the tank, and the other pressure receiving part is connected to a pressure guiding tube to A differential pressure sensor in the gas phase for detecting the pressure difference in the pipe. (C) The inside is partitioned by a movable partition into two variable volume chambers of an X chamber and a Y chamber. The other end and one end of the pressure guiding tube connected to the differential pressure sensor in the liquid phase are connected to the differential pressure sensor in the gas phase. The other end of each of the pressure guiding tubes is connected to the X chamber together, and the Y chamber is connected to the gas phase in the tank by a conduit. The difference between the differential pressure detected by the differential pressure sensor of the phase part is reduced by the arithmetic circuit, the pressure by the liquid received by the sensor of the liquid phase part is determined, and the liquid amount or the liquid level is measured. Type liquid level measuring device.
JP6445394A 1994-03-08 1994-03-08 Pressure type liquid level measuring device Expired - Lifetime JP2929159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6445394A JP2929159B2 (en) 1994-03-08 1994-03-08 Pressure type liquid level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6445394A JP2929159B2 (en) 1994-03-08 1994-03-08 Pressure type liquid level measuring device

Publications (2)

Publication Number Publication Date
JPH07243893A JPH07243893A (en) 1995-09-19
JP2929159B2 true JP2929159B2 (en) 1999-08-03

Family

ID=13258685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6445394A Expired - Lifetime JP2929159B2 (en) 1994-03-08 1994-03-08 Pressure type liquid level measuring device

Country Status (1)

Country Link
JP (1) JP2929159B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312462C (en) * 2004-12-31 2007-04-25 北京塞尔瑟斯仪表科技有限公司 Two-wire system multiple sensors liquid level transmitting instrument
JP2008222235A (en) * 2007-03-08 2008-09-25 Tatsuno Corp Oil quantity measuring system
JP5892537B2 (en) * 2011-12-16 2016-03-23 矢崎総業株式会社 Diaphragm body, differential pressure measurement unit, liquid quantity estimation device, and liquid quantity estimation system
JP5742875B2 (en) * 2012-05-16 2015-07-01 アイシー測器株式会社 Liquid transport vehicles such as vacuum cars and liquid collection and metering methods using the same
CN109443481A (en) * 2018-12-22 2019-03-08 中铁工程装备集团有限公司 A kind of closed pressure vessel measuring device and level measuring method
CN110271784B (en) * 2019-07-02 2024-06-14 张家港中集圣达因低温装备有限公司 Liquid storage tank
JP7380151B2 (en) * 2019-12-03 2023-11-15 栗田工業株式会社 Liquid level measuring device

Also Published As

Publication number Publication date
JPH07243893A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US5604315A (en) Apparatus using a feedback network to measure fluid pressures
US4630478A (en) Liquid volume sensor system
US7461562B2 (en) Process device with density measurement
CN106802176A (en) A kind of water level detecting system
JP2013531791A (en) Differential pressure sensor with line pressure measurement
US6041659A (en) Methods and apparatus for sensing differential and gauge static pressure in a fluid flow line
JP2929159B2 (en) Pressure type liquid level measuring device
US4379279A (en) Submersible pressure transducer package
US4332166A (en) Temperature compensation apparatus for a liquid filled conduit
EP1412709B1 (en) Advanced volume gauging device
US3610042A (en) Liquid level measuring device with temperature compensator
RU2344380C1 (en) Method of measuring volume of liquid in closed reservoir
US2537668A (en) Porosimeter and method of using same
US4739663A (en) Acoustically monitored manometer
RU2390755C1 (en) Measuring transmitter for control and measurement of density of dirty and clean fluid media
JP3176323B2 (en) Method and apparatus for measuring density of liquid in tank
RU2483284C1 (en) Hydrostatic downhole densitometer
RU2301971C2 (en) Method and device for measuring liquid level in tank
JPH046890B2 (en)
RU2330251C1 (en) Density pickup
JPS6029694Y2 (en) Flow rate/flow rate detection device
SU1237923A1 (en) Device for leakage testing of articles
JPS6370121A (en) Apparatus for measuring flow rate and pressure
JPS6411130B2 (en)
RU2137109C1 (en) Device measuring density

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 15

EXPY Cancellation because of completion of term