JPS6370121A - Apparatus for measuring flow rate and pressure - Google Patents

Apparatus for measuring flow rate and pressure

Info

Publication number
JPS6370121A
JPS6370121A JP21568786A JP21568786A JPS6370121A JP S6370121 A JPS6370121 A JP S6370121A JP 21568786 A JP21568786 A JP 21568786A JP 21568786 A JP21568786 A JP 21568786A JP S6370121 A JPS6370121 A JP S6370121A
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow rate
vertical
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21568786A
Other languages
Japanese (ja)
Other versions
JPH0569368B2 (en
Inventor
Tokio Sugi
時夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP21568786A priority Critical patent/JPS6370121A/en
Publication of JPS6370121A publication Critical patent/JPS6370121A/en
Publication of JPH0569368B2 publication Critical patent/JPH0569368B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the measurement of a mass flow rate, by making it possible to simultaneously measure the flow rate and pressure of a fluid when the temp. of the fluid is constant. CONSTITUTION:When a fluid flows through a pipe body 9, the pressure due to the dynamic pressure of the fluid acts on a pressure receiving plate 4 in a flow direction. Since a hose 12 has almost no restriction force in an up-and- down direction, the force FP due to the pressure P of the fluid acts on the disc part 11 of a T-shaped arm 1. When the pressure receiving area of the disc part 11 is assumed to be S, the force FP becomes FP=P.S. From the foregoing, when forces acting on two load sensors 5, 6 are set to FA, FB, relations FA+FB=FP=P.S and (FB-FA)l1=Fd.l2 hold by considerity the balance for force and moment. By this method, when the forces FA, FB acting on two load sensors 5, 6 are measured, the pressure P and velocity V of flow are obtained and a flow rate is calculated from the velocity V of flow and the inner diameter of a pipe body 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体の流量と圧力を同時に測定することができ
る流量・圧力測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate/pressure measuring device that can simultaneously measure the flow rate and pressure of a fluid.

〔従来の技術〕[Conventional technology]

従来、気体の流量のalll定に用いられている流量計
の多くは、特定の温度、圧力下での流量値を指示、発信
するものであり、温度または圧力がこの特定値と異なる
場合には、人為的な補正を行なって正しい流Iα値を求
める必要がある。
Conventionally, most of the flowmeters used to determine all gas flow rates indicate and transmit the flow rate value under a specific temperature and pressure, and if the temperature or pressure differs from this specific value, , it is necessary to perform artificial correction to obtain the correct flow Iα value.

ところで流量計測の目的の多くは、流路を通過する流体
の絶対量である質量流量を知ることにあり、温度、圧力
が一定でない流体の流量の測定においては、温度ル1、
圧力計を併用して測定が行なわれる。
By the way, the purpose of most flow rate measurements is to know the mass flow rate, which is the absolute amount of fluid passing through a flow path, and when measuring the flow rate of a fluid whose temperature and pressure are not constant, it is necessary to
Measurements are taken in conjunction with a pressure gauge.

また、人為的補正を避けるために、流量計、温度計、圧
力計からの信号を受信し、補正計算を電気的に行ない、
質量流量信号を出力する流量自動演算機もしばしば使用
される。
In addition, in order to avoid artificial correction, it receives signals from flowmeters, thermometers, and pressure gauges and performs correction calculations electrically.
Flow rate calculators that output mass flow signals are also often used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、温度、圧力が一定でない流体の流量の測
定には、多くの測定装置が必要となるため、一般に大き
な設備費を要する。
As described above, measuring the flow rate of a fluid whose temperature and pressure are not constant requires a large number of measuring devices, which generally requires large equipment costs.

このような問題の改善のために、温度、圧力の変動の影
響をうけない質量流量計も数種のものが実用に供せられ
ているが、いずれも適用範囲が限定されており広く普及
するに至っていない。
To improve this problem, several types of mass flowmeters that are not affected by temperature and pressure fluctuations have been put into practical use, but their range of application is limited and they are not widely used. has not yet been reached.

そこで本発明は、このような従来の問題を解決するため
に提案されたものであり、容易な手段により流体の流量
を測定できるとともに流体の圧力も同時に測定すること
ができ、質量流量の測定における設備費のコストダウン
を図れる流量・圧力測定装置を提供することを目的とす
る。
Therefore, the present invention was proposed to solve such conventional problems, and it is possible to measure the flow rate of a fluid and the pressure of the fluid at the same time by a simple means, and is useful in the measurement of mass flow rate. The purpose is to provide a flow rate/pressure measuring device that can reduce equipment costs.

〔問題を解決するための手段〕[Means to solve the problem]

この目的を達成するために本第1発明の流量・圧力測定
装置は、水平バーとこの水平バーの中央部より垂設され
た・上下方向の垂直バーを持つアームと、この垂直バー
の上部に設けられた円盤部と、上記垂直バーの下端部に
設けられた受圧板と、上記水平バーの両端にそれぞれ一
端が接わ゛とされ他端が管路壁に剛にそれぞれ接続され
た2つの荷重センサとを備え、上記管路壁に穿設した挿
入孔より上記垂直バーを管路内に挿入して上記受圧板を
管路内を流れる流体の流れに正対させ、上記垂直バーに
設けた円盤部と上記挿入孔の間に上下方向に柔な接手を
設けてこのjiTi人孔を外気より遮断し、上記円盤部
の受ける上記流体の圧力と上記受圧板に働く流体の動圧
による力とによって荷mが印加される2つの上記荷重セ
ンサよりの出力信号に基づき、上記管路内の上記流体の
流量と圧力とを同時に11111定することを特徴とす
る。
In order to achieve this object, the flow rate/pressure measuring device of the first invention comprises a horizontal bar, an arm having a vertical bar extending vertically from the center of the horizontal bar, and an arm having a vertical bar extending vertically from the center of the horizontal bar. a pressure-receiving plate provided at the lower end of the vertical bar; and two pressure-receiving plates each having one end connected to both ends of the horizontal bar and the other end rigidly connected to the pipe wall. and a load sensor, the vertical bar is inserted into the conduit through an insertion hole bored in the conduit wall, and the pressure receiving plate is directly opposed to the flow of fluid flowing in the conduit, and the vertical bar is provided with a load sensor. A flexible joint is provided in the vertical direction between the disc part and the insertion hole to isolate this jiTi manhole from the outside air, and the force due to the pressure of the fluid received by the disc part and the dynamic pressure of the fluid acting on the pressure receiving plate. The present invention is characterized in that the flow rate and pressure of the fluid in the conduit are simultaneously determined 11111 based on output signals from the two load sensors to which the load m is applied.

また本第29::、明の流は・圧力測定装置は、水平バ
ーとこの水平バーの中央部より垂設された上下方向の垂
直バーを持つアームと、この垂直バーの上部に設けられ
た円盤部と、上記垂直バーの下端部に設けられた受圧板
と、上記水平バーの両端にそれぞれ一端が接続され他端
が!6・路壁に剛にそれぞれ接続された2つの荷重セン
サと、」1記水平バーの中央上部から垂直バーに穿設さ
れ、た下端が閉塞した穴に収容された温度センサとをυ
j1え、上記!If路壁に穿設した挿入孔より上記垂直
バーを管路内に挿入して上記受圧板を管路内を流れる流
体の流れに正対させ、上記垂直バーに設けた円盤部と上
記挿入孔の間に上下方向に柔な接手を設けてこの挿入孔
を外気より遮断し、上記円盤部の受ける上記流体の圧力
と上記受圧板に働く流体の動圧による力とによって荷重
が印加される2つの上記荷重センサよりの出力信号から
上記管路内の上記流体の圧力と、上記温度センサよりの
出力信号から上記流体の温度とを測定し、上記荷重セン
サの出力と測定したこれら圧力値と温度から上記流体の
流量を測定できるようにしたことを特徴とする。
Also, Book No. 29:: The pressure measuring device consists of a horizontal bar, an arm with a vertical vertical bar hanging vertically from the center of the horizontal bar, and an arm installed on the top of the vertical bar. One end is connected to the disc part, a pressure receiving plate provided at the lower end of the vertical bar, and both ends of the horizontal bar, and the other end is connected to the disk part, the pressure receiving plate provided at the lower end of the vertical bar, and the horizontal bar. 6. Two load sensors each rigidly connected to the road wall, and a temperature sensor housed in a hole drilled into the vertical bar from the center top of the horizontal bar described in 1 above and closed at the lower end.
j1 Eh, above! If the vertical bar is inserted into the pipe through an insertion hole drilled in the pipe wall, the pressure receiving plate is directly opposed to the flow of fluid flowing in the pipe, and the disc part provided in the vertical bar and the insertion hole are inserted into the pipe. A flexible joint is provided in the vertical direction between the two to isolate this insertion hole from the outside air, and a load is applied by the pressure of the fluid that the disc part receives and the force due to the dynamic pressure of the fluid acting on the pressure receiving plate. The pressure of the fluid in the pipe line is measured from the output signal from the two load sensors, and the temperature of the fluid is measured from the output signal from the temperature sensor, and the output of the load sensor and the measured pressure value and temperature are measured. The present invention is characterized in that the flow rate of the fluid can be measured from the flow rate of the fluid.

〔作用〕[Effect]

第1発明によれば、上記荷重センサの出力より管路内を
流れる流体の圧力が測定され、上記荷重センサの出力と
測定されたこの圧力値から流体の温度が一定の時の該流
体の流量を測定することができる。
According to the first invention, the pressure of the fluid flowing in the pipe is measured from the output of the load sensor, and the flow rate of the fluid when the temperature of the fluid is constant is determined based on the output of the load sensor and the measured pressure value. can be measured.

また第2発明によれば、上記荷重センサの出力より管路
内を流れる流体の圧力と上記温度センサの出力よりこの
流体の温度が測定され、上記荷重センサの出力と測定さ
れたこれら圧力値と温度から、流体の圧力と温度が共に
変動する時の該流体の流量を測定することができる。
According to the second invention, the pressure of the fluid flowing in the pipe is measured from the output of the load sensor and the temperature of the fluid is measured from the output of the temperature sensor, and the output of the load sensor and these measured pressure values are measured. From the temperature, the flow rate of the fluid as its pressure and temperature vary together can be determined.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

まず、第1発明を説明すると、第1図は第1発明に係る
流量・圧力測定装置の側断面図(第2図のA−A線断面
図)であり、第2図はその正面図である。
First, to explain the first invention, FIG. 1 is a side sectional view (a sectional view taken along the line A-A in FIG. 2) of a flow rate/pressure measuring device according to the first invention, and FIG. 2 is a front view thereof. be.

第1図、第2図において、T字型のアーム(1)の上下
方向の垂直バー(2)の下端には、流体の流れによって
動圧を受ける受圧板(4)が設けられており、水平方向
の水平バー(3)の両端にはそれぞれ荷重センサ(5)
、(8)の−力の端部が接続されている。ここで、垂直
/<−(2)は水平バー(3)の中央部より垂設されて
いる。
In FIGS. 1 and 2, a pressure receiving plate (4) that receives dynamic pressure due to the flow of fluid is provided at the lower end of the vertical bar (2) in the vertical direction of the T-shaped arm (1). Load sensors (5) are installed at both ends of the horizontal bar (3).
, (8) - the force ends are connected. Here, the vertical bar (2) is vertically disposed from the center of the horizontal bar (3).

上記荷mセンサ(5)、(8)の他の端部は、それぞれ
構造的に割な支柱(7)、(8)に固定されており、水
平バー(3)の両端と支柱(7) 、(8)との間に働
く垂直方向の力が荷重センサ(5)、(6)によって検
出されるようになっている。上記支柱(?)、(8)は
管体(8)の上部に突設されている。
The other ends of the load m-sensors (5) and (8) are fixed to structurally split supports (7) and (8), respectively, and both ends of the horizontal bar (3) and the support posts (7) , (8) are detected by the load sensors (5) and (6). The pillars (?) and (8) are provided to protrude from the upper part of the tube body (8).

荷重センサ(5)、(8)は、センサの負荷方向が常に
水平バー(3)に対して垂直になることが望ましいので
、ストレインゲージのような変位の小さいセンサが用い
られる。
As for the load sensors (5) and (8), it is desirable that the load direction of the sensors is always perpendicular to the horizontal bar (3), so sensors with small displacement such as strain gauges are used.

流体が流れる管体(9)にはノズル(枝管)(10)が
設けられており、このノズル(10)より垂直バー(2
)が挿入され上記受圧板(4)が管体(8)のほぼ中央
部にて流体の流れに正対するように上記支柱(7) 、
 (8)が管体(3)に固定されている。
A nozzle (branch pipe) (10) is provided in the pipe body (9) through which the fluid flows, and a vertical bar (2) is provided from this nozzle (10).
) is inserted so that the pressure receiving plate (4) directly faces the flow of fluid at approximately the center of the pipe body (8),
(8) is fixed to the tube body (3).

上記垂直バー(2)上端部(水平バー(3)との接続部
)近傍には、垂直バー(2)に垂直な円板部(11)が
設けられており、上記ノズル(io)と円板部(11)
との間は蛇管(ベローズ”) (12)で接続され、管
体(9)内の流体がノズル(10)部より外部に漏洩し
ない構造となっている。
A circular plate part (11) perpendicular to the vertical bar (2) is provided near the upper end of the vertical bar (2) (connection part with the horizontal bar (3)), and the circular plate part (11) is connected to the nozzle (io). Board part (11)
A bellows (12) is connected between the nozzle (10) and the nozzle (10) to prevent the fluid inside the pipe (9) from leaking to the outside.

蛇管(12)は長さ方向には比較的小さな力で伸縮し、
管体(3)内部の流体の圧力に耐える強度となっている
The flexible pipe (12) expands and contracts in the length direction with a relatively small force,
It has enough strength to withstand the pressure of the fluid inside the tube (3).

なお、第3図の他の実施例のように管体(9)に設けた
ノズル(10)にフランジ(13)を設け、他のフラン
ジ(14)に前述の、実施例と同様の検出装置を設けて
フランジ(13)、(14)同士を結合させてもよい。
In addition, as in the other embodiment shown in FIG. 3, a flange (13) is provided on the nozzle (10) provided on the tube body (9), and a detection device similar to the above-mentioned embodiment is provided on the other flange (14). The flanges (13) and (14) may be connected to each other by providing the flanges (13) and (14).

この場合、管体(8)と検出装置とが分離できるため、
製作、保守の面で1aれている。
In this case, since the tube body (8) and the detection device can be separated,
It is ranked 1a in terms of production and maintenance.

つぎにこのように構成される流量φ圧力測定装置の動作
を説明する。
Next, the operation of the flow rate φ pressure measuring device configured as described above will be explained.

管体(8)内を流体が流れると、受圧板(4)には流体
の動圧による力が流れ方向に作用する。
When fluid flows within the pipe body (8), a force due to the dynamic pressure of the fluid acts on the pressure receiving plate (4) in the flow direction.

この力をFt+とするとFdは、 F、1=Keρ*V2・e  、(1)となる、ここで
、 ρ:原流体密度 V:流体の流速 に:比例定数 である。
If this force is Ft+, then Fd is F, 1=Keρ*V2·e, (1), where ρ: original fluid density V: fluid flow velocity: proportionality constant.

また蛇管(12)は、上下方向にほとんど拘束力を持た
ないので、流体の圧力をPとすると丁字形のアーム(1
)の円板部(11)には、流体の圧力Pによる力FPが
働く。円板部(11)の受圧面積をSとするとFpは、 Fp=P@S  −−・(2) である。
In addition, since the flexible pipe (12) has almost no restraining force in the vertical direction, if the pressure of the fluid is P, it forms a T-shaped arm (12).
) is subjected to a force FP due to the pressure P of the fluid. When the pressure-receiving area of the disk portion (11) is S, Fp is as follows: Fp=P@S -- (2).

以上より二つの上記荷重センサ(5)  、 (II)
に働く力をF^、 FBとすれば、力及びモーメントの
釣合より FA +  FB =F、=p嗜S  令* a(3)
(FB −Fo)u+  =Fd−12・・・(4)と
なる、ここで!;L+、立2は、それぞれ片側の水平パ
ー(3)の長さ及び垂直バ−(2)の長さである。
From the above, the two load sensors (5) and (II)
If the forces that act on
(FB -Fo)u+ =Fd-12...(4), here! ; L+ and Tate 2 are the length of the horizontal par (3) and vertical bar (2) on one side, respectively.

(1)〜(4)式を整理すると となる。If we rearrange equations (1) to (4), becomes.

一般に流体の種類、温度が一定であればに一ρは圧力P
によって決まり、S、見l 、又2は一定であるから、
2つの荷重センサ(5)。
Generally, if the type of fluid and temperature are constant, then ρ is the pressure P
is determined by, and since S, s, and 2 are constant,
Two load sensors (5).

(6)に働く力 F八 、  FB を測定すれば(5
)。
If we measure the forces F8 and FB acting on (6), we get (5
).

(8)式により圧力Pと流速■が得られ、流速■と管体
(9)の内径とかう流量が求められる。
The pressure P and the flow rate (2) are obtained by equation (8), and the flow rate is determined by the flow rate (2) and the inner diameter of the tube (9).

なお、K・ρはalit定した圧力Pにより決められる
Note that K·ρ is determined by the pressure P determined by alit.

このように、上記流量会圧力測定装置によれば従来、流
量計と圧力計を別々に設置して行なっていた流量と圧力
の計測が、簡単な構造の検出装置により同時に可能にな
る。
As described above, according to the above-mentioned flow rate and pressure measuring device, it is possible to simultaneously measure the flow rate and pressure, which was conventionally done by installing a flow meter and a pressure gauge separately, using a simple structure of the detection device.

つぎに、第4図を参照して第2発明に係る流用・圧力測
定装置を説明する。なお前述の第1発明の実施例と同じ
構造物については、同じ符号を伺して説明を省略する。
Next, a diversion/pressure measuring device according to the second invention will be explained with reference to FIG. Note that structures that are the same as those in the embodiment of the first invention described above are designated by the same reference numerals, and description thereof will be omitted.

第4図において、丁字形のアーム(1)の垂直バー(2
)には、下端が閉塞した穴(15)が設けられており、
この穴(15)の中に温度センサ(16)が挿入されて
いる。
In Figure 4, the vertical bar (2) of the T-shaped arm (1) is shown.
) is provided with a hole (15) whose lower end is closed,
A temperature sensor (16) is inserted into this hole (15).

これにより新たに温度計測のための構造物を用意するこ
となく、流量、圧力、温度の計ll1llが同時に可能
となり、温度、圧力がともに変動する流体の質量流量の
計?Illが、従来に比べて低コストで可能となる。
This makes it possible to simultaneously measure flow rate, pressure, and temperature without preparing a new structure for temperature measurement. Ill becomes possible at lower cost than before.

なお質量流量を自動的に計測するには、2個の荷正セン
サ(5)  、 (8)と温度センサ(1B)の信号を
マイクロプロセッサ等と用いてul l’J、処理する
ようにすればよい。
In order to automatically measure the mass flow rate, the signals from the two load sensors (5) and (8) and the temperature sensor (1B) must be processed using a microprocessor, etc. Bye.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本第1発明では、簡単な構造により
、流体のt’M度が一定の時の該流体の流量と、該流体
の圧力を同時に測定でき、本第2発明では簡単な構造に
より、流体の圧力と温度が共に変動するll!jの該流
体の流11と、該流体の圧力、温度を同時に測定するこ
とができる。
As explained above, in the first invention, the flow rate of the fluid when the t'M degree of the fluid is constant and the pressure of the fluid can be measured simultaneously with a simple structure, and the second invention has a simple structure. The pressure and temperature of the fluid both fluctuate due to ll! The flow 11 of the fluid of j, the pressure and temperature of the fluid can be measured simultaneously.

このように本発明によれば、質量流量の測定において従
来のように多くの装置が必要なく、質量流量の測定にお
ける設備費のコストダウンを図れる。
As described above, according to the present invention, it is not necessary to use as many devices as in the past for measuring mass flow rate, and it is possible to reduce the equipment cost for measuring mass flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本第1発明の実施例の流量・圧力側5を装置の
側断面図(第2図のA−A線断面図)、第2図は上’3
Q Ii、量・圧力測定装置の正面IA、第3図は他の
実施例の流量・圧力測定装置の側断面図、第4図は本第
2発明の実施例の流量・圧力Jlll定装置、ffの側
断面図である。 1 ・・命アーム    2嗜・・垂直バユ3@・・水
平バー   4・や・受圧板5.6 ・・荷正センサ 
 7,8 φ・支ヰ18・―嗜’庁体10 m a e
ノズル−11・・・円盤部    12・・・蛇管13
.14 働フランジ   15・拳骨穴16@争ψ温度
センサ
Fig. 1 is a side sectional view of the device showing the flow rate/pressure side 5 of the embodiment of the first invention (a sectional view taken along the line A-A in Fig. 2);
Q Ii, front view IA of the quantity/pressure measuring device, FIG. 3 is a side sectional view of the flow rate/pressure measuring device of another embodiment, FIG. 4 is the flow rate/pressure Jllll constant device of the embodiment of the second invention, ff is a side cross-sectional view. 1...Life arm 2...Vertical bay 3@...Horizontal bar 4...Pressure plate 5.6...Loading sensor
7,8 φ・Support 18・--Fu' government body 10 m a e
Nozzle-11... Disc part 12... Serpentine pipe 13
.. 14 Working flange 15・Fist bone hole 16 @Temperature sensor

Claims (2)

【特許請求の範囲】[Claims] (1)水平バーとこの水平バーの中央部より垂設された
上下方向の垂直バーを持つアームと、この垂直バーの上
部に設けられた円盤部と、上記垂直バーの下端部に設け
られた受圧板 と、上記水平バーの両端にそれぞれ一端が接続され、他
端が管路壁に剛にそれぞれ接続された2つの荷重センサ
とを備え、上記管路壁に穿設した挿入孔より上記垂直バ
ーを管路内に挿入して上記受圧板を管路内を流れる流体
の流れに正対させ、上記垂直バーに設けた円盤部と上記
挿入孔の間に上下方向に柔な接手を設けて、この挿入孔
を外気より遮断し、上記円盤部の受ける上記流体の圧力
と上記受圧板に働く流体の動圧による力とによって荷重
が印加される2つの上記荷重センサよりの出力信号に基
づき、上記管路内の上記流体の流量と圧力とを同時に測
定できるようにしたことを特徴とする流量・圧力測定装
置。
(1) A horizontal bar, an arm with a vertical vertical bar hanging vertically from the center of the horizontal bar, a disc part provided at the top of the vertical bar, and an arm provided at the bottom end of the vertical bar. A pressure receiving plate and two load sensors each having one end connected to both ends of the horizontal bar and the other end rigidly connected to the pipe wall, and the vertical A bar is inserted into the pipe line so that the pressure receiving plate faces the flow of fluid flowing inside the pipe line, and a flexible joint is provided in the vertical direction between the disk portion provided on the vertical bar and the insertion hole. , this insertion hole is isolated from the outside air, and a load is applied by the pressure of the fluid received by the disc part and the dynamic pressure of the fluid acting on the pressure receiving plate, based on output signals from the two load sensors, A flow rate/pressure measuring device characterized in that the flow rate and pressure of the fluid in the pipeline can be measured simultaneously.
(2)水平バーとこの水平バーの中央部より垂設された
上下方向の垂直バーを持つアームと、この垂直バーの上
部に設けられた円盤部と、上記垂直バーの下端部に設け
られた受圧板 と、上記水平バーの両端にそれぞれ一端が接続され、他
端が管路壁に剛にそれぞれ接続された2つの荷重センサ
と、上記水平バーの中央上部から垂直バーに穿設された
下端が閉塞した穴に収容された温度センサとを備え、上
記管路壁に穿設した挿入孔より上記垂直バーを管路内に
挿入して上記受圧板を管路内を流れる流体の流れに正対
させ、上記垂直バーに設けた円盤部と上記挿入孔の間に
上下方向に柔な接手を設けてこの挿入孔を外気より遮断
し、上記円盤部の受ける上記流体の圧力と上記受圧板に
働く流体の動圧による力とによって荷重が印加される2
つの上記荷重センサよりの出力信号から上記管路内の上
記流体の圧力と、上記温度センサよりの出力信号から上
記流体の温度とを測定し、上記荷重センサの出力と測定
したこれら圧力値と温度から上記流体の流量を測定でき
るようにしたことを特徴とする流量・圧力測定装置。
(2) A horizontal bar, an arm having a vertical vertical bar hanging vertically from the center of the horizontal bar, a disc part provided at the top of the vertical bar, and an arm provided at the bottom end of the vertical bar. A pressure receiving plate, two load sensors each having one end connected to both ends of the horizontal bar and the other end rigidly connected to the pipe wall, and a lower end bored into the vertical bar from the center top of the horizontal bar. The vertical bar is inserted into the pipe through an insertion hole drilled in the pipe wall, and the pressure receiving plate is adjusted to the flow of fluid flowing in the pipe. A flexible joint is provided in the vertical direction between the disc part provided on the vertical bar and the insertion hole to isolate the insertion hole from the outside air, and the pressure of the fluid received by the disc part and the pressure receiving plate are The load is applied by the force due to the dynamic pressure of the working fluid2
The pressure of the fluid in the pipe line is measured from the output signal from the two load sensors, and the temperature of the fluid is measured from the output signal from the temperature sensor, and the output of the load sensor and the measured pressure value and temperature are measured. A flow rate/pressure measuring device characterized in that it is capable of measuring the flow rate of the above fluid.
JP21568786A 1986-09-11 1986-09-11 Apparatus for measuring flow rate and pressure Granted JPS6370121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21568786A JPS6370121A (en) 1986-09-11 1986-09-11 Apparatus for measuring flow rate and pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21568786A JPS6370121A (en) 1986-09-11 1986-09-11 Apparatus for measuring flow rate and pressure

Publications (2)

Publication Number Publication Date
JPS6370121A true JPS6370121A (en) 1988-03-30
JPH0569368B2 JPH0569368B2 (en) 1993-09-30

Family

ID=16676491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21568786A Granted JPS6370121A (en) 1986-09-11 1986-09-11 Apparatus for measuring flow rate and pressure

Country Status (1)

Country Link
JP (1) JPS6370121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066955A3 (en) * 2000-03-08 2002-02-07 Rosemount Inc Bi-directional differential pressure flow sensor
JP2009115748A (en) * 2007-11-09 2009-05-28 Mitsubishi Heavy Ind Ltd Device for measuring hydrodynamic force
CN107990949A (en) * 2017-11-21 2018-05-04 武汉理工大学 A kind of pipeline gas/liquid body flow measurement device based on optical fiber sensing technology
KR102148009B1 (en) * 2020-01-23 2020-08-25 주식회사 피앤에이 Apparatus for measuring flow using pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066955A3 (en) * 2000-03-08 2002-02-07 Rosemount Inc Bi-directional differential pressure flow sensor
JP2009115748A (en) * 2007-11-09 2009-05-28 Mitsubishi Heavy Ind Ltd Device for measuring hydrodynamic force
CN107990949A (en) * 2017-11-21 2018-05-04 武汉理工大学 A kind of pipeline gas/liquid body flow measurement device based on optical fiber sensing technology
KR102148009B1 (en) * 2020-01-23 2020-08-25 주식회사 피앤에이 Apparatus for measuring flow using pressure sensor

Also Published As

Publication number Publication date
JPH0569368B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
US5796012A (en) Error correcting Coriolis flowmeter
JP5147844B2 (en) Process equipment with density measurement
AU616499B2 (en) Rocking beam vortex sensor
US4630478A (en) Liquid volume sensor system
US7096738B2 (en) In-line annular seal-based pressure device
EP0171937B1 (en) Flow meter
US4569232A (en) Reaction mass flowmeter
US4052903A (en) Pressure sensor
JPS6370121A (en) Apparatus for measuring flow rate and pressure
US4612814A (en) Flow meter and densitometer apparatus
US5033313A (en) Inertia force flowmeter
US4986135A (en) Apparatus and method for measuring fluid flow and density
CA1216173A (en) Flow meter and densitometer apparatus and method of operation
US4393451A (en) Method and apparatus for measuring total liquid volume flow
EP0837303A1 (en) A flow meter based on using Coriolis forces
US4739663A (en) Acoustically monitored manometer
US3635076A (en) Strain-sensing device
CN109141725A (en) pressure gauge
JP2929159B2 (en) Pressure type liquid level measuring device
JP2966356B2 (en) Mass flow meter converter
US4781070A (en) Flow meter
CN109630906A (en) A kind of detachable pipeline leakage testing device and its detection method
JPH04276519A (en) Apparatus for measuring mass flow pate of fluid
US3495464A (en) Device for measuring liquid density
CA2506399A1 (en) An apparatus and method for providing a flow measurement compensated for entrained gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term