JPH09229842A - On-line type liquid density measuring apparatus - Google Patents

On-line type liquid density measuring apparatus

Info

Publication number
JPH09229842A
JPH09229842A JP8060128A JP6012896A JPH09229842A JP H09229842 A JPH09229842 A JP H09229842A JP 8060128 A JP8060128 A JP 8060128A JP 6012896 A JP6012896 A JP 6012896A JP H09229842 A JPH09229842 A JP H09229842A
Authority
JP
Japan
Prior art keywords
liquid
density
tank
container
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8060128A
Other languages
Japanese (ja)
Inventor
Makoto Nanba
誠 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8060128A priority Critical patent/JPH09229842A/en
Publication of JPH09229842A publication Critical patent/JPH09229842A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To safely and certainly measure the density of liquid with a simple constitution calculating the density of a liquid to be inspected on the basis of the pressure difference between a tank of the liquid to be inspected and a container into which a liquid with known density is injected up to definite height and the surface level of the liquid to be inspected. SOLUTION: A differential pressure transmitter 3 detects the difference between the pressures applied to the same level of a tank 2 of a liquid to be inspected and the lower part of a pressure guide pipe 8 into which a liquid with known density is injected up to a definite height to input the same to an operational processor 7 by a signal line 6. An ultrasonic level meter 4 detects the level h1 of the liquid surface 12 of the liquid 1 to be inspected to input the same to the processor 7 by a signal line 5. The processor 7 calculates the density of the liquid 1 to be inspected by the operation based on the output signals of the transmitter 3 and the level meter 4. That is, mass and vol. can be measured from pressure, a liquid surface level and the shape of the tank 2 and, by using the data of the mass and vol. of the liquid 1 to be inspected calculated within a real time, even if a liquid level and density are changed, the density of the liquid 1 to be inspected can be measured within a real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラント等におい
て、タンク等の容器内の被検液の密度を計測するオンラ
イン式液体密度計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an online liquid density measuring system for measuring the density of a test liquid in a container such as a tank in a plant or the like.

【0002】[0002]

【従来の技術】液体の密度を計測する手段としては、従
来、気体追い出し法,浮秤法,振動法,放射線法の4種
類の手段等が知られている。 (1)気体追い出し法:この手段は、図5系統図に示す
ように、気体20を管13と管14のそれぞれ先端から
容器18内の被検液19中に追い出し、その際に、管1
3と管14の差圧を差圧伝送器3により計測するのであ
る。この手段は、この差圧が、液体密度に比例するので
差圧を計測することにより、密度を知ることができるこ
とによる。ここで、規準液16は差圧伝送器3の零点調
整のために使用し、リピーター17は管13,管14の
先端から気体20を追い出すために必要な圧力を調整す
る装置である。しかしながら、このようなシステムは構
成が複雑で、メインテナンスに手間がかかり、また、追
い出す気体20が液体(被検液)19に溶けると、液体
19の性質が変化する関係上、場合によっては気体20
は不活性ガスを用いる必要がある。さらに、本方式は測
定液が密閉されているタンクに入っている場合は、定期
的にタンク内の気体を抜く必要があるから、計測操作が
厄介である。 (2)浮秤法:この手段は、図6系統図に示すように、
浮秤21を被検液22中に沈めると、被検液22の密度
に比例した浮力が浮秤21に作用して、ばね24の弾性
力と釣り合う。このとき、浮秤21とばね24の変位を
鉄心25に伝え、鉄心25の変位を差動変圧器23によ
り電気信号に変換して計測するのである。この手段は、
ばねの伸縮と被検液の密度とが互いに比例する関係を利
用して、この変位を計測することにより、被検液の密度
を求めることができることによる。しかしながら、この
ような浮秤を用いる手段は、機械的動作を伴うので、故
障率が高いという問題がある。 (3)振動法:この手段は、内部に被検液を満たした断
面一様な計測パイプの横方向の自由振動数を計測するこ
とにより、液体の密度を計測するのである。しかしなが
ら、この手段は計測パイプを振動するという機械的動作
を伴うので、故障率が高く、また、液体と接触する部分
が多い関係で、腐食の影響を受け易い。 (4)放射線式:この手段は、ガンマ線を被検物質に当
てて、透過したガンマ線を計測することにより、物質の
密度を計測するのである。しかしながら、この手段は、
法的規制により安全管理に注意しなければならないし、
放射能を含む物質の密度は計測不可能である。
2. Description of the Related Art As a means for measuring the density of a liquid, conventionally, there are known four kinds of means such as a gas displacement method, a float balance method, a vibration method and a radiation method. (1) Gas expelling method: This means expels the gas 20 from the respective tips of the tubes 13 and 14 into the test liquid 19 in the container 18, as shown in the system diagram of FIG.
The differential pressure between the tube 3 and the tube 14 is measured by the differential pressure transmitter 3. This means is because the pressure difference is proportional to the liquid density, so that the density can be known by measuring the pressure difference. Here, the reference liquid 16 is used for adjusting the zero point of the differential pressure transmitter 3, and the repeater 17 is a device for adjusting the pressure required to expel the gas 20 from the tips of the pipes 13 and 14. However, such a system has a complicated configuration, requires time-consuming maintenance, and when the gas 20 to be expelled dissolves in the liquid (test liquid) 19, the properties of the liquid 19 change, so in some cases the gas 20
Requires the use of an inert gas. Furthermore, in this method, when the liquid to be measured is contained in a sealed tank, it is necessary to periodically remove the gas from the tank, which makes the measurement operation difficult. (2) Floating balance method: As shown in the system diagram of FIG.
When the float 21 is submerged in the test liquid 22, a buoyancy force proportional to the density of the test liquid 22 acts on the float 21 to balance the elastic force of the spring 24. At this time, the displacement of the floating balance 21 and the spring 24 is transmitted to the iron core 25, and the displacement of the iron core 25 is converted into an electric signal by the differential transformer 23 and measured. This means
This is because the density of the test liquid can be obtained by measuring this displacement by utilizing the relationship in which the expansion and contraction of the spring and the density of the test liquid are proportional to each other. However, the means using such a float scale has a problem of high failure rate because it involves mechanical operation. (3) Vibration method: This means measures the density of the liquid by measuring the free frequency in the lateral direction of the measuring pipe having a uniform cross section filled with the test liquid. However, since this means involves a mechanical operation of vibrating the measuring pipe, it has a high failure rate and is susceptible to corrosion due to the large number of parts that come into contact with the liquid. (4) Radiation method: This means measures the density of a substance by applying a gamma ray to a test substance and measuring the transmitted gamma ray. However, this means
You have to pay attention to safety management due to legal regulations,
The density of substances containing radioactivity cannot be measured.

【0003】[0003]

【発明が解決しようとする課題】このように、従来の各
計測手段においては、下記のような問題がある。 (1)気体追い出し法では: i システムが複雑で保守が大変である。 ii 追い出す気体に不活性ガスを用いると、ランニング
コストが高くなる。 iii 密閉タンク中の被検液を計測する際は、ガスを抜く
作業工程が必要となる。 (2)浮秤法では:機械的動作を伴うから、故障発生率
が高い。 (3)振動法では: i 機械的動作を伴うので、故障発生率が高い。 ii 被検液と接触する部分が多い関係で、計測システム
に対する腐食の影響が大きい。 (4)放射線法では: i ガンマ線を利用するので、法的に規制され安全管理
が厄介である。 ii 放射能を有する物質の密度計測は、物質自身がガン
マ線を放射するから、不可能である。
As described above, each conventional measuring means has the following problems. (1) In the gas purging method: i The system is complicated and maintenance is difficult. ii If an inert gas is used as the gas to be expelled, the running cost will increase. iii When measuring the test liquid in the closed tank, a work process for degassing is required. (2) In the floating balance method: Since the mechanical operation is involved, the failure rate is high. (3) In the vibration method: i The failure rate is high because it involves mechanical operation. ii Corrosion has a large effect on the measurement system because there are many parts that come into contact with the test liquid. (4) Radiation Law: i Since it uses gamma rays, it is legally regulated and safety management is difficult. ii Density measurement of radioactive materials is not possible because the materials themselves emit gamma rays.

【0004】本発明はこのような事情に鑑みて提案され
たもので、機械的動作が少なく、被検液と接触すること
なく、簡易なシステムで構成され、液体に何も添加する
ことなく、また、放射線を使用することのない、安全確
実,操作簡単かつ経済的なオンライン式液体密度計測シ
ステムを提供することを目的とする。
The present invention has been proposed in view of the above circumstances, has a small mechanical operation, does not come into contact with the test liquid, is constituted by a simple system, and does not add anything to the liquid. It is another object of the present invention to provide a safe, reliable, easy-to-use and economical online liquid density measuring system that does not use radiation.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明は、計測対象の被検液を溜め
るタンクと同タンクに上端が連通し密度が既知である液
体を一定高さ注入してある容器と、同タンクと同容器の
下部のそれぞれ同一レベルにかかる圧力の差を検出出力
する差圧伝送器と、同タンク中の被検液面のレベル検出
手段と、同差圧伝送器及び同被検液面のレベル検出手段
の出力信号に基づいて被検液の密度を求める演算処理装
置とを具えたことを特徴とする。
In order to achieve such an object, the invention of claim 1 provides a tank for storing a sample liquid to be measured, and a liquid having a known density at the upper end thereof. A container injected at a constant height, a differential pressure transmitter that detects and outputs a difference in pressure applied to the same level of the same tank and the lower part of the same container, and level detection means for the surface of the test liquid in the same tank, An arithmetic processing unit for determining the density of the test liquid based on the output signals of the differential pressure transmitter and the level detecting means of the test liquid surface.

【0006】請求項2の発明は、請求項1において、そ
のタンクの上端を大気に連通するとともに、その差圧伝
送器に下端が接するその容器を空容器としたことを特徴
とする。
The invention of claim 2 is characterized in that, in claim 1, the upper end of the tank is communicated with the atmosphere and the container whose lower end is in contact with the differential pressure transmitter is an empty container.

【0007】請求項3の発明は、請求項2において、そ
のタンクを上端が閉塞された密閉タンクとなすととも
に、その容器を上端が同タンクの上端に連通する空容器
としたことを特徴とする。
According to a third aspect of the present invention, in the second aspect, the tank is a closed tank whose upper end is closed, and the container is an empty container whose upper end communicates with the upper end of the tank. .

【0008】請求項4の発明は、請求項3において、そ
の差圧伝送器をその容器の上下端以外の部位に挿入する
とともに、同容器の上下端をそれぞれ上部ベローズ,下
部ベローズを介して同上端密閉タンクの上下端に接続
し、同容器の上記両ベローズ間に既知の密度の封水を封
入したことを特徴とする。
According to a fourth aspect of the present invention, in the third aspect, the differential pressure transmitter is inserted into a portion other than the upper and lower ends of the container, and the upper and lower ends of the container are respectively inserted through an upper bellows and a lower bellows. It is characterized in that it is connected to the upper and lower ends of an end closed tank and sealed water of a known density is enclosed between the both bellows of the same container.

【0009】[0009]

【発明の実施の形態】本発明の一実施例を図面について
説明すると、図1はその包括的全体システム図、図2,
図3,図4はそれぞれ図1の第1,第2,第3変形例を
示す縦断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG.
3 and 4 are vertical sectional views showing first, second and third modifications of FIG. 1, respectively.

【0010】まず、図1において、差圧伝送器3に入力
される差圧は、タンク2中の被検液密度をρ1 ,導圧管
8中の液体密度をρ2 とすると下記式で表される。ここ
で、導圧管8は本願発明の特許請求の範囲の記載中の
「密度が既知である液体を一定高さ注入してある容器」
に対応する枢要部材である。 差圧=ρ2 2 −ρ1 1 ただし、h1 (10),h2 (11)はそれぞれタンク
2中の被検液1の液位,導圧管8の高さである。そし
て、上記の差圧は、差圧伝送器3により電気信号に変換
され、信号ライン6によって演算処理装置7に入力され
る。一方、超音波レベル計4によって、被検液1の液面
12の位置、すなわち、h1 (10)を電気信号に変換
し、信号ライン5によって演算処理装置7に入力する。
演算処理部では下記の演算を行うことで、式(1)によ
り被検液の密度ρ1 を求めることができる。 ρ1 (被検液1の密度)=(ρ2 2 −ΔP)/h1 ・・・・・(1) ただし、ρ2 (導圧管8中の液体密度)及びh2 (導圧
管高さ8)は既知であるから一定とする。また、ΔPは
差圧伝送器3によって計測される差圧であり、被液液1
の密度が式(1)により求まるのである。
First, in FIG. 1, the differential pressure input to the differential pressure transmitter 3 is expressed by the following equation, where the test liquid density in the tank 2 is ρ 1 and the liquid density in the pressure guiding tube 8 is ρ 2. To be done. Here, the pressure guiding tube 8 is a “container in which a liquid having a known density is injected at a certain height” in the claims of the present invention.
Is a pivotal member corresponding to. Differential pressure = ρ 2 h 2 −ρ 1 h 1 , where h 1 (10) and h 2 (11) are the liquid level of the test liquid 1 in the tank 2 and the height of the pressure guiding tube 8, respectively. Then, the differential pressure is converted into an electric signal by the differential pressure transmitter 3 and input to the arithmetic processing unit 7 through the signal line 6. On the other hand, the position of the liquid surface 12 of the test liquid 1, that is, h 1 (10) is converted into an electric signal by the ultrasonic level meter 4, and is input to the arithmetic processing unit 7 through the signal line 5.
By performing the following calculation in the calculation processing section, the density ρ 1 of the test liquid can be obtained by the equation (1). ρ 1 (density of test liquid 1) = (ρ 2 h 2 −ΔP) / h 1 (1) where ρ 2 (liquid density in the pressure guiding tube 8) and h 2 (pressure guiding tube height) Since 8) is known, it is fixed. Further, ΔP is a differential pressure measured by the differential pressure transmitter 3, and the liquid 1
The density of is calculated by the equation (1).

【0011】このようなシステムにおいて、超音波レベ
ル計4によって計測されるのは被検液の液面のレベルで
ある。よってこの液面のレベルとタンク等の形状により
被検液の体積が計測可能となる。差圧伝送器3により計
測されるのは被検液の圧力であり、これとタンク等の形
状により被検液の質量が計測可能となる。これら2つの
手段により、リアルタイムで求められる被検液の体積,
質量の情報を用いて、液位,密度が変化しても、オンラ
イン・リアルタイムで被検液の密度を計測することがで
きるのである。
In such a system, the level of the test liquid is measured by the ultrasonic level meter 4. Therefore, the volume of the test liquid can be measured by the level of the liquid surface and the shape of the tank or the like. What is measured by the differential pressure transmitter 3 is the pressure of the test liquid, and the mass of the test liquid can be measured by this and the shape of the tank and the like. With these two means, the volume of the test liquid obtained in real time,
Even if the liquid level and the density change, the mass information can be used to measure the density of the test liquid online and in real time.

【0012】本発明の第1変形例を説明すると、大気開
放タンクの場合は、図2に示すように、差圧伝送器3に
入力される差圧ΔPは、タンク中の液体密度=ρ,液位
=hとすると、 ΔP=ρh となる。一方、超音波レベル計4により液位hは測定で
き、被検液の密度ρは、下記式により求まる。 ρ=ΔP/h ここで、ΔPは差圧伝送器3により測定できる。
To explain the first modification of the present invention, in the case of an atmosphere open tank, as shown in FIG. 2, the differential pressure ΔP input to the differential pressure transmitter 3 is the liquid density in the tank = ρ, If the liquid level = h, then ΔP = ρh. On the other hand, the liquid level h can be measured by the ultrasonic level meter 4, and the density ρ of the test liquid can be obtained by the following formula. ρ = ΔP / h Here, ΔP can be measured by the differential pressure transmitter 3.

【0013】本発明の第2変形例を説明すると、図3に
示す構造において、下記式により、ΔP及びhに基づい
て被検液の密度ρを求めることができる。 ΔP=ρh この第2変形例では、導圧管8に液体は存在しない。そ
れ故、 ρ=ΔP/h 上式に基づいて、演算処理装置7による演算が行われ、
その密度ρが求まる。本変形例の場合は、第1実施例の
大気開放タンクの場合と実質的に同一となる。
Explaining the second modified example of the present invention, in the structure shown in FIG. 3, the density ρ of the test liquid can be obtained based on ΔP and h by the following equation. ΔP = ρh In this second modified example, no liquid exists in the pressure guiding tube 8. Therefore, ρ = ΔP / h is calculated by the arithmetic processing unit 7 based on the above equation,
The density ρ is obtained. In the case of this modification, it is substantially the same as the case of the atmosphere open tank of the first embodiment.

【0014】本発明の第3変形例では、図4に示す構造
において、 被検液の液位 h(超音波レベル計より計測) 封水の密度 ρk(既知) 封水の高さ hk(既知) 被検液の密度 ρ 差圧 ΔP(差圧伝送器により計測) とすると、被検液の密度ρは下記式により求まるのであ
る。 ρ=|ρk・hk−ΔP|/h この第3変形例では、上下端がそれぞれベローズもしく
はダイアフラムシールを介して被検液タンク2の上下端
に接続されており、両ベローズ間のキャピラリチューブ
(ハッチング)には封水が封入されている。このような
第3変形例によれば、被検液に直接接触することなく封
水を介して差圧を計測でき、その結果、被検液の密度を
求めることができる。
In the third modification of the present invention, in the structure shown in FIG. 4, the liquid level h of the test liquid (measured by an ultrasonic level meter) the density of sealed water ρk (known) the height of sealed water hk (known) ) Density ρ of the test liquid ρ is a differential pressure ΔP (measured by a differential pressure transmitter), the density ρ of the test liquid is obtained by the following formula. ρ = | ρk · hk−ΔP | / h In this third modified example, the upper and lower ends are connected to the upper and lower ends of the test liquid tank 2 via a bellows or a diaphragm seal, respectively, and a capillary tube between the bellows ( The hatching is filled with sealing water. According to such a third modified example, the differential pressure can be measured through the sealed water without directly contacting the test liquid, and as a result, the density of the test liquid can be obtained.

【0015】このような第3変形例によれば、下記の効
果が奏せられる。 (1)システムが簡単であるとともに、機械的動作が少
ないので、信頼性が高く、関係部材が被検液と接触する
ことがないから腐食されにくい。 (2)被検液に何も添加しないので、被検液の性質に影
響を与えず、放射線を利用しないので、法的規制を受け
ず、さらに放射能を含む被検液であっても、オンライン
・リアルタイムでその密度の計測が可能である。
According to such a third modified example, the following effects can be obtained. (1) The system is simple, and the mechanical operation is small, so that the reliability is high and the related members do not come into contact with the test liquid, so that corrosion is less likely to occur. (2) Since nothing is added to the test solution, it does not affect the properties of the test solution and does not use radiation, so it is not subject to legal restrictions, and even if the test solution contains radioactivity, The density can be measured online and in real time.

【0016】[0016]

【発明の効果】要するに、請求項1の発明によれば、計
測対象の被検液を溜めるタンクと、同タンクに上端が連
通し密度が既知である液体を一定高さ注入してある容器
と、同タンクと同容器の下部のそれぞれ同一レベルにか
かる圧力の差を検出出力する差圧伝送器と、同タンク中
の被検液面のレベル検出手段と、同差圧伝送器及び同被
検液面のレベル検出手段の出力信号に基づいて被検液の
密度を求める演算処理装置とを具えたことにより、機械
的動作が少なく、被検液と接触することなく、簡易なシ
ステムで構成され、被検液に何も添加することなく、ま
た、放射線を使用することのない、安全確実,操作簡単
かつ経済的なオンライン式液体密度計測システムを得る
から、本発明は産業上極めて有益なものである。
In summary, according to the first aspect of the invention, a tank for storing the test liquid to be measured, and a container in which a liquid having a known density is injected into the tank at a certain height are injected. , A differential pressure transmitter for detecting and outputting the difference in pressure applied to the same level in the same tank and the lower part of the same container, level detection means for the liquid level in the same tank, the same differential pressure transmitter and the same test object. By having an arithmetic processing unit for obtaining the density of the test liquid based on the output signal of the liquid level detecting means, the mechanical operation is small, and the test liquid does not come into contact with the simple system. The present invention is extremely useful in industry because it provides a safe, reliable, easy-to-use and economical online liquid density measuring system without adding anything to a test liquid and without using radiation. Is.

【0017】請求項2の発明によれば、請求項1におい
て、そのタンクの上端を大気に連通するとともに、その
差圧伝送器に下端が接するその容器を空容器としたこと
により、機械的動作が少なく、被検液と接触することな
く、簡易なシステムで構成され、被検液に何も添加する
ことなく、また、放射線を使用することのない、安全確
実,操作簡単かつ経済的なオンライン式液体密度計測シ
ステムを得るから、本発明は産業上極めて有益なもので
ある。
According to the invention of claim 2, in claim 1, the upper end of the tank is communicated with the atmosphere and the container whose lower end is in contact with the differential pressure transmitter is an empty container. Consists of a simple system that does not come into contact with the test solution, does not add anything to the test solution, and does not use radiation, safe and reliable, easy to operate and economical online The present invention is extremely useful in the industry because a liquid density measuring system is obtained.

【0018】請求項3の発明によれば、請求項2におい
て、そのタンクを上端が閉塞された密閉タンクとなすと
ともに、その容器を上端が同タンクの上端に連通する空
容器としたことにより、機械的動作が少なく、被検液と
接触することなく、簡易なシステムで構成され、被検液
に何も添加することなく、また、放射線を使用すること
のない、安全確実,操作簡単かつ経済的なオンライン式
液体密度計測システムを得るから、本発明は産業上極め
て有益なものである。
According to the invention of claim 3, in claim 2, the tank is a closed tank whose upper end is closed, and the container is an empty container whose upper end communicates with the upper end of the tank. There are few mechanical operations, it does not come into contact with the test solution, it is composed of a simple system, it does not add anything to the test solution, it does not use radiation, it is safe, reliable, easy to operate and economical. The present invention is extremely useful in the industry because it obtains a conventional on-line liquid density measuring system.

【0019】請求項4の発明によれば、請求項3におい
て、その差圧伝送器をその容器の上下端以外の部位に挿
入するとともに、同容器の上下端をそれぞれ上部ベロー
ズ,下部ベローズを介して同上端密閉タンクの上下端に
接続し、同容器の上記両ベローズ間に既知の密度の封水
を封入したことにより、機械的動作が少なく、被検液が
封水と接触することなく、簡易なシステムで構成され、
被検液に何も添加することなく、また、放射線を使用す
ることのない、安全確実,操作簡単かつ経済的なオンラ
イン式液体密度計測システムを得るから、本発明は産業
上極めて有益なものである。
According to the fourth aspect of the present invention, in the third aspect, the differential pressure transmitter is inserted into a portion other than the upper and lower ends of the container, and the upper and lower ends of the container are respectively inserted through the upper bellows and the lower bellows. Connected to the upper and lower ends of the same upper closed tank, by sealing water of known density between both bellows of the container, mechanical operation is small, the test liquid does not come into contact with sealing water, It consists of a simple system,
INDUSTRIAL APPLICABILITY The present invention is extremely useful in industry because it provides a safe, reliable, easy-to-use and economical online liquid density measuring system that does not add anything to the test liquid and does not use radiation. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例に係る液体密度の計測用シス
テム図である。
FIG. 1 is a system diagram for measuring a liquid density according to an embodiment of the present invention.

【図2】図1のシステムを大気開放タンクに適用した第
1変形例を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a first modified example in which the system of FIG. 1 is applied to an atmosphere open tank.

【図3】図1のシステムを蒸発しない温度特性を有する
被検液に適用した第2変形例を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a second modified example in which the system of FIG. 1 is applied to a test liquid having a temperature characteristic that does not evaporate.

【図4】図1のシステムを差圧伝送器と被検液とが直接
接触しないようにした第3変形例を示す縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view showing a third modified example of the system of FIG. 1 in which the differential pressure transmitter and the test liquid do not come into direct contact with each other.

【図5】従来の気体追い出し法による液体密度の計測シ
ステム図である。
FIG. 5 is a diagram of a liquid density measurement system according to a conventional gas purging method.

【図6】従来の浮秤法による液体密度計測システム図で
ある。
FIG. 6 is a diagram of a liquid density measuring system by a conventional float balance method.

【符号の説明】[Explanation of symbols]

1 被検液 2 被検液タンク 3 差圧伝送器 4 超音波レベル計 5 信号ライン 6 信号ライン 7 演算処理装置 8 導圧管(容器) 9 最高液位 10 被検液面の高さ 11 導圧管8の高さ 12 被検液面 ρ1 被検液密度 ρ2 導圧管8中の液体密度 h1 被検液1の液位 h2 導圧管8の液位1 Test Liquid 2 Test Liquid Tank 3 Differential Pressure Transmitter 4 Ultrasonic Level Meter 5 Signal Line 6 Signal Line 7 Arithmetic Processor 8 Pressure Pipe (Container) 9 Maximum Liquid Level 10 Height of Test Liquid Surface 11 Pressure Pipe Height of 8 12 Test liquid surface ρ 1 Test liquid density ρ 2 Liquid density in pressure guiding tube h 1 Liquid level of test liquid 1 h 2 Liquid level of pressure guiding tube 8

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 計測対象の被検液を溜めるタンクと、同
タンクに上端が連通し密度が既知である液体を一定高さ
注入してある容器と、同タンクと同容器の下部のそれぞ
れ同一レベルにかかる圧力の差を検出出力する差圧伝送
器と、同タンク中の被検液面のレベル検出手段と、同差
圧伝送器及び同被検液面のレベル検出手段の出力信号に
基づいて被検液の密度を求める演算処理装置とを具えた
ことを特徴とするオンライン式液体密度計測システム。
1. A tank for storing a test liquid to be measured, a container in which an upper end communicates with the tank and a liquid of known density is injected at a certain height, and the same tank and the lower part of the container are the same. Based on the differential pressure transmitter for detecting and outputting the difference in pressure applied to the level, the level detection means for the surface of the test liquid in the same tank, and the output signals of the differential pressure transmitter and the level detection means for the same surface of the test liquid. An on-line type liquid density measuring system, comprising: an arithmetic processing unit for obtaining the density of a test liquid.
【請求項2】 請求項1において、そのタンクの上端を
大気に連通するとともに、その差圧伝送器に下端が接す
るその容器を空容器としたことを特徴とするオンライン
式液体密度計測システム。
2. The on-line liquid density measuring system according to claim 1, wherein the container has an upper end communicating with the atmosphere and a lower end in contact with the differential pressure transmitter is an empty container.
【請求項3】 請求項2において、そのタンクを上端が
閉塞された密閉タンクとなすとともに、その容器を上端
が同タンクの上端に連通する空容器としたことを特徴と
するオンライン式液体密度計測システム。
3. The on-line liquid density measurement according to claim 2, wherein the tank is a closed tank whose upper end is closed and the container is an empty container whose upper end communicates with the upper end of the tank. system.
【請求項4】 請求項3において、その差圧伝送器をそ
の容器の上下端以外の部位に挿入するとともに、同容器
の上下端をそれぞれ上部ベローズ,下部ベローズを介し
て同上端密閉タンクの上下端に接続し、同容器の上記両
ベローズ間に既知の密度の封水を封入したことを特徴と
するオンライン式液体密度計測システム。
4. The differential pressure transmitter according to claim 3, wherein the differential pressure transmitter is inserted into a portion other than the upper and lower ends of the container, and the upper and lower ends of the container are inserted into an upper bellows and a lower bellows, respectively, and above and below the upper end closed tank. An online liquid density measuring system, characterized in that it is connected to an end and sealed water of a known density is enclosed between the bellows of the container.
JP8060128A 1996-02-22 1996-02-22 On-line type liquid density measuring apparatus Withdrawn JPH09229842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8060128A JPH09229842A (en) 1996-02-22 1996-02-22 On-line type liquid density measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8060128A JPH09229842A (en) 1996-02-22 1996-02-22 On-line type liquid density measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09229842A true JPH09229842A (en) 1997-09-05

Family

ID=13133196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8060128A Withdrawn JPH09229842A (en) 1996-02-22 1996-02-22 On-line type liquid density measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09229842A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050400A1 (en) * 2005-10-19 2007-04-26 Endress + Hauser Gmbh + Co. Kg Device for determining and/or monitoring the weight of a medium in a container used in measuring and automation systems comprises a level measuring unit, a density measuring unit and an evaluation unit
EP2261612A1 (en) * 2005-11-07 2010-12-15 M.D.C.E. Bvba Direct hopper measuring method and device
CN103868822A (en) * 2013-07-29 2014-06-18 北京朗新明环保科技有限公司 Density determination device for slurry in wet desulfurization absorption tower
CN105675437A (en) * 2015-12-29 2016-06-15 长沙学院 Displacement difference solution density measuring equipment and measuring equipment thereof
CN107305176A (en) * 2016-04-20 2017-10-31 毕托巴(上海)科技有限公司 The measurement apparatus of oil plant averag density in a kind of oil tank
CN107314798A (en) * 2017-07-20 2017-11-03 防城港市港口区天平电子科技有限公司 It is a kind of to judge the system of coal water slurry storage tank falsity water level
CN107796476A (en) * 2017-11-13 2018-03-13 山东科技大学 It is a kind of to be used for the device and method of material position and measurement of concetration in concentrator
CN111579021A (en) * 2020-04-21 2020-08-25 汕头大学医学院 Capacitance liquid level type volume density meter, testing method, image pickup method, and storage medium
CN114111955A (en) * 2021-12-09 2022-03-01 辽宁毕托巴科技股份有限公司 Metering device for volume and mass of oil in transportation oil tank
CN114526787A (en) * 2022-03-03 2022-05-24 广州机觉云物联科技有限公司 Device for improving online service life of liquid level sensor in easily attached slurry

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050400A1 (en) * 2005-10-19 2007-04-26 Endress + Hauser Gmbh + Co. Kg Device for determining and/or monitoring the weight of a medium in a container used in measuring and automation systems comprises a level measuring unit, a density measuring unit and an evaluation unit
EP2261612A1 (en) * 2005-11-07 2010-12-15 M.D.C.E. Bvba Direct hopper measuring method and device
EP1783466B1 (en) * 2005-11-07 2013-08-21 M.D.C.E. Bvba Direct hopper measuring method and device
CN103868822A (en) * 2013-07-29 2014-06-18 北京朗新明环保科技有限公司 Density determination device for slurry in wet desulfurization absorption tower
CN105675437A (en) * 2015-12-29 2016-06-15 长沙学院 Displacement difference solution density measuring equipment and measuring equipment thereof
CN107305176A (en) * 2016-04-20 2017-10-31 毕托巴(上海)科技有限公司 The measurement apparatus of oil plant averag density in a kind of oil tank
CN107314798A (en) * 2017-07-20 2017-11-03 防城港市港口区天平电子科技有限公司 It is a kind of to judge the system of coal water slurry storage tank falsity water level
CN107796476A (en) * 2017-11-13 2018-03-13 山东科技大学 It is a kind of to be used for the device and method of material position and measurement of concetration in concentrator
CN111579021A (en) * 2020-04-21 2020-08-25 汕头大学医学院 Capacitance liquid level type volume density meter, testing method, image pickup method, and storage medium
CN114111955A (en) * 2021-12-09 2022-03-01 辽宁毕托巴科技股份有限公司 Metering device for volume and mass of oil in transportation oil tank
CN114526787A (en) * 2022-03-03 2022-05-24 广州机觉云物联科技有限公司 Device for improving online service life of liquid level sensor in easily attached slurry

Similar Documents

Publication Publication Date Title
USRE40095E1 (en) Correction of coriolis flowmeter measurements due to multiphase flows
US4144754A (en) Multiphase fluid flow meter
US20060266127A1 (en) Apparatus and method for fiscal measuring of an aerated fluid
US20160313160A1 (en) Apparatus and method for determining concentrations of components of a gas mixture
JPH09229842A (en) On-line type liquid density measuring apparatus
US10088454B2 (en) Speed of sound and/or density measurement using acoustic impedance
US20190072524A1 (en) Speed of sound and/or density measurement using acoustic impedance
US3460394A (en) Liquid density measuring method and apparatus
US4043178A (en) Hydrogen probe system
US4531405A (en) Method and device for measuring the level of a fluid inside of a container
WO2002077635A2 (en) Method for determining relative amounts of constituents in a multiphase flow
US9593978B2 (en) Device and method for measuring mass flow rate of fluids
US3486370A (en) Method and device for measuring the gas content of a flowing two-phase mixture
US4602498A (en) Densitometer
JP2002236084A (en) Method and device for measuring concentration of mixed suspended matter
Baik et al. Investigation of a method for real time quantification of gas bubbles in pipelines
US4739663A (en) Acoustically monitored manometer
RU2710007C1 (en) Bypass level gauge
US20240011806A1 (en) Flow measurement device
US3345881A (en) Method and means for measuring fluid density
JPH11183404A (en) Densitometer
SA112340090B1 (en) A system and method for enhancing corrosion rate determination in process equipment using a telescoping/rotating sensor
CA1319540C (en) Apparatus for measuring the density of a liquid, or of a suspension of solids in a liquid
CA1167162A (en) Method and device for measuring the density of fluids, particularly dredgings
SU1312426A1 (en) Method of determining dimensions of leak

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506