JPH11234079A - Chip-type piezoelectric component - Google Patents

Chip-type piezoelectric component

Info

Publication number
JPH11234079A
JPH11234079A JP3164498A JP3164498A JPH11234079A JP H11234079 A JPH11234079 A JP H11234079A JP 3164498 A JP3164498 A JP 3164498A JP 3164498 A JP3164498 A JP 3164498A JP H11234079 A JPH11234079 A JP H11234079A
Authority
JP
Japan
Prior art keywords
chip
piezoelectric element
sealing
electrode
element plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164498A
Other languages
Japanese (ja)
Inventor
Noboru Isaki
暢 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3164498A priority Critical patent/JPH11234079A/en
Publication of JPH11234079A publication Critical patent/JPH11234079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a chip-type piezoelectric component where sealing plates are stacked on both faces of a piezoelectric element plate. SOLUTION: Conductor layers 61a, 61b, 62a and 62b are formed on terminal electrodes 51 and 52 which are the main faces of a piezoelectric element plate 10. Sealing plates 21 and 22 are stacked on both faces of the piezoelectric element plate, where the conductor layers are formed with insulating adhesive. Adhesive is inserted between the conductor layer and the sealing plates. The conductor layers and the terminal electrodes on the piezoelectric element plate are connected electrically to mounted electrodes 31a and 31b provided for the sealing plates. It is preferable that the thickness of the conductor layers be 3-100 μm, and the shortest distance between the conductor layers and the vibration clearance part of the sealing plates be not less than 100 μm. The conductor layers may be formed on the whole terminal electrodes. Thus, the reliability of electrical connections is improved while mechanical strength and sealing ability are held.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、圧電共振子や圧電フィル
タ等のチップ型圧電部品に関し、特に、信頼性を向上さ
せることができるチップ型圧電部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip-type piezoelectric component such as a piezoelectric resonator and a piezoelectric filter, and more particularly to a chip-type piezoelectric component capable of improving reliability.

【0002】[0002]

【従来の技術】圧電部品においては、従来より、圧電素
子板の保護あるいは不要振動を抑圧することを目的とし
て、振動電極が形成された圧電素子板の両主面に封止板
が接着され、封止板の外周部に実装用の外部電極が形成
されたチップ型圧電部品が用いられている。このような
圧電部品は、圧電素子を容器に封入した構成の圧電部品
に比べて、サイズを小型化することができるので、実装
スペースの削減を図ることができる。このようなチップ
型圧電部品を作製するためには、圧電素子板と封止板と
を積層した後、圧電素子板上の端子電極(すなわち、引
き出し電極)と封止板上の実装用電極(すなわち、外部
電極)とを電気的に接続する必要がある。この電気的接
続は、圧電素子板上の端子電極の断面を用いて接続する
ことになるが、端子電極を蒸着等により形成した場合に
は、電極の断面積が極めて狭いため、電気的接続の接続
面積も狭小になってしまう。したがって、電気的接続の
不良等の問題が生じてしまい、信頼性が低下してしまう
という問題点がある。
2. Description of the Related Art Conventionally, in piezoelectric components, sealing plates have been bonded to both main surfaces of a piezoelectric element plate on which vibrating electrodes are formed for the purpose of protecting the piezoelectric element plate or suppressing unnecessary vibration. A chip-type piezoelectric component having an external electrode for mounting formed on an outer peripheral portion of a sealing plate is used. Such a piezoelectric component can be reduced in size as compared with a piezoelectric component having a configuration in which a piezoelectric element is sealed in a container, so that the mounting space can be reduced. In order to manufacture such a chip-type piezoelectric component, a piezoelectric element plate and a sealing plate are laminated, and then a terminal electrode (ie, a lead electrode) on the piezoelectric element plate and a mounting electrode ( That is, it is necessary to electrically connect the external electrodes). This electrical connection is made using the cross section of the terminal electrode on the piezoelectric element plate. However, when the terminal electrode is formed by vapor deposition or the like, the cross-sectional area of the electrode is extremely small. The connection area is also reduced. Therefore, there is a problem that a problem such as a defective electrical connection occurs and reliability is reduced.

【0003】このような問題点を解決するために、以下
の従来例1及び2のチップ型圧電部品が提案されてい
る。 従来例1:図3に示すように、振動空隙部7が設けられ
た封止板2の2つの端辺の中央部に、凹部8a、8b
(または、切り欠き部でもよい)を形成している。他方
の封止板も同様の構成を有している。そして、該凹部8
a、8bにおいて導電体により圧電素子板上の端子電極
と封止板2上の実装用電極とを電気的に接続する。この
ように構成することにより、圧電素子板上の端子電極を
封止板の凹部8a、8bに露出させることができるの
で、電極の接続面積を大きくすることができる。よっ
て、電気的接続の信頼性を改善することができる。(実
開平4−34017号公報参照) 従来例2:圧電素子板と封止板とを接着するための接着
剤を、端子電極近傍では導電性接着剤とし、それ以外は
絶縁性接着剤とし、それにより、電気的接続の信頼性を
改善する。(特開平3−265207号公報参照)
In order to solve such problems, the following chip-type piezoelectric components of Conventional Examples 1 and 2 have been proposed. Conventional example 1: As shown in FIG. 3, concave portions 8a and 8b are provided at the center portions of two end sides of the sealing plate 2 provided with the vibration gap portion 7.
(Or notches). The other sealing plate has a similar configuration. And the concave portion 8
In a and 8b, the terminal electrode on the piezoelectric element plate and the mounting electrode on the sealing plate 2 are electrically connected by a conductor. With such a configuration, the terminal electrodes on the piezoelectric element plate can be exposed to the concave portions 8a and 8b of the sealing plate, so that the connection area of the electrodes can be increased. Therefore, the reliability of the electrical connection can be improved. (See Japanese Utility Model Application Laid-Open No. 4-34017) Conventional Example 2: An adhesive for bonding the piezoelectric element plate and the sealing plate is a conductive adhesive in the vicinity of the terminal electrode, and the other is an insulating adhesive. Thereby, the reliability of the electrical connection is improved. (See JP-A-3-265207)

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来例1のチップ型圧電部品においては、端子電極と
外部電極との電気的接続を行っている凹部または切り欠
き部で、封止板が薄くなっているかまたは圧電素子板が
露出している。したがって、該チップ型圧電部品の実装
時や他の部品との接触等により、この凹部または切り欠
き部に衝撃が加わって損傷または破損が生じてしまう恐
れがある。このような損傷または破損が生じると、電気
的接続の信頼性が損なわれてしまうとともに、破損部か
ら亀裂が進行してしまい、封止性が損なわれてしまう。
また、端子電極と外部電極との電気的接続を導電性接着
剤により行っている従来例2のチップ型圧電部品におい
ては、導電性接着剤が絶縁性接着剤と比べて一般に接着
強度が低いことから、衝撃等で剥離しやすいという問題
点があり、電気的接続及び封止性の信頼性を十分に満足
するものではない。さらに、導電性と絶縁性との2種類
の接着剤を精度よく塗布する必要があるので、製造時に
接着剤を塗布する際に注意を払う必要がある。
However, in the above-described chip type piezoelectric component of the prior art example 1, the sealing plate is thin due to the concave portion or the notch portion for electrically connecting the terminal electrode and the external electrode. Or the piezoelectric element plate is exposed. Therefore, when the chip-type piezoelectric component is mounted or when it comes into contact with another component, an impact may be applied to the concave portion or the cutout portion to cause damage or breakage. When such damage or breakage occurs, the reliability of the electrical connection is impaired, and cracks progress from the damaged portion, thereby impairing the sealing property.
Further, in the chip-type piezoelectric component of Conventional Example 2 in which the electrical connection between the terminal electrode and the external electrode is made by the conductive adhesive, the conductive adhesive generally has a lower adhesive strength than the insulating adhesive. Therefore, there is a problem that the film is easily peeled off by an impact or the like, and the reliability of the electrical connection and the sealing property is not sufficiently satisfied. Further, since it is necessary to apply two types of adhesives, that is, conductive and insulating, with high precision, it is necessary to pay attention when applying the adhesive during manufacturing.

【0005】以上のように、従来例のチップ型圧電部品
は、電気的接続、封止性、及び機械的強度の信頼性、さ
らには、製造の容易性等において、必ずしも十分に満足
できるものではなかった。本発明はこのような従来例の
問題点に鑑みなされたものであり、その目的は、電気的
接続、封止性、及び機械的強度の信頼性が高く、しかも
製造が容易なチップ型圧電部品を提供することである。
[0005] As described above, the conventional chip-type piezoelectric components are not always sufficiently satisfactory in electrical connection, sealing performance, reliability of mechanical strength, and easiness of manufacture. Did not. The present invention has been made in view of the problems of the conventional example, and has as its object to provide a chip-type piezoelectric component that has high reliability in electrical connection, sealing property, and mechanical strength, and that is easy to manufacture. It is to provide.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ために、本発明のチップ型圧電部品は、圧電素子板に形
成された端子電極の上の少なくとも実装用電極との接続
部近傍に導電体層を形成して、該導電体層及び端子電極
が実装用電極と電気的に接続されるようにし、かつ該導
電体層と封止板とを絶縁性接着剤で接着したことを特徴
としている。本発明のチップ型圧電部品においては、導
電体層と封止板の振動空隙部との間の最短距離は該導電
体層の厚みより大きく設定することが好ましく、特に、
導電体の厚みを3〜100μm、導電体層と封止板の振
動空隙部との間の最短距離を100μm以上とすること
が好ましい。
In order to achieve the above-mentioned object, a chip-type piezoelectric component according to the present invention is characterized in that a conductive material is provided at least in the vicinity of a connection portion with a mounting electrode on a terminal electrode formed on a piezoelectric element plate. Forming a body layer so that the conductor layer and the terminal electrode are electrically connected to the mounting electrode, and wherein the conductor layer and the sealing plate are bonded with an insulating adhesive. I have. In the chip-type piezoelectric component of the present invention, the shortest distance between the conductor layer and the vibration gap of the sealing plate is preferably set to be larger than the thickness of the conductor layer, particularly,
It is preferable that the thickness of the conductor is 3 to 100 μm, and the shortest distance between the conductor layer and the vibration gap of the sealing plate is 100 μm or more.

【0007】[0007]

【発明の実施の態様】図1は、本発明の一実施例のチッ
プ型圧電部品を示しており、図1の(A)は該部品の外
観斜視図、(B)は該チップ型部品中の圧電素子板の斜
視図である。図中、10は圧電素子板、21、22は圧
電素子板10を挟んで積層された封止板、31a、31
bは実装用電極、41、42は圧電素子板の表裏に形成
された振動電極、51、52は端子電極(引き出し電
極)を表している。圧電素子板10上の端子電極51、
52それぞれの両側部には、該端子電極上に導電性物質
を重ね塗りすることにより形成された導電体層61a、
61b、62a、62bが設けられている。また、これ
らの導電体層と封止板21、22との間にも、圧電素子
板と封止板とを積層し接着するための絶縁性接着剤が介
在している。導電体層は、図1の(B)に示したよう
に、圧電素子板10の表裏それぞれの面の2つの隅に形
成する代わりに、図2に示すように、端子電極51、5
2全体を覆うように長方形に形成してもよく、更に、任
意の形状にしてもよい。
FIG. 1 shows a chip-type piezoelectric component according to an embodiment of the present invention. FIG. 1 (A) is an external perspective view of the component, and FIG. 1 (B) is a perspective view of the chip-type component. It is a perspective view of the piezoelectric element plate of FIG. In the figure, 10 is a piezoelectric element plate, 21 and 22 are sealing plates laminated with the piezoelectric element plate 10 interposed therebetween, 31a and 31
b denotes a mounting electrode, 41 and 42 denote vibration electrodes formed on the front and back of the piezoelectric element plate, and 51 and 52 denote terminal electrodes (lead electrodes). A terminal electrode 51 on the piezoelectric element plate 10,
52, a conductor layer 61a formed by applying a conductive material on the terminal electrode,
61b, 62a and 62b are provided. An insulating adhesive for laminating and bonding the piezoelectric element plate and the sealing plate is also interposed between these conductor layers and the sealing plates 21 and 22. As shown in FIG. 1B, the conductor layers are not formed at the two corners of each of the front and back surfaces of the piezoelectric element plate 10, but as shown in FIG.
2 may be formed in a rectangular shape so as to cover the entirety, and may be formed in an arbitrary shape.

【0008】導電体層61a、61b、62a、62b
(又は、61、62)は、その厚さが3〜100μm程
度に設定することが好ましい。これは、次の理由による
ものである。封止板と圧電素子板とを接着するために4
0〜50μm程度の厚さの絶縁性接着剤が用いられてい
ることから、導電体層を100μmを越える厚さにする
と、絶縁性接着剤がその流動特性によって導電体層の周
囲に流れ込まない空乏部分ができてしまい、これによ
り、部品の封止性を悪化させてしまう。また、導電体層
を3μm未満にすると、重ね塗りの効果が十分ではな
く、電気的接続の十分な信頼性が得られない。
The conductor layers 61a, 61b, 62a, 62b
(Or 61, 62) preferably has a thickness of about 3 to 100 μm. This is for the following reason. 4 to adhere the sealing plate and the piezoelectric element plate
Since an insulating adhesive having a thickness of about 0 to 50 μm is used, when the thickness of the conductive layer exceeds 100 μm, the insulating adhesive does not flow into the periphery of the conductive layer due to its flow characteristics. A portion is formed, thereby deteriorating the sealing property of the component. On the other hand, if the thickness of the conductor layer is less than 3 μm, the effect of the recoating is not sufficient, and sufficient reliability of the electrical connection cannot be obtained.

【0009】また、圧電素子板10と封止板21、22
とを積層した状態で、導電体層が封止板21、22の振
動空隙部の端から100μm以上離れていることが好ま
しい。これは、導電体層の周囲に接着剤が流れ込まない
空乏部分が生じたとしても、導電体層の厚さが100μ
m以下であるから、空乏部分の範囲は該導電体層の端か
ら高々100μmとなり、したがって、振動空隙部から
100μm以上離れて導電体層を形成すれば、振動空隙
部と空乏部分との間に絶縁性接着剤で密着された部分が
必ず形成されて、封止性を保つことができるからであ
る。導電体層を振動空隙部の100μm以内に近づける
と、封止性が悪化してしまい、信頼性を低下させてしま
う恐れがある。これらの導電体層は、低温で硬化する銀
ペースト、導電性接着剤等によって形成される。
The piezoelectric element plate 10 and the sealing plates 21 and 22
It is preferable that the conductor layer is separated from the ends of the vibration gaps of the sealing plates 21 and 22 by 100 μm or more in a state where the layers are stacked. This is because even when a depletion portion where the adhesive does not flow around the conductor layer occurs, the thickness of the conductor layer is 100 μm.
m, the range of the depletion portion is at most 100 μm from the end of the conductor layer. Therefore, if the conductor layer is formed at a distance of 100 μm or more from the vibration gap, the gap between the vibration gap and the depletion portion This is because a portion closely contacted with the insulating adhesive is always formed, and the sealing property can be maintained. If the conductor layer is brought within 100 μm of the vibration gap, the sealing property will be deteriorated, and the reliability may be reduced. These conductor layers are formed by a silver paste, a conductive adhesive, or the like that cures at a low temperature.

【0010】本発明のチップ型圧電部品は、基本的に
は、以下のステップa〜fにより形成される。 a.圧電素子板10の両主面にそれぞれ、振動電極4
1、42及び端子電極51、52からなる電極パターン
を形成する。 b.端子電極51、52上に導電体層61a、61b、
62a、62b又は、61、62を形成する。 c.振動電極41、42と対向する位置に窪みすなわち
振動空隙部を有する封止板を形成する。 d.封止板21、22に実装用電極31a、31bを形
成する。 e.圧電素子板10の両面に封止板21、22を積層し
接着する。 f.圧電素子板10の端子電極51、52と封止板2
1、22の実装用電極31a、31bとを電気的に接続
する。 ステップa〜fは、必ずしもその順番である必要がない
ことは明らかであろう。例えば、ステップa及びbより
前にステップc及びdを実行してもよく、また、同時に
実行してもよい。さらに、ステップdはステップcより
も先に実行してもよい。
The chip-type piezoelectric component of the present invention is basically formed by the following steps a to f. a. Vibration electrodes 4 are provided on both main surfaces of the piezoelectric element plate 10, respectively.
An electrode pattern including the first and second electrodes 42 and the terminal electrodes 51 and 52 is formed. b. Conductor layers 61a, 61b on terminal electrodes 51, 52,
62a and 62b or 61 and 62 are formed. c. A sealing plate having a depression, that is, a vibration gap is formed at a position facing the vibration electrodes 41 and. d. The mounting electrodes 31a and 31b are formed on the sealing plates 21 and 22. e. The sealing plates 21 and 22 are laminated and bonded to both surfaces of the piezoelectric element plate 10. f. Terminal electrodes 51 and 52 of piezoelectric element plate 10 and sealing plate 2
The first and second mounting electrodes 31a and 31b are electrically connected. It will be clear that steps af need not necessarily be in that order. For example, steps c and d may be performed before steps a and b, or may be performed simultaneously. Further, step d may be performed before step c.

【0011】圧電素子板10の材質としては、チタン酸
鉛系セラミックスやニオブ酸リチウム単結晶等の圧電材
料が用いられ、圧電部品の周波数等の仕様によって適宜
選択される。封止板21、22の材質としては、アルミ
ナ、コージェライト、チタン酸ストロンチウム系の誘電
体セラミックス等の無機材料が、封止性が高く好適であ
る。また、無機材料によっては静電容量を得ることがで
きるものもあり、このような材料を用いれば、静電容量
内蔵型のチップ型圧電部品を提供することが可能とな
る。加工しやすいエポキシ樹脂等も封止板21、22と
して採用することが可能であるが、耐熱性が無機材料に
比較して劣っていることを念頭に入れて、用いる必要が
ある。
As the material of the piezoelectric element plate 10, a piezoelectric material such as lead titanate ceramics or lithium niobate single crystal is used, and it is appropriately selected according to the specifications such as the frequency of the piezoelectric component. As the material of the sealing plates 21 and 22, inorganic materials such as alumina, cordierite, and strontium titanate-based dielectric ceramics are preferable because of their high sealing properties. In addition, some inorganic materials can provide a capacitance, and using such a material makes it possible to provide a chip-type piezoelectric component with a built-in capacitance. An epoxy resin or the like, which is easy to process, can be used as the sealing plates 21 and 22. However, it is necessary to keep in mind that heat resistance is inferior to that of an inorganic material.

【0012】ステップaにおいて、圧電素子板10上の
振動電極41、42及び端子電極51、52からなる電
極パターンは、銀等を蒸着又はスパッタリングし、レジ
ストインクを印刷した後にエッチングする、一般的な方
法により形成される。ステップbにおいて、導電体層6
1a、61b、62a、62bまたは61、62は、低
温で硬化する特性を有する銀ペースト、導電性接着剤等
を、印刷及び熱処理することにより形成される。導電体
層の形状は、半円形、長方形、台形等、任意の形状でよ
いが、その厚みおよび振動空隙部からの距離を、該導電
体層の形成によって圧電部品の封止性が損なわれないよ
うに設定する必要がある。
In step a, the electrode pattern formed of the vibrating electrodes 41 and 42 and the terminal electrodes 51 and 52 on the piezoelectric element plate 10 is etched by depositing or sputtering silver or the like, printing resist ink, and then etching. Formed by the method. In step b, the conductor layer 6
1a, 61b, 62a, 62b or 61, 62 are formed by printing and heat-treating a silver paste, a conductive adhesive or the like having a property of curing at a low temperature. The shape of the conductor layer may be any shape such as a semicircle, rectangle, trapezoid, etc., but the thickness and the distance from the vibration gap portion are not reduced by the formation of the conductor layer so that the sealing property of the piezoelectric component is not impaired. Must be set as follows.

【0013】ステップdにおいて、封止板21、22上
の実装用電極31a、31bは、銀ペーストの焼き付
け、導電性接着剤の塗布、無電解メッキ、スパッタや蒸
着による金属膜の形成等によって、形成される。ただ
し、導電性接着剤は一般に、半田塗れ性が良好とは言い
難く、また、無電解メッキのみでは電極の劣化が生じて
しまうことがあるので、これらを採用した場合には、電
極形成後に、電解メッキ等によりスズ被膜を形成するこ
とが望ましい。なお、このような電解メッキは、外部電
極と内部電極、すなわち実装用電極と端子電極とを接続
した後に行うこともできる。ステップeにおいて、圧電
素子板10の両主面に封止板21、22を接着により積
層する場合には、封止性及び耐熱性の面から、エポキシ
系接着剤やポリイミド系接着剤を用いることが好まし
い。
In step d, the mounting electrodes 31a and 31b on the sealing plates 21 and 22 are formed by baking silver paste, applying a conductive adhesive, electroless plating, forming a metal film by sputtering or vapor deposition, or the like. It is formed. However, in general, it is difficult to say that the conductive adhesive has good solder wettability, and the electrode may be deteriorated only by electroless plating. It is desirable to form a tin film by electrolytic plating or the like. Note that such electrolytic plating can also be performed after connecting the external electrode and the internal electrode, that is, the mounting electrode and the terminal electrode. In step e, when the sealing plates 21 and 22 are laminated on both main surfaces of the piezoelectric element plate 10 by bonding, an epoxy-based adhesive or a polyimide-based adhesive is used from the viewpoint of sealing properties and heat resistance. Is preferred.

【0014】ステップdにおいて、圧電素子板10上の
端子電極51、52及び導電体層61a、61b、62
a、62b又は61、62と封止板1上の実装用電極3
1a、31bとを電気的に接続するために、導電体でか
つ低温で硬化できる銀ペーストまたは導電性接着剤を用
い、該導電体をスクリーン印刷またはディッピングする
ことにより電気的接続を行う。これ以外にも、無電解メ
ッキ、スパッタリング、あるいは蒸着等の手法も採用す
ることができる。さらに、端子電極51、52と実装用
電極31a、31bとを電気的に接続した導電体の機械
的強度を高めるために、該導電体上を電解メッキにより
金属被膜することが好ましい。
In step d, the terminal electrodes 51 and 52 on the piezoelectric element plate 10 and the conductor layers 61a, 61b and 62
a, 62b or 61, 62 and mounting electrode 3 on sealing plate 1
In order to electrically connect the conductors 1a and 31b, a silver paste or a conductive adhesive which is a conductor and can be cured at a low temperature is used, and the conductor is screen-printed or dipped to perform the electrical connection. In addition, techniques such as electroless plating, sputtering, and vapor deposition can also be employed. Further, in order to increase the mechanical strength of the conductor electrically connecting the terminal electrodes 51, 52 and the mounting electrodes 31a, 31b, it is preferable that the conductor is coated with a metal film by electrolytic plating.

【0015】図1に示した本発明のチップ型圧電部品
は、1素子分づつ独立して製造することもできるが、多
素子分の電極パターンが形成された圧電素子ウエハと多
素子分の振動空隙部が形成された封止板とを積層接着
し、ダイシングマシンによって1素子分に切り出す方法
によれば、大量に製造することができ、素子の生産コス
トを低減することができる。本発明の技術思想に基づい
てチップ型圧電部品を実験的に製造し、かつその特性等
について測定したが、その結果について以下に説明す
る。
Although the chip-type piezoelectric component of the present invention shown in FIG. 1 can be manufactured independently for each element, a piezoelectric element wafer on which electrode patterns for multiple elements are formed and a vibration for multiple elements are formed. According to a method of laminating and bonding a sealing plate having a void portion formed therein and cutting it into one device using a dicing machine, mass production can be achieved, and device production costs can be reduced. The chip type piezoelectric component was experimentally manufactured based on the technical idea of the present invention, and its characteristics and the like were measured. The results will be described below.

【0016】実験例1 チタン酸鉛系圧電材料を30mm×40mm×15mm
のブロック状に成型して焼成した後、平板状にスライス
し、ラップ盤で0.22mmの厚さに研磨し、圧電素子
板を形成した。そして、圧電素子板の両面全面に銀電極
を蒸着し、分極し、50素子分の電極パターンをレジス
トで印刷し、エッチングにより不要なパターンを除去
し、その後洗浄してレジストを除去した。なお、1素子
分の電極パターンは、図1の(B)に示されているよう
に、振動電極と該振動電極に接続された端子電極とから
なるパターンである。その後、圧電素子板上の電極パタ
ーンの端子電極上に、エポキシ−銀系ペーストを用いて
厚さ40μmの50素子分の導電体層を形成した。1素
子分の導電体層は、図1の(B)に示されているように
表面の2隅部に設けられ、それぞれ半径300μmの1
/4円形で、積層状態で振動空隙部の端から710μm
離間して配置されるようにした。圧電素子板の裏面に
ついても、同様に導電体層を形成した。
EXPERIMENTAL EXAMPLE 1 A lead titanate-based piezoelectric material was 30 mm × 40 mm × 15 mm.
After sintering into a block shape and baking, it was sliced into a flat plate shape and polished with a lapping machine to a thickness of 0.22 mm to form a piezoelectric element plate. Then, silver electrodes were vapor-deposited and polarized on both surfaces of the piezoelectric element plate, electrode patterns for 50 elements were printed with a resist, unnecessary patterns were removed by etching, and then the resist was removed by washing. Note that the electrode pattern for one element is a pattern including a vibrating electrode and a terminal electrode connected to the vibrating electrode, as shown in FIG. Thereafter, a conductor layer of 50 elements having a thickness of 40 μm was formed on the terminal electrode of the electrode pattern on the piezoelectric element plate using an epoxy-silver paste. Conductor layers for one element are provided at two corners of the surface as shown in FIG.
/ 4 circular, 710 μm from the end of the vibrating gap in the laminated state
It was arranged to be separated. A conductor layer was similarly formed on the back surface of the piezoelectric element plate.

【0017】次に、アルミナ粉末を有機バインダと混合
して造粒し、これを50素子分の封止板が形成されるよ
う板状にプレス加工し、焼成した。このとき、プレス加
工においては、圧電素子板上の振動電極に対向する部分
に深さが0.15mmの凹部を設けることにより振動空
隙部が形成されるようにした。さらに、圧電素子板との
密着性を向上させるために、振動空隙部が形成された面
を研磨して、厚さを0.5mmとした。そして、振動空
隙部が設けられていない面上に2本の実装用電極を、銀
−パラジウム合金を含んだペーストで印刷し、焼き付け
た。このようにして、50素子分の封止板を2つ形成し
た。
Next, alumina powder was mixed with an organic binder and granulated, and the resulting mixture was pressed into a plate shape so as to form a sealing plate for 50 elements and fired. At this time, in the press working, a concave portion having a depth of 0.15 mm was provided in a portion of the piezoelectric element plate facing the vibration electrode, so that a vibration gap portion was formed. Furthermore, in order to improve the adhesion to the piezoelectric element plate, the surface on which the vibration gap was formed was polished to a thickness of 0.5 mm. Then, two mounting electrodes were printed with a paste containing a silver-palladium alloy on the surface where the vibration gap was not provided and baked. Thus, two sealing plates for 50 elements were formed.

【0018】そして、形成された1つの圧電素子板を2
つの封止板で挟み込むようにして、絶縁性のエポキシ系
接着剤で接着積層し、これをダイシングマシンにより1
素子分づつに分割した。接着剤は、その厚さが平均40
μmであり、圧電素子板の導電体層に対応する部分にも
塗布した。分割された1素子の2つの封止板上の実装用
電極同士を、導電性ペーストをスクリーン印刷により塗
布して、電気的に接続した。また、このとき、導電性ペ
ーストを圧電素子板上の導電体層が側面に露出した断面
部分にも塗布した。その後、バレルメッキを施して、導
電性ペーストと銀パラジウムからなる実装用電極との上
に半田層を析出させ、図1に示した構成のチップ型圧電
部品を50素子作製した。
Then, one formed piezoelectric element plate is
Sandwiched between two sealing plates, bonded and laminated with an insulating epoxy-based adhesive, and
The device was divided into elements. The adhesive has an average thickness of 40
μm, and was also applied to the portion corresponding to the conductor layer of the piezoelectric element plate. The mounting electrodes on the two sealing plates of one divided element were electrically connected by applying a conductive paste by screen printing. At this time, the conductive paste was also applied to the cross-section where the conductive layer on the piezoelectric element plate was exposed on the side. Thereafter, barrel plating was performed to deposit a solder layer on the conductive paste and the mounting electrode made of silver / palladium, thereby producing 50 chip-type piezoelectric components having the configuration shown in FIG.

【0019】上記した工程を繰り返すことにより、10
0個のチップ型圧電部品を作製し、ベクトル・インピー
ダンス・アナライザを用いて、100個の部品の30M
Hz近傍での周波数−インピーダンス特性、及び共振周
波数でのインピーダンス特性を測定した。そして、測定
の結果、波形が観測されたものを接続良好部品とし、波
形が観測されないか又は著しく不良なものを、断線が生
じているものとして接続不良部品とした。
By repeating the above steps, 10
Make 0 chip-type piezoelectric components, and use a vector impedance analyzer to calculate 30M of 100 components.
The frequency-impedance characteristics near Hz and the impedance characteristics at the resonance frequency were measured. Then, as a result of the measurement, a part having a waveform observed was regarded as a good connection part, and a part having no waveform observed or extremely poor was regarded as a part having a disconnection as a poor connection part.

【0020】さらに、封止性を確認するため、接続良好
部品を130℃、2気圧の水蒸気中に24時間曝露し、
その直後にインピーダンス特性を測定した。その結果、
曝露試験前に比べて共振周波数が2割以上増加したもの
を、封止不良部品とし、それ以外を封止良好部品とし
た。これは、封止性が低い部品では、水蒸気がピンホー
ル等から振動空隙部内に侵入して結露する結果、発振不
良が生じることにより、共振周波数が変動することによ
るものである。さらにまた、封止良好部品を、蒸留水と
ともにポットミルに入れて2時間回転させることにより
バレル試験を行い、その後外観検査を行った。外観検査
で、封止板及び圧電素子板の破損や封止板の剥離等の損
傷が発見されたものをバレル不良部品とした。
Further, in order to confirm the sealing property, the well-connected parts were exposed to steam at 130 ° C. and 2 atm for 24 hours.
Immediately thereafter, the impedance characteristics were measured. as a result,
Those whose resonance frequency increased by 20% or more compared to those before the exposure test were regarded as poor sealing parts, and the others were regarded as good sealing parts. This is due to the fact that, in a component having a low sealing property, the resonance frequency fluctuates due to the occurrence of poor oscillation as a result of water vapor penetrating into the vibrating gap from a pinhole or the like and condensing. Furthermore, the well-sealed parts were put into a pot mill together with distilled water and rotated for 2 hours to carry out a barrel test, and thereafter an appearance inspection was carried out. Barrel defective parts in which damages such as breakage of the sealing plate and the piezoelectric element plate and peeling of the sealing plate were found in the appearance inspection were determined.

【0021】接続不良率、封止不良率、バレル不良率を
以下のように定義し、それぞれの不良率を計算した。 接続不良率(%) =接続不良部品数/全部品数(10
0個)×100 封止不良率(%) =封止不良部品数/接続良好部品数
×100 バレル不良率(%)=バレル不良部品数/封止良好部品
数×100
The connection failure rate, the sealing failure rate, and the barrel failure rate were defined as follows, and the respective failure rates were calculated. Connection failure rate (%) = connection failure parts / total parts (10
0) × 100 defective sealing rate (%) = number of defective sealing parts / number of good connection parts × 100 barrel defective rate (%) = number of defective barrel parts / number of good sealing parts × 100

【0022】実験例2 上記した実験例1の場合とほぼ同様に100個のチップ
型圧電部品を作製したが、ただし、圧電素子板上の導電
体層は、図2に示したように長方形とし、その厚さを8
0μmとし、かつ振動空隙部からの距離が最短で120
μmとなるようにした。作製した100個の部品につい
て、実験例1と同様に、断線試験、封止試験、バレル試
験を行い、さらにそれぞれの不良率を計算した。
EXPERIMENTAL EXAMPLE 2 100 chip-type piezoelectric components were manufactured in substantially the same manner as in Experimental Example 1 above, except that the conductor layer on the piezoelectric element plate was rectangular as shown in FIG. , Its thickness is 8
0 μm and the shortest distance from the vibration gap is 120
μm. The disconnection test, the sealing test, and the barrel test were performed on the manufactured 100 parts in the same manner as in Experimental Example 1, and the respective defective rates were calculated.

【0023】本発明のチップ型圧電部品の作用効果を検
証するために、以下の比較例を作製して同様に不良率を
計算した。なお、比較例1及び2は、本発明の技術思想
にほぼ沿っているものの、導電体層の厚み及び振動空隙
部と導電体層との最短距離を等しく設定したものであ
る。また、比較例3及び4は、上記した従来例1及び2
を、上記した実験例1と同様な材料及びサイズで作製し
たものである。 比較例1 上記した実験例1の場合とほぼ同様に100個のチップ
型圧電部品を作製したが、ただし、圧電素子板上の導電
体層は、その厚さを120μm、形状を長方形とし、か
つ振動空隙部からの距離が最短で120μmとなるよう
にした。作製した100個の部品について、実験例1と
同様に、断線試験、封止試験、バレル試験を行い、それ
ぞれの不良率を計算した。
In order to verify the function and effect of the chip-type piezoelectric component of the present invention, the following comparative examples were prepared and the defect rates were calculated in the same manner. In Comparative Examples 1 and 2, the thickness of the conductor layer and the shortest distance between the vibrating gap and the conductor layer were set to be equal, though they were substantially in line with the technical idea of the present invention. Comparative Examples 3 and 4 correspond to Conventional Examples 1 and 2 described above.
Was manufactured using the same material and size as in the above-described Experimental Example 1. Comparative Example 1 100 chip-type piezoelectric components were produced in substantially the same manner as in Experimental Example 1 described above, except that the conductor layer on the piezoelectric element plate had a thickness of 120 μm, a rectangular shape, and The minimum distance from the vibration gap was 120 μm. A disconnection test, a sealing test, and a barrel test were performed on the manufactured 100 parts in the same manner as in Experimental Example 1, and the respective defective rates were calculated.

【0024】比較例2 上記した実験例1の場合とほぼ同様に100個のチップ
型圧電部品を作製したが、ただし、圧電素子板上の導電
体層は、その厚さを80μm、形状を長方形とし、かつ
振動空隙部からの距離が最短で80μmとなるようにし
た。作製した100個の部品について、実験例1と同様
に、断線試験、封止試験、バレル試験を行い、それぞれ
の不良率を計算した。
COMPARATIVE EXAMPLE 2 100 chip-type piezoelectric components were manufactured in substantially the same manner as in the above-described Experimental Example 1, except that the thickness of the conductor layer on the piezoelectric element plate was 80 μm and the shape was rectangular. And the distance from the vibration gap portion was set to 80 μm at the shortest. A disconnection test, a sealing test, and a barrel test were performed on the manufactured 100 parts in the same manner as in Experimental Example 1, and the respective defective rates were calculated.

【0025】比較例3 上記した実験例1の場合とほぼ同様に100個のチップ
型圧電部品を作製したが、ただし、導電体層を設けず
に、封止板に図3に示した従来例1のように0.6mm
の半円状の凹部を設け、かつ積層後、該凹部が施された
部分の端面全体に銀ペーストを塗布することにより電気
的接続を行った。作製した100個の部品について、実
験例1と同様に断線試験、封止試験、バレル試験を行
い、それぞれの不良率を計算した。
COMPARATIVE EXAMPLE 3 100 chip-type piezoelectric components were produced in substantially the same manner as in the above-described Experimental Example 1, except that the conductor plate was not provided, and the conventional example shown in FIG. 0.6mm as in 1
After forming a semicircular concave portion and laminating, a silver paste was applied to the entire end face of the portion where the concave portion was formed, thereby making electrical connection. A disconnection test, a sealing test, and a barrel test were performed on the manufactured 100 parts in the same manner as in Experimental Example 1, and the respective defective rates were calculated.

【0026】比較例4 上記した実験例1の場合とほぼ同様に100個のチップ
型圧電部品を作製したが、ただし、導電体層を設けず、
積層に用いた接着剤として、圧電素子板上の端子電極と
重なる部分には銀を含有したエポキシ系の導電性接着剤
を用い、その他の部分には通常のエポキシ系の絶縁性接
着剤を用いた。その際、2種類の接着剤が混合しないよ
うにするため、圧電素子上に導電性接着剤をスクリーン
印刷により塗布し、封止板上に絶縁性接着剤をスクリー
ン印刷により塗布した。作製した100個の部品につい
て、実験例1と同様に断線試験、封止試験、バレル試験
を行い、それぞれの不良率を計算した。
Comparative Example 4 100 chip-type piezoelectric components were produced in substantially the same manner as in the above-mentioned Experimental Example 1, except that no conductive layer was provided.
As the adhesive used for lamination, an epoxy-based conductive adhesive containing silver is used for the part overlapping the terminal electrodes on the piezoelectric element plate, and a normal epoxy-based insulating adhesive is used for the other parts. Was. At that time, in order to prevent the two kinds of adhesives from being mixed, a conductive adhesive was applied on the piezoelectric element by screen printing, and an insulating adhesive was applied on the sealing plate by screen printing. A disconnection test, a sealing test, and a barrel test were performed on the manufactured 100 parts in the same manner as in Experimental Example 1, and the respective defective rates were calculated.

【0027】上記した実験例1及び2、並びに比較例1
〜4により得られた接続不良率(%)、封止不良率
(%)、バレル不良率(%)は、表1に示される通りで
あった。なお、表1には、実験例1及び2並びに比較例
1及び2における、振動空隙部と導電体層の最短距離
(μm)、及び導電体層の厚み(μm)を、併せて示し
ている。
Experimental Examples 1 and 2 and Comparative Example 1
Table 4 shows the connection failure rate (%), sealing failure rate (%), and barrel failure rate (%) obtained in Tables 1 to 4. Table 1 also shows the shortest distance (μm) between the vibration gap and the conductor layer and the thickness (μm) of the conductor layer in Experimental Examples 1 and 2 and Comparative Examples 1 and 2. .

【表1】 表 1 接続不良率 封止不良率 バレル不良率 最短長 厚み 実験例1 0 0 1 710 40 実験例2 0 4 0 120 80 比較例1 0 22 1 120 120 比較例2 0 34 2 80 80 比較例3 4 0 14 ―― ―― 比較例4 0 20 42 ―― ――[Table 1]Table 1  Connection failure rate Sealing failure rate Barrel failure rate Shortest length Thickness Experimental Example 1 0 0 1 710 40 Experimental Example 2 0 4 0 120 80 Comparative Example 1 0 22 1 120 120 Comparative Example 2 0 34 2 80 80 Comparative Example 3 40 14 ―― ―― Comparative Example 4 0 20 42 ―― ――

【0028】表1から明らかなように、実験例1及び2
並びに比較例1、2及び4においては断線が全く発生し
ていないが、比較例1(封止板に設けられた凹部で端子
電極と実装電極とを接続した構造)においては、接続が
不完全なものが4%あった。また、比較例1及び2は封
止性が不良であったが、これは、導電体層の厚さ及び該
導電体層と振動空隙部との最短距離を等しくして、相対
的に、導電体層を厚くしすぎたか又は振動空隙部に導電
体層を近づけすぎたことにより、導電体層の周囲に接着
剤層が形成されず、その結果、空乏部分が生じてしまっ
たことによるものである。比較例4の封止性の不良は、
導電性接着剤が通常のエポキシ系の絶縁性接着剤と比べ
て接着強度が弱く、その結果、導電性接着剤を用いた部
分の封止性が劣化したことによるものである。さらに、
比較例3及び4においてはバレル不良が発生している。
このバレル不良は、比較例3では、バレル試験中に部品
同士の接触により凹部に損傷が発生してしまい、また、
比較例4では、導電性接着剤の接着強度が低いことによ
り、バレル試験中に封止板が剥離してしまったことによ
るものである。
As is clear from Table 1, Experimental Examples 1 and 2
In Comparative Examples 1, 2 and 4, no disconnection occurred, but in Comparative Example 1 (the structure in which the terminal electrode and the mounting electrode were connected by the recess provided in the sealing plate), the connection was incomplete. Was 4%. In Comparative Examples 1 and 2, the sealing property was poor. However, this was because the thickness of the conductor layer and the shortest distance between the conductor layer and the vibration gap were equal to each other. This is because the adhesive layer was not formed around the conductor layer due to the body layer being too thick or the conductor layer being too close to the vibration gap, resulting in a depleted portion. is there. The poor sealing property of Comparative Example 4
This is because the conductive adhesive has a lower adhesive strength than a normal epoxy-based insulating adhesive, and as a result, the sealing property of the portion using the conductive adhesive is deteriorated. further,
In Comparative Examples 3 and 4, barrel failure has occurred.
In the barrel failure, in the comparative example 3, damage occurs to the concave portion due to contact between components during the barrel test, and
In Comparative Example 4, the sealing plate was peeled off during the barrel test due to the low adhesive strength of the conductive adhesive.

【0029】以上のように、圧電素子板の端子電極上に
導電体層を設けることにより端子電極と封止板上の実装
用電極との電気的接続の断面積を大きくし、さらに、導
電体層を適宜の厚さ及びサイズとして該導電体層と封止
板との間にも絶縁性接着剤を介在させるよう設定する
と、チップ型圧電部品の電気的接続性、封止性、耐バレ
ル性(機械的強度)が向上することが、上記した実験の
結果から明らかである。従って、本発明のチップ型圧電
部品によれば、従来例と比べて製品の信頼性が格段に向
上するものである。
As described above, by providing the conductor layer on the terminal electrode of the piezoelectric element plate, the cross-sectional area of the electrical connection between the terminal electrode and the mounting electrode on the sealing plate can be increased. If the layer is set to an appropriate thickness and size so that an insulating adhesive is also interposed between the conductor layer and the sealing plate, the electrical connectivity, sealing property, and barrel resistance of the chip-type piezoelectric component are improved. It is clear from the results of the above experiments that the (mechanical strength) is improved. Therefore, according to the chip type piezoelectric component of the present invention, the reliability of the product is remarkably improved as compared with the conventional example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のチップ型圧電部品、及び導
電体層を形成した圧電素子板の斜視図である。
FIG. 1 is a perspective view of a chip-type piezoelectric component according to an embodiment of the present invention and a piezoelectric element plate on which a conductive layer is formed.

【図2】本発明のチップ型圧電部品における、別の形態
の導電体層を形成した圧電素子板の斜視図である。
FIG. 2 is a perspective view of a piezoelectric element plate on which a conductor layer of another form is formed in the chip-type piezoelectric component of the present invention.

【図3】チップ型圧電部品の従来例を説明するための斜
視図である。
FIG. 3 is a perspective view for explaining a conventional example of a chip type piezoelectric component.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 振動電極及び該振動電極に接続された端
子電極からなる電極パターンが両主面に形成された圧電
素子板と、該圧電素子板を挟持するよう該圧電素子板の
両面に接着されかつ振動電極と対向する位置に振動空隙
が設けられた2つの封止板と、該封止板を周回するよう
に設けられた実装用電極とからなるチップ型圧電部品に
おいて、 端子電極の上の少なくとも実装用電極との接続部近傍に
導電体層が形成されて、該導電体層及び端子電極が共に
実装用電極に電気的に接続されるように構成され、 該導電体層と封止板とが絶縁性接着剤で接着されている
ことを特徴とするチップ型圧電部品。
1. A piezoelectric element plate having an electrode pattern formed of a vibrating electrode and a terminal electrode connected to the vibrating electrode formed on both main surfaces, and bonded to both surfaces of the piezoelectric element plate so as to sandwich the piezoelectric element plate. A chip-type piezoelectric component comprising: two sealing plates provided with a vibration gap at a position facing the vibration electrode; and a mounting electrode provided to surround the sealing plate. A conductive layer is formed at least in the vicinity of a connection portion with the mounting electrode, and the conductive layer and the terminal electrode are both electrically connected to the mounting electrode. A chip-type piezoelectric component, wherein the plate and the plate are bonded with an insulating adhesive.
【請求項2】 請求項1記載のチップ型圧電部品におい
て、導電体層と封止板の振動空隙部との間の最短距離
は、該導電体層の厚みより大きく設定されていることを
特徴とするチップ型圧電部品。
2. The chip-type piezoelectric component according to claim 1, wherein the shortest distance between the conductor layer and the vibration gap of the sealing plate is set to be larger than the thickness of the conductor layer. Chip type piezoelectric parts.
【請求項3】 請求項2記載のチップ型圧電部品におい
て、導電体の厚みが3〜100μmであり、かつ導電体
層と封止板の振動空隙部との間の最短距離が100μm
以上であることを特徴とするチップ型圧電部品。
3. The chip-type piezoelectric component according to claim 2, wherein the thickness of the conductor is 3 to 100 μm, and the shortest distance between the conductor layer and the vibration gap of the sealing plate is 100 μm.
A chip-type piezoelectric component characterized by the above.
JP3164498A 1998-02-13 1998-02-13 Chip-type piezoelectric component Pending JPH11234079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164498A JPH11234079A (en) 1998-02-13 1998-02-13 Chip-type piezoelectric component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164498A JPH11234079A (en) 1998-02-13 1998-02-13 Chip-type piezoelectric component

Publications (1)

Publication Number Publication Date
JPH11234079A true JPH11234079A (en) 1999-08-27

Family

ID=12336916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164498A Pending JPH11234079A (en) 1998-02-13 1998-02-13 Chip-type piezoelectric component

Country Status (1)

Country Link
JP (1) JPH11234079A (en)

Similar Documents

Publication Publication Date Title
US6531806B1 (en) Chip-type piezoelectric component
KR100881912B1 (en) Piezoelectric oscillation element and piezoelectric oscillation component using it
US6483401B2 (en) Substrate for packaging electronic component and piezoelectric resonance component using the same
JP4427960B2 (en) Manufacturing method of thin film laminated electronic component
JP3459186B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4292788B2 (en) Chip-type surge absorber and manufacturing method thereof
JPH11234079A (en) Chip-type piezoelectric component
JP4508997B2 (en) Piezoelectric resonance component
JP3508574B2 (en) Chip type surge absorber
JPH08237066A (en) Piezoelectric resonator and its manufacture
JPH02299310A (en) Piezoelectric resonator and its manufacture
JPH11168345A (en) Piezoelectric resonance component and manufacture thereof
JPS6012811A (en) Piezoelectric oscillation parts
JP3182986B2 (en) Chip type piezoelectric resonator
JPH11261368A (en) Chip type piezoelectric component and its manufacture
JP3979121B2 (en) Manufacturing method of electronic parts
JPH066164A (en) Chip type electronic component and manufacture thereof
JPH08264369A (en) Multilayered ceramic electronic component
JP2004179111A (en) Chip type surge absorber and manufacturing method thereof
JPH0817673A (en) Mica capacitor
JPH10241908A (en) Composite element and its manufacturing method
JPH0869938A (en) Multilayer ceramic capacitor and its manufacture
JPH10126200A (en) Chip-type piezoelectric parts and its production
JPH03148906A (en) Manufacture of chip type electronic parts
JP2001237664A (en) Piezoelectric vibrating component and producing method therefor