JPH11233917A - Manufacture of multilayer board - Google Patents

Manufacture of multilayer board

Info

Publication number
JPH11233917A
JPH11233917A JP3312998A JP3312998A JPH11233917A JP H11233917 A JPH11233917 A JP H11233917A JP 3312998 A JP3312998 A JP 3312998A JP 3312998 A JP3312998 A JP 3312998A JP H11233917 A JPH11233917 A JP H11233917A
Authority
JP
Japan
Prior art keywords
insulating resin
temperature
board
substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3312998A
Other languages
Japanese (ja)
Inventor
Kazunori Akaho
和則 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP3312998A priority Critical patent/JPH11233917A/en
Publication of JPH11233917A publication Critical patent/JPH11233917A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the delamination of layers in a vertically multilayer board. SOLUTION: A copper film 22 is thermo-compression bonded to one side of an insulating resin sheet 21 made of prepreg, by vacuum pressing at a temperature (for example, 170 deg.C) lower than the resin hardening temperature under 30 kgf/cm<2> for 40 minutes. After that, an unwanted portion of the copper foil 22 is removed by an etching method for forming a pattern of a via-conductor 23. Furthermore, after the surface of the via-conductor 23 is made rough by soft etching, a plurality of insulating resin sheets 21 are stacked and integrated. After that, the multilayer body of the insulating resin sheets 21 is cut into board sizes by dicing, thus producing a plurality of multilayered boards 24. After the cutting, the multilayered board 24 is post-baked at a temperature (for example, 200 deg.C) not lower than the resin curing temperature for 2 hours in an N2 atmosphere. After that, buff polishing with a roughness of 2 μm is carried out on the cut surface of the multilayer board 24 for 20 minutes, and the cut surface is further polished by jet scrubbing and, thus the cut surface (component side) of the multilayered board 24 is planarized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビア導体の形成方
法を改良した積層基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a laminated substrate with an improved method of forming via conductors.

【0002】[0002]

【従来の技術】近年のICチップの高性能化・小型化に
伴い、ICチップを搭載する基板の配線密度の高密度
化、多ピン化が重要な技術的課題となっている。現在、
実用化されている高密度実装基板の一例としてビルドア
ップ多層基板がある。このものは、図2に示すように、
コア基板となるガラスエポキシ基板11の両面又は片面
にエポキシ系の感光性絶縁樹脂層12を形成し、この感
光性絶縁樹脂層12にフォトエッチング法でビアホール
13を形成し、その上から、銅めっきで内層導体パター
ン14やビア導体15を形成し、以後、同様の工程を順
次繰り返して多層化するものである。
2. Description of the Related Art With the recent increase in performance and miniaturization of IC chips, increasing the wiring density and increasing the number of pins of a substrate on which the IC chip is mounted have become important technical issues. Current,
An example of a high-density mounting board that has been put into practical use is a build-up multilayer board. This is, as shown in FIG.
An epoxy-based photosensitive insulating resin layer 12 is formed on both surfaces or one surface of a glass epoxy substrate 11 serving as a core substrate, and a via hole 13 is formed in the photosensitive insulating resin layer 12 by a photo-etching method. Then, the inner conductor pattern 14 and the via conductor 15 are formed, and thereafter, the same steps are sequentially repeated to form a multilayer.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記ビルドア
ップ多層基板では、多層化された感光性絶縁樹脂層12
の乾燥収縮により基板に反りが発生し、基板上に実装す
るICチップの接合不良を招く原因となる。また、フォ
トエッチング法でビアホール13を形成する方法では、
ビア径は50μmφが限界である。この理由としては、
感光性絶縁樹脂層12を良好な絶縁層とするために、熱
特性・信頼性に優れた感光性絶縁樹脂ペーストを使用す
る必要があり、フォトエッチングの解像度に限界がある
ためであり、また、ビア導体15を銅めっきで形成する
ため、めっき液を行き渡らせる必要性からビアホール1
3の孔径が制限されるためである。
However, in the above-mentioned build-up multi-layer substrate, a multi-layered photosensitive insulating resin layer 12 is required.
Due to drying shrinkage of the substrate, the substrate is warped, which causes a bonding failure of an IC chip mounted on the substrate. Further, in the method of forming the via hole 13 by a photo etching method,
The via diameter is limited to 50 μmφ. This is because
In order to make the photosensitive insulating resin layer 12 a good insulating layer, it is necessary to use a photosensitive insulating resin paste having excellent thermal characteristics and reliability, because the resolution of photoetching is limited, and Since the via conductor 15 is formed by copper plating, the via hole 1 needs to be spread over the plating solution.
This is because the hole diameter of No. 3 is limited.

【0004】このような問題を解消するため、本発明者
は、特願平10−6650号の明細書に示すように、実
装面に対して各絶縁樹脂層間の接合面が直角となるよう
に各絶縁樹脂層を積層し、これを基板サイズに切断し
て、各絶縁樹脂層に予め形成された配線パターンでビア
導体を形成する縦型の積層基板を提案している。この縦
型の積層基板は、ビア導体のパターンをフォトエッチン
グ法で形成することで、30μmφのビア導体を形成す
ることが可能となる。
In order to solve such a problem, the present inventor has proposed that the bonding surface between the insulating resin layers be perpendicular to the mounting surface as shown in the specification of Japanese Patent Application No. 10-6650. A vertical laminated substrate has been proposed in which each insulating resin layer is laminated, cut into a substrate size, and a via conductor is formed with a wiring pattern formed in advance on each insulating resin layer. This vertical laminated substrate can form a via conductor of 30 μmφ by forming a pattern of the via conductor by a photoetching method.

【0005】しかし、最近の試験結果によれば、この縦
型の積層基板は、切断後にビア導体のパターンと絶縁樹
脂層とが若干剥がれることがあり、この層間剥離が歩留
り低下や信頼性低下を招く原因となることが判明した。
However, according to recent test results, in the vertical laminated substrate, the pattern of the via conductor and the insulating resin layer may be slightly peeled off after cutting, and this delamination reduces the yield and the reliability. It turned out to be the cause.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、縦型の積層基板にお
いて、切断後に層間剥離が発生することを防止できて、
歩留り向上、信頼性向上を実現することができる積層基
板の製造方法を提供することにある。
[0006] The present invention has been made in view of such circumstances, and an object thereof is to prevent the occurrence of delamination after cutting in a vertical laminated substrate.
It is an object of the present invention to provide a method of manufacturing a laminated substrate that can improve the yield and the reliability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の積層基板の製造方法は、絶縁樹脂層の形成
素材となるプリプレグ製の絶縁樹脂シートに銅箔を樹脂
硬化温度より低い温度で熱圧着した後、その銅箔の不要
部分をエッチングしてビア導体用の配線パターンを形成
する。この後、絶縁樹脂シートを複数枚積層して、これ
を基板サイズに切断し、切断後に樹脂硬化温度以上の温
度でポストベークした後、切断面を研磨して実装面とし
て仕上げる。
In order to achieve the above object, a method of manufacturing a laminated substrate according to the present invention comprises the steps of: forming a copper foil on an insulating resin sheet made of prepreg as a material for forming an insulating resin layer; After thermocompression bonding at a temperature, unnecessary portions of the copper foil are etched to form wiring patterns for via conductors. Thereafter, a plurality of insulating resin sheets are laminated, cut into a substrate size, cut, post-baked at a temperature equal to or higher than the resin curing temperature, and then the cut surface is polished to finish as a mounting surface.

【0008】この場合、プリプレグ製の絶縁樹脂シート
に銅箔を熱圧着する際に、樹脂硬化温度より低い温度で
熱圧着するため、絶縁樹脂シートの硬化が途中までで抑
えられる。その後、絶縁樹脂シートを積層して切断した
後に樹脂硬化温度以上の温度でポストベークするため、
積層基板の絶縁樹脂層(絶縁樹脂シート)が完全に熱硬
化する過程で、絶縁樹脂層間の接合力やビア導体のパタ
ーンと絶縁樹脂層との接合力が増大して、層間剥離が防
がれる。
In this case, when thermocompression bonding of the copper foil to the insulating resin sheet made of prepreg is performed at a temperature lower than the resin curing temperature, the curing of the insulating resin sheet is suppressed halfway. Then, after laminating and cutting the insulating resin sheet, post-bake at a temperature equal to or higher than the resin curing temperature,
In the process of completely thermosetting the insulating resin layer (insulating resin sheet) of the laminated substrate, the bonding force between the insulating resin layers and the bonding force between the via conductor pattern and the insulating resin layer are increased, and delamination is prevented. .

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態におけ
る積層基板の製造方法を図1に基づいて説明する。プリ
プレグにより形成された熱硬化性の絶縁樹脂シート21
の片面に銅箔22(厚み10〜12μm)を重ね合わせ
て、樹脂硬化温度より低い温度(例えば170℃)で、
40分間、30kgf/cm2 で真空プレスして、絶縁
樹脂シート21の片面に銅箔22を熱圧着する。この
際、絶縁樹脂シート21を樹脂硬化温度より低い温度で
熱圧着するため、絶縁樹脂シート25の硬化が途中まで
で抑えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a laminated substrate according to an embodiment of the present invention will be described with reference to FIG. Thermosetting insulating resin sheet 21 formed by prepreg
A copper foil 22 (thickness 10 to 12 μm) is superimposed on one side of at a temperature lower than the resin curing temperature (for example, 170 ° C.)
The copper foil 22 is thermocompression bonded to one surface of the insulating resin sheet 21 by vacuum pressing at 30 kgf / cm 2 for 40 minutes. At this time, since the insulating resin sheet 21 is thermocompression-bonded at a temperature lower than the resin curing temperature, the curing of the insulating resin sheet 25 is suppressed halfway.

【0010】次の工程で、銅箔22の表面に図示しない
ドライフィルム(感光性フィルム)をラミネートする。
尚、ドライフィルムに代えて、銅箔22の表面全体に感
光性レジストをスピンコーターで塗布しても良い。この
後、ドライフィルムのうちのビア導体パターン形成部分
のみを露光(80mj)し、これをアルカリ現像液に例
えば30秒間浸漬して現像して、ドライフィルムのうち
のビア導体パターン形成部以外の部分を除去する。この
後、銅箔22のうちのドライフィルムから露出する部分
(つまりビア導体パターン形成部以外の部分)をアルカ
リエッチング液でエッチングして取り除いた後、アセト
ンでドライフィルムを剥離する。これにより、絶縁樹脂
シート21に複数本のビア導体23のパターンを形成す
る。
In the next step, a dry film (photosensitive film) not shown is laminated on the surface of the copper foil 22.
Instead of the dry film, a photosensitive resist may be applied to the entire surface of the copper foil 22 by a spin coater. Thereafter, only the via conductor pattern forming portion of the dry film is exposed (80 mj), and the exposed portion is immersed in an alkali developing solution for, for example, 30 seconds and developed, and the portion of the dry film other than the via conductor pattern forming portion is exposed. Is removed. Thereafter, the portion of the copper foil 22 exposed from the dry film (that is, the portion other than the via conductor pattern forming portion) is removed by etching with an alkaline etchant, and then the dry film is peeled off with acetone. Thereby, a pattern of the plurality of via conductors 23 is formed on the insulating resin sheet 21.

【0011】この後、ビア導体23の表面をソフトエッ
チングして粗化し、更に、絶縁樹脂シート21の表面全
体に接着剤を塗布した後、複数枚の絶縁樹脂シート21
を積層して一体化する。
Thereafter, the surface of the via conductor 23 is roughened by soft etching, and an adhesive is applied to the entire surface of the insulating resin sheet 21.
Are laminated and integrated.

【0012】この後、絶縁樹脂シート21の積層体を基
板サイズにダイシングにより切断して、1つの積層体か
ら複数の積層基板24を作る。切断後に、この積層基板
24をN2 雰囲気中で樹脂硬化温度以上の温度(例えば
200℃)で2時間、ポストベークする。これにより、
絶縁樹脂シート21(絶縁樹脂層)を完全に熱硬化さ
せ、それによって絶縁樹脂シート21間の接合力やビア
導体23のパターンと絶縁樹脂シート21との接合力を
増加させて、層間剥離を防止する。
Thereafter, the laminate of the insulating resin sheets 21 is cut by dicing to a substrate size, and a plurality of laminate substrates 24 are formed from one laminate. After cutting, the laminated substrate 24 is post-baked in a N 2 atmosphere at a temperature equal to or higher than the resin curing temperature (for example, 200 ° C.) for 2 hours. This allows
The insulating resin sheet 21 (insulating resin layer) is completely thermoset, thereby increasing the bonding force between the insulating resin sheets 21 and the bonding force between the pattern of the via conductors 23 and the insulating resin sheet 21 to prevent delamination. I do.

【0013】この後、積層基板24の切断面にバフ研磨
を粗さ2μmで20分間、施し、更にジェットスクラブ
で研磨して、積層基板24の切断面(実装面)を平坦化
する。次の工程で、積層基板24の表面全体に、感光性
のソルダーレジスト25を印刷により塗布し、これを露
光、現像して、ビア導体23の上端部分を積層基板24
表面のソルダーレジスト25の被膜から露出させる。こ
の後、ビア導体23の上端露出部分に無電解Niめっき
と無電解Auめっきを施してパッド26を形成した後、
パッド26上に半田ペーストをスクリーン印刷し、リフ
ローによりパッド26上の半田を溶融させて半田バンプ
を形成する。
Thereafter, the cut surface of the laminated substrate 24 is subjected to buffing at a roughness of 2 μm for 20 minutes, and further polished with a jet scrub to flatten the cut surface (mounting surface) of the laminated substrate 24. In the next step, a photosensitive solder resist 25 is applied on the entire surface of the laminated substrate 24 by printing, and this is exposed and developed, and the upper end portion of the via conductor 23 is placed on the laminated substrate 24.
It is exposed from the coating of the solder resist 25 on the surface. Then, after the upper end exposed portion of the via conductor 23 is subjected to electroless Ni plating and electroless Au plating to form the pad 26,
A solder paste is screen-printed on the pad 26, and the solder on the pad 26 is melted by reflow to form a solder bump.

【0014】以上説明した積層基板24の製造方法にお
いて、積層基板24の切断後に行うポストベークの効果
を評価する信頼性評価試験を行ったので、その試験結果
を次の表1に示す。
In the above-described method for manufacturing the laminated substrate 24, a reliability evaluation test for evaluating the effect of post-baking performed after the cutting of the laminated substrate 24 was performed. The test results are shown in Table 1 below.

【0015】[0015]

【表1】 [Table 1]

【0016】この信頼性評価試験に用いたサンプル基板
は、積層数が10層、1層当たりのビア導体が5パター
ンで、基板全体として合計50個のビア導体のパターン
が形成されている。上記表1は、各サンプル基板につい
て、121℃、200時間のPCT(Pressure Cooker
Test)を行い、各サンプル基板の層間剥離により生じた
導体膨れの数を測定したものである。この結果、ポスト
ベークを行わないサンプル基板NO.1は、50カ所の
導体膨れが発生した。
The sample substrate used in the reliability evaluation test has 10 layers and has 5 patterns of via conductors per layer, and a total of 50 via conductor patterns are formed as a whole substrate. Table 1 shows that the PCT (Pressure Cooker) at 121 ° C. for 200 hours was used for each sample substrate.
Test) to measure the number of conductor blisters caused by delamination of each sample substrate. As a result, the sample substrate NO. In No. 1, conductor swelling occurred in 50 places.

【0017】これに対し、切断後にN2 雰囲気中で樹脂
硬化温度以上の温度(200℃)でポストベークを行っ
たサンプル基板NO.2〜NO.4は、導体膨れ数が大
幅に減少した。ポストベーク時間が長くなるほど、ポス
トベークの効果(つまり層間接合力の増大)が大きくな
り、30分のポストベーク(NO.2)で導体膨れ数が
5カ所、1時間のポストベーク(NO.3)で導体膨れ
数が1カ所となり、更に、2時間のポストベーク(N
O.4)では、導体膨れが全く発生しなかった。
On the other hand, after cutting, the sample substrate NO. Which was post-baked at a temperature (200 ° C.) higher than the resin curing temperature in an N 2 atmosphere. 2 to NO. In No. 4, the number of conductor blisters was significantly reduced. The longer the post-baking time, the greater the effect of the post-baking (that is, the increase in the interlayer bonding force). ), The number of blisters in the conductor becomes one, and the post-bake (N
O. In 4), no conductor swelling occurred.

【0018】以上の試験結果から、切断後に樹脂硬化温
度以上の温度でポストベークすると、絶縁樹脂シート間
の接合力やビア導体のパターンと絶縁樹脂シートとの接
合力が大幅に増大することが確認され、特に、2時間の
ポストベークを行うと、導体膨れ(層間剥離)が確実に
防止されることが確認された。尚、本発明の積層基板
は、ベース基板上に接着剤、導電性ペースト等により接
合するようにしても良い。
From the above test results, it has been confirmed that when post-baking is performed at a temperature equal to or higher than the resin curing temperature after cutting, the joining force between the insulating resin sheets and the joining force between the via conductor pattern and the insulating resin sheet are greatly increased. In particular, it was confirmed that swelling of the conductor (delamination) was reliably prevented when post-baking was performed for 2 hours. Note that the laminated substrate of the present invention may be joined to the base substrate by an adhesive, a conductive paste, or the like.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
の積層基板の製造方法によれば、絶縁樹脂シートに銅箔
を樹脂硬化温度より低い温度で熱圧着し、フォトエッチ
ング法でビア導体用の配線パターンを形成し、この絶縁
樹脂シートを複数枚積層して基板サイズに切断した後に
樹脂硬化温度以上の温度でポストベークするようにした
ので、絶縁樹脂層間の接合力やビア導体と絶縁樹脂層と
の接合力を大きくできて、層間剥離を防止でき、歩留り
向上、信頼性向上を実現することができる。
As is apparent from the above description, according to the method of manufacturing a laminated substrate of the present invention, a copper foil is thermocompression-bonded to an insulating resin sheet at a temperature lower than the resin curing temperature, and the via conductor is formed by photoetching. After forming a wiring pattern for use, laminating a plurality of this insulating resin sheet and cutting it into a board size, post-baking is performed at a temperature equal to or higher than the resin curing temperature. The bonding strength with the resin layer can be increased, delamination can be prevented, and the yield and reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における積層基板の製造方
法を説明するもので、(a)は絶縁樹脂シートに銅箔を
接合した状態を示す縦断面図、(b)は絶縁樹脂シート
にビア導体のパターンを形成した状態を示す斜視図、
(c)は絶縁樹脂シートを積層した状態を示す斜視図、
(d)は積層基板の斜視図である。
FIGS. 1A and 1B illustrate a method for manufacturing a laminated substrate according to an embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view showing a state in which copper foil is bonded to an insulating resin sheet, and FIG. Perspective view showing a state where a pattern of a via conductor is formed,
(C) is a perspective view showing a state in which the insulating resin sheets are laminated,
(D) is a perspective view of the laminated substrate.

【図2】従来のビルドアップ多層基板の構造を模式的に
示す縦断面図
FIG. 2 is a longitudinal sectional view schematically showing the structure of a conventional build-up multilayer substrate.

【符号の説明】[Explanation of symbols]

21…絶縁樹脂シート、22…銅箔、23…ビア導体、
24…積層基板、25…ソルダーレジスト、26…パッ
ド。
21: insulating resin sheet, 22: copper foil, 23: via conductor,
24: laminated substrate, 25: solder resist, 26: pad.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実装面に対して各絶縁樹脂層間の接合面
が直角となるように各絶縁樹脂層を積層し、各絶縁樹脂
層に予め形成された配線パターンでビア導体を形成する
積層基板の製造方法において、 前記絶縁樹脂層の形成素材となるプリプレグ製の絶縁樹
脂シートに銅箔を樹脂硬化温度より低い温度で熱圧着し
た後、前記銅箔の不要部分をエッチングしてビア導体用
の配線パターンを形成し、前記絶縁樹脂シートを複数枚
積層して、これを基板サイズに切断し、その切断後に樹
脂硬化温度以上の温度でポストベークした後、切断面を
研磨して実装面として仕上げることを特徴とする積層基
板の製造方法。
1. A laminated substrate in which insulating resin layers are laminated so that a bonding surface between insulating resin layers is perpendicular to a mounting surface, and a via conductor is formed with a wiring pattern formed in advance on each insulating resin layer. In the manufacturing method, after thermally bonding a copper foil to a prepreg insulating resin sheet to be a material for forming the insulating resin layer at a temperature lower than a resin curing temperature, an unnecessary portion of the copper foil is etched to form a via conductor. After forming a wiring pattern, laminating a plurality of the insulating resin sheets, cutting this into a substrate size, post-baking at a temperature equal to or higher than the resin curing temperature after the cutting, polishing the cut surface to finish as a mounting surface. A method for manufacturing a laminated substrate, comprising:
JP3312998A 1998-02-16 1998-02-16 Manufacture of multilayer board Pending JPH11233917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3312998A JPH11233917A (en) 1998-02-16 1998-02-16 Manufacture of multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3312998A JPH11233917A (en) 1998-02-16 1998-02-16 Manufacture of multilayer board

Publications (1)

Publication Number Publication Date
JPH11233917A true JPH11233917A (en) 1999-08-27

Family

ID=12378008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3312998A Pending JPH11233917A (en) 1998-02-16 1998-02-16 Manufacture of multilayer board

Country Status (1)

Country Link
JP (1) JPH11233917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051222A2 (en) * 2000-12-19 2002-06-27 Intel Corporation Parallel plane substrate
FR2976720A1 (en) * 2011-06-15 2012-12-21 St Microelectronics Sa METHOD FOR ELECTRICAL CONNECTION BETWEEN ELEMENTS OF A THREE DIMENSIONAL INTEGRATED STRUCTURE, AND CORRESPONDING DEVICE
CN104124175A (en) * 2014-06-27 2014-10-29 申宇慈 Method for manufacturing substrate containing electric through holes and conductor base material integration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051222A2 (en) * 2000-12-19 2002-06-27 Intel Corporation Parallel plane substrate
WO2002051222A3 (en) * 2000-12-19 2003-02-06 Intel Corp Parallel plane substrate
US6563210B2 (en) 2000-12-19 2003-05-13 Intel Corporation Parallel plane substrate
US6632734B2 (en) 2000-12-19 2003-10-14 Intel Corporation Parallel plane substrate
FR2976720A1 (en) * 2011-06-15 2012-12-21 St Microelectronics Sa METHOD FOR ELECTRICAL CONNECTION BETWEEN ELEMENTS OF A THREE DIMENSIONAL INTEGRATED STRUCTURE, AND CORRESPONDING DEVICE
US8988893B2 (en) 2011-06-15 2015-03-24 Stmicroelectronics Sa Method for electrical connection between elements of a three-dimensional integrated structure and corresponding device
CN104124175A (en) * 2014-06-27 2014-10-29 申宇慈 Method for manufacturing substrate containing electric through holes and conductor base material integration
WO2015197017A1 (en) * 2014-06-27 2015-12-30 申宇慈 Method for manufacturing substrates provided with conductive through-holes, and conductor base-material integration

Similar Documents

Publication Publication Date Title
JP3429734B2 (en) Wiring board, multilayer wiring board, circuit component package, and method of manufacturing wiring board
JP4444435B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP5306789B2 (en) Multilayer wiring board and manufacturing method thereof
JP4427874B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
WO2004103039A1 (en) Double-sided wiring board, double-sided wiring board manufacturing method, and multilayer wiring board
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
JP4497548B2 (en) Wiring board
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
JP2000216514A (en) Wiring board and its manufacture
JP4203537B2 (en) Wiring board manufacturing method and wiring board
JP2007067370A (en) Wiring board and method of manufacturing the same, and ceramic chip for embedment
JP2002151853A (en) Multilayer printed wiring board and manufacturing method thereof
JPH1154926A (en) One-sided circuit board and its manufacture
JP4549695B2 (en) Wiring board manufacturing method
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JPH11233917A (en) Manufacture of multilayer board
JP5221682B2 (en) Printed circuit board and manufacturing method thereof
JP3107535B2 (en) Wiring board, circuit component mounted body, and method of manufacturing wiring board
JP2002009440A (en) Composite wiring board
JP3304061B2 (en) Manufacturing method of printed wiring board
JP2004214227A (en) Interlayer connection part and multilayer wiring board
KR101044133B1 (en) A carrier for manufacturing a printed circuit board and a method of manufacturing the same and a method of manufacturing a printed circuit board using the same
JP7128857B2 (en) CIRCUIT BOARD, CIRCUIT BOARD MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP3247888B2 (en) Electronic component package and method for manufacturing electronic component package
JP3429743B2 (en) Wiring board