JPH11233292A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH11233292A
JPH11233292A JP10032493A JP3249398A JPH11233292A JP H11233292 A JPH11233292 A JP H11233292A JP 10032493 A JP10032493 A JP 10032493A JP 3249398 A JP3249398 A JP 3249398A JP H11233292 A JPH11233292 A JP H11233292A
Authority
JP
Japan
Prior art keywords
exhaust
vacuum
vacuum chamber
plasma processing
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10032493A
Other languages
Japanese (ja)
Other versions
JP3350433B2 (en
Inventor
Tsuneo Nakamura
恒夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP03249398A priority Critical patent/JP3350433B2/en
Publication of JPH11233292A publication Critical patent/JPH11233292A/en
Application granted granted Critical
Publication of JP3350433B2 publication Critical patent/JP3350433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide superior film formation or etching characteristics by setting the cross sectional shape of an exhaust path, which is provided in a vacuum chamber connected to an exhaust port, to an approximately triangle shape, by preventing abnormal discharge such as a local discharge of a plasma processing device before happening, and by stably discharging. SOLUTION: A plasma CVD device is provided with a vacuum chamber 1, a shower electrode 2 also served as a gas leading port, a bottom electrode 3 also served as a heater, a gas exhaust port 6, and a wafer transfer mechanism 7. The vacuum exhaust path 5 is formed into an approximately triangle cross section with an exhaust baffle 4, a side wall and a bottom of the vacuum chamber 1 set to respective sides. This constitution can expand the distance to the bottom electrode 3, and the acute angle part is not positioned near the bottom electrode so as to prevent abnormal discharge such as a local discharge, thereby providing the stable discharge A simple method for inserting the vacuum exhaust baffle 4 can constitute such a vacuum exhaust path as holding a long relative distance to the bottom electrode 3 and suppress the abnormal discharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマ処理装
置に関するものであり、更に詳細には、その真空チャン
バ内に形成される真空排気経路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and more particularly, to a vacuum exhaust path formed in a vacuum chamber.

【0002】[0002]

【従来の技術】IC、LSI、TFT液晶等に代表され
る薄膜応用デバイスの製造には、プラズマCVD装置
(以下P−CVD装置と記す)、スパッタ装置、及び、
エッチング装置等各種のプラズマ処理装置が用いられて
いる。
2. Description of the Related Art In the production of thin film applied devices represented by ICs, LSIs, TFT liquid crystals, etc., a plasma CVD apparatus (hereinafter referred to as a P-CVD apparatus), a sputtering apparatus,
Various plasma processing apparatuses such as an etching apparatus are used.

【0003】例えば、プラズマCVD装置は、高速成
膜、低温成膜、段差被覆性、及び、密着性等に優れ、有
望な薄膜デバイス製造装置である。
[0003] For example, a plasma CVD apparatus is a promising thin film device manufacturing apparatus which is excellent in high-speed film formation, low-temperature film formation, step coverage, adhesion, and the like.

【0004】図4は、P−CVD装置の一例を示す概略
断面図である。真空チャンバ1内に、ガス導入部を兼ね
るシャワー電極2と、ウエハー加熱ヒーターを兼ねる下
部電極3が対向して備わっている。真空排気系は、真空
チャンバ1内の真空排気経路を制限する真空排気邪魔板
4と真空チャンバ1の内壁で形成される真空排気経路
5、真空チャンバ1下方に設けられたガス排気口6、排
気配管経路に設けられた排気経路の開閉バルブ8、排気
コンダクタンス調整バルブ9、及び、真空排気ポンプ1
0等により構成されている。
FIG. 4 is a schematic sectional view showing an example of a P-CVD apparatus. In a vacuum chamber 1, a shower electrode 2 also serving as a gas introduction unit and a lower electrode 3 also serving as a wafer heater are provided to face each other. The vacuum evacuation system includes a vacuum evacuation baffle 4 for limiting the vacuum evacuation path in the vacuum chamber 1, a vacuum evacuation path 5 formed by the inner wall of the vacuum chamber 1, a gas evacuation port 6 provided below the vacuum chamber 1, and evacuation. Opening / closing valve 8 for exhaust path provided in piping path, exhaust conductance adjusting valve 9, and vacuum exhaust pump 1
0 or the like.

【0005】ウエハー15がロードロック室より搬送ロ
ボット(図示せず)により250〜450℃に保持され
た下部電極3上に移載され、5〜50mmの所定の放電
ギャップ長に調整される。次ぎに、シリコン窒化膜(S
iN膜)の場合、モノシラン(SiH4)、アンモニア
(NH3)、及び、窒素(N2)ガスが、各々、10〜5
00SCCM、10〜500SCCM、及び、100〜
7000SCCM、シャワー電極2を通して真空チャン
バ内1内に導入される。その後、真空排気系に設けられ
たコンダクタンス調整バルブ9により、0.1〜8To
rrの圧力に調整され、高周波電源12より、高周波整
合器11を通してシャワー電極2に、50〜1000W
の13.56MHzの高周波電力が供給され、シャワー
電極2と下部電極3の間にプラズマを発生させ膜形成を
行う。
A wafer 15 is transferred from the load lock chamber to a lower electrode 3 maintained at 250 to 450 ° C. by a transfer robot (not shown), and adjusted to a predetermined discharge gap length of 5 to 50 mm. Next, a silicon nitride film (S
In the case of an iN film), monosilane (SiH 4 ), ammonia (NH 3 ), and nitrogen (N 2 ) gas are 10 to 5 respectively.
00 SCCM, 10-500 SCCM, and 100-
7000 SCCM is introduced into the vacuum chamber 1 through the shower electrode 2. Thereafter, the conductance adjusting valve 9 provided in the vacuum evacuation system is used to set 0.1 to 8 To.
rr is adjusted to a pressure of 50 to 1000 W from the high frequency power supply 12 to the shower electrode 2 through the high frequency matching device 11.
13.56 MHz high frequency power is supplied to generate plasma between the shower electrode 2 and the lower electrode 3 to form a film.

【0006】なお、シリコン酸化膜の場合には、導入ガ
スが、SiH4、N2O等に変わるだけで同様のプロセス
となる。
In the case of a silicon oxide film, the same process is performed only by changing the introduced gas to SiH 4 , N 2 O or the like.

【0007】上記において、シャワー電極2より導入さ
れたプロセスガスは、図4において矢印Aで示された様
に、真空排気邪魔板4にほぼ等間隔で開けられた4〜1
2個の穴4aと、真空排気経路5を通り、排気口6から
真空排気ポンプ10へと引かれてていく。このように真
空排気邪魔板4を設けることにより、シャワー電極2か
ら真空チャンバ1に導入されたプロセスガスが等方的に
排気口に向かうようになり、ウエハー15面内の分布が
改善されていた。
[0007] In the above, the process gas introduced from the shower electrode 2 is provided on the evacuation baffle 4 at substantially equal intervals as indicated by arrows A in FIG.
The gas passes through the two holes 4 a and the evacuation path 5, and is drawn from the evacuation port 6 to the evacuation pump 10. By providing the evacuation baffle 4 in this manner, the process gas introduced from the shower electrode 2 into the vacuum chamber 1 isotropically directed to the evacuation port, and the distribution in the surface of the wafer 15 is improved. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、通常こ
のような方法により成膜された膜には、成膜プロセス条
件に応じて残留膜応力が生じている。このような残留応
力(以降、簡単に応力と記す)は、ウエハーの反りとな
って、ウエハー割れやクラック、膜剥離等のデバイスの
損傷や、パターンの位置ズレ等の障害をもたらしてい
た。そして、これらの障害は、近年のウエハーの大口径
化、微細化に伴い、ますます重要な課題となってきてい
た。具体的には、膜応力を1E+08〜1E+09dy
n/cm2以下の圧縮応力に制御する様なプロセス条
件、装置機構等が求められてきている。
However, a film formed by such a method usually has residual film stress depending on the film forming process conditions. Such residual stress (hereinafter, simply referred to as stress) becomes warpage of the wafer, causing damage to the device such as wafer cracking, cracking, film peeling, and other obstacles such as pattern displacement. These obstacles have become more and more important issues with the recent increase in diameter and miniaturization of wafers. Specifically, the film stress is set to 1E + 08 to 1E + 09dy.
Process conditions, device mechanisms, and the like that control the compression stress to n / cm 2 or less have been required.

【0009】このような応力制御は、従来、投入RF電
力、放電ガス圧等のプロセスパラメータ等により実施さ
れていた他、ウエハー15を搭載している下部電極3に
50〜500kHzの低周波バイアスを印加する方法等
が提案されている。低周波バイアスによる応力制御は、
通常行われている、シャワー電極2に13.56MHz
の高周波を印加し、その電力や、ガス圧等のプロセスパ
ラメータにより制御する方法に比べ、独立に制御できる
パラメータが1つ増え有望な手法の1つであった。しか
しながら、従来、チャンバアース接地電極であった下部
電極3に50〜500kHzの比較的低い周波数とはい
え高周波電力を印加すると、下部電極3近傍に設けられ
ていた真空排気邪魔板4を含む真空排気経路5を構成す
るチャンバアース接地電位部品との間に局所的、又は、
全体的な放電が生じると言う問題が発生する様になって
きた。これは、下部電極3と真空排気経路5との距離が
シャワー電極2との距離比較で、相対的に近い、及び、
排気経路の断面が概略四角形形状のため、約90度の鋭
角な角部が下部電極3の近くにあり局所放電を起こし易
い為に生じていると考えられる。
Conventionally, such stress control has been performed by using process parameters such as input RF power and discharge gas pressure, and a low-frequency bias of 50 to 500 kHz is applied to the lower electrode 3 on which the wafer 15 is mounted. A method of applying the voltage has been proposed. Stress control by low frequency bias
13.56 MHz for the shower electrode 2 which is usually used
This method is one of the promising methods in which the number of parameters that can be controlled independently increases by one compared with the method of applying the high frequency and controlling by the process parameters such as the electric power and the gas pressure. However, when high-frequency power is applied to the lower electrode 3 which has conventionally been a chamber grounding electrode at a relatively low frequency of 50 to 500 kHz, the evacuation including the evacuation baffle 4 provided near the lower electrode 3 is performed. Locally or between the chamber earth ground potential component constituting the path 5 or
The problem that an overall discharge occurs has arisen. This means that the distance between the lower electrode 3 and the evacuation path 5 is relatively short in comparison with the distance between the shower electrode 2 and
It is considered that since the cross section of the exhaust path is substantially rectangular, a sharp corner of about 90 degrees is located near the lower electrode 3 and local discharge easily occurs.

【0010】このため、真空チャンバ1を大型化して真
空排気経路5と下部電極3の距離を稼ぐ、又は、真空排
気経路5の形成を取りやめ、ガス排気口6から直接真空
排気する方法、真空排気経路5の構成物をアルミナ等の
セラッミクス部品により形成する方法等が取られてい
る。しかし、これらの対応策は、装置の大型化では、装
置製造コストが増大し、又、フットプリント(装置設置
面積)の増大という新たな課題が発生していた。又、真
空排気経路5の形成を取りやめてガスの流れを均一にす
るためには、ガス排気口6を複数個設ける必要があり装
置構成を複雑にし、又、場合によっては大型化を招いて
いた。又、構成物をアルミナ等のセラミックス系の材料
で真空排気経路5を形成するには装置製造コストの増大
を招いていた。
For this reason, a method of increasing the size of the vacuum chamber 1 to increase the distance between the vacuum exhaust path 5 and the lower electrode 3 or canceling the formation of the vacuum exhaust path 5 and performing vacuum exhaust directly from the gas exhaust port 6, A method of forming the component of the passage 5 with a ceramics component such as alumina is used. However, these countermeasures have caused new problems such as an increase in the size of the device, an increase in the device manufacturing cost, and an increase in the footprint (device installation area). Further, in order to cancel the formation of the vacuum exhaust path 5 and to make the gas flow uniform, it is necessary to provide a plurality of gas exhaust ports 6, which complicates the apparatus configuration and, in some cases, increases the size. . In addition, forming the vacuum evacuation path 5 using a ceramic material such as alumina as a component increases the manufacturing cost of the apparatus.

【0011】又、通常の反応性エッチング装置は、ウエ
ハー保持台を兼ねる下部電極に13.56MHzの高周
波電力を印加しているが、上記P−CVD装置の低周波
バイアス以上に真空排気経路6との局所放電が問題とな
っていて、上記の手法により対処しており同様の課題を
有していた。
In a typical reactive etching apparatus, high-frequency power of 13.56 MHz is applied to a lower electrode which also serves as a wafer holding table. Has been a problem, and has been dealt with by the above-described method, and has a similar problem.

【0012】[0012]

【課題を解決するための手段】上記問題点を解決するた
め、請求項1に記載の発明は、真空状態維持可能な真空
チャンバ内に、プラズマを発生させるための平行平板型
の高周波電極、プロセスガス吹き出し口、及び、真空排
気設備に繋がるガス排気口を有するプラズマ処理装置に
おいて、前記排気口に繋がる真空チャンバ内に設けられ
た排気経路の断面形状が概略三角形形状であることを特
徴とするプラズマ処理装置である。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a parallel plate type high frequency electrode for generating plasma in a vacuum chamber capable of maintaining a vacuum state, and a process therefor. In a plasma processing apparatus having a gas outlet and a gas exhaust port connected to a vacuum exhaust facility, a plasma is characterized in that an exhaust path provided in a vacuum chamber connected to the exhaust port has a substantially triangular cross-sectional shape. Processing device.

【0013】請求項2に記載の発明は、概略逆ハ形状で
ある排気邪魔板を前記真空チャンバ内壁に沿わせて、前
記断面形状を概略三角形形状としたことを特徴とする請
求項1に記載のプラズマ処理装置である。
According to a second aspect of the present invention, the exhaust baffle having a substantially inverted C shape is formed along the inner wall of the vacuum chamber, and the sectional shape is made substantially triangular. Is a plasma processing apparatus.

【0014】請求項3に記載の発明は、前記排気邪魔板
が、実質前記チャンバの周全体にわたるスリット状の真
空排気穴を備えてなることを特徴とする請求項2に記載
のプラズマ処理装置である。
According to a third aspect of the present invention, in the plasma processing apparatus according to the second aspect, the exhaust baffle plate has a slit-shaped vacuum exhaust hole extending substantially over the entire circumference of the chamber. is there.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面を基
に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の第1の実施例のP−CV
D装置の概略断面図である。図1において、1は真空チ
ャンバ、2はガス導入口を兼ねるシャワー電極、3はヒ
ータを兼ねる下部電極、6はガス排気口、7はウエハー
移載機構(いわゆるリフトピン)である。真空排気経路
5は、排気邪魔板4、真空チャンバ1の側壁、及び、底
面を各々1辺とする概略三角形形状の断面を持つ形状に
形成されている。
FIG. 1 shows a P-CV according to a first embodiment of the present invention.
It is a schematic sectional drawing of D apparatus. In FIG. 1, 1 is a vacuum chamber, 2 is a shower electrode also serving as a gas inlet, 3 is a lower electrode also serving as a heater, 6 is a gas exhaust port, and 7 is a wafer transfer mechanism (a so-called lift pin). The vacuum evacuation path 5 is formed in a shape having a substantially triangular cross section, each of which has a side of the evacuation baffle 4, the side wall of the vacuum chamber 1, and the bottom surface.

【0017】又、真空排気経路5はガス排気口6、排気
経路の開閉バルブ8、排気コンダクタンス調整バルブ
9、及び、真空排気ポンプ10等に繋がっている。排気
邪魔板4には、排気コンダクタンスを考慮し、且つ、真
空チャンバ1内のガス流を均一にするよう直径5〜30
mmの穴4aが、周方向に等間隔に4〜16個開けらて
いる。又、シャワー電極2には、高周波整合器11を介
して、13.56MHzの高周波電源12に接続されて
いる。又、下部電極3には、低周波用の整合器13を介
して、50〜500kHz可変の低周波電源14に接続
され、低周波バイアス印加可能な構造になっている。
尚、図示していないが、シャワー電極2には低周波用の
パス、下部電極3には高周波用のパスが設けられてい
る。
The vacuum exhaust path 5 is connected to a gas exhaust port 6, an exhaust path opening / closing valve 8, an exhaust conductance adjusting valve 9, a vacuum exhaust pump 10, and the like. The exhaust baffle 4 has a diameter of 5 to 30 in consideration of the exhaust conductance and to make the gas flow in the vacuum chamber 1 uniform.
Four to sixteen mm holes 4a are formed at regular intervals in the circumferential direction. The shower electrode 2 is connected to a 13.56 MHz high frequency power supply 12 via a high frequency matching device 11. Further, the lower electrode 3 is connected to a low-frequency power source 14 that can be varied from 50 to 500 kHz through a low-frequency matching unit 13 so that a low-frequency bias can be applied.
Although not shown, the shower electrode 2 is provided with a low-frequency path, and the lower electrode 3 is provided with a high-frequency path.

【0018】図2(A)に図1に用いられた排気邪魔板
4の1例を示す。図2(A)の排気邪魔板4はその断面
形状が概略逆ハ形状をしており、それを図1に示すよう
に、真空チャンバ1の内壁に沿わす形で挿入すれば、そ
の断面形状が概略三角形の真空排気経路5が形成でき
る。図2(A)に示した排気邪魔板4は、真空チャンバ
1の側壁、又は、底面に接する両端を設置安定化、隙間
抑制等の為、曲げ加工(4b,4c)を施しているが、
直線状であってもなんら支障は無い。
FIG. 2A shows an example of the exhaust baffle 4 used in FIG. The exhaust baffle 4 of FIG. 2 (A) has a substantially inverted C-shaped cross section, and if it is inserted along the inner wall of the vacuum chamber 1 as shown in FIG. Can form a substantially triangular evacuation path 5. The exhaust baffle 4 shown in FIG. 2 (A) is bent (4b, 4c) to stabilize the installation of the side wall or both ends in contact with the bottom surface of the vacuum chamber 1 and suppress the gap.
There is no problem even if it is straight.

【0019】このような構造を持つ真空排気邪魔板4を
挿入する簡便な手法により、下部電極3との相対的距離
を長く取れる真空排気経路を形成でき、局所放電等の異
常放電を抑制できる。
By a simple method of inserting the evacuation baffle plate 4 having such a structure, a vacuum evacuation path capable of increasing the relative distance from the lower electrode 3 can be formed, and abnormal discharge such as local discharge can be suppressed.

【0020】なお、排気邪魔板4は基本的に局所放電を
抑える形状に形成されているため、アルミナ等のセラミ
ックスは無論、Al、Al合金、SUS等のFe系合金
等の金属材料が使用可能である。従って、セラミックス
等の高価な部品を使用する必要が無く、取扱も容易にな
る。又、上述の金属製の排気邪魔板4は、プラズマ耐性
を上げるため、必要に応じて、アルマイト処理、フッ化
処理、セラミックス溶射、及び、メッキ等の表面処理を
施すこともできる。又、排気邪魔板4に開ける穴4a
は、同じ大きさの穴を等間隔に開けているが、下方のガ
ス排気口との位置関係より穴の大きさを変えたり、間隔
を変えて実施する事も可能である。排気邪魔板4に設け
る穴径、個数は上記の実施例に限定されるものではな
く、排気コンダクタンスを考慮し、ガス流を均一にする
設計であれば良い。
Since the exhaust baffle 4 is basically formed in such a shape as to suppress local discharge, ceramic materials such as alumina can be used, and metal materials such as Al, Al alloy, and Fe alloys such as SUS can be used. It is. Therefore, there is no need to use expensive parts such as ceramics, and the handling becomes easy. Further, the metal exhaust baffle 4 may be subjected to a surface treatment such as an alumite treatment, a fluoridation treatment, a ceramic spraying, and a plating, if necessary, in order to increase the plasma resistance. A hole 4a formed in the exhaust baffle 4
Although holes of the same size are formed at equal intervals, it is also possible to change the size of the holes or change the interval depending on the positional relationship with the gas exhaust port below. The diameter and the number of holes provided in the exhaust baffle 4 are not limited to those in the above-described embodiment, but may be designed as long as the gas flow is made uniform in consideration of the exhaust conductance.

【0021】図1に示したP−CVD装置を用いた成膜
プロセスについて説明する。まず、真空排気された真空
チャンバ1にSiウエハー15を搬入し、成膜用のプロ
セスガスとして、SiH4(シラン)、NH3(アンモニ
ア)、N2(窒素)を、各々10〜500SCCM、1
0〜500SCCM、100〜7000SCCM、シャ
ワー電極2を通して導入し、0.1〜8Torrのガス
圧に排気系に設けられた排気コンダクタンス調整バルブ
9により調整する。基板温度は、250〜450℃、放
電ギャップ(シャワー電極2と下部電極3間距離)は、
5〜50mmに設定されている。その後、高周波電源系
12より、高周波整合器11を通してシャワー電極2に
13.56MHzの高周波電力が100〜1000W供
給すると共に、下部電極3に低周波電源14から低周波
整合器13を通して50〜500kHzの低周波電力を
50〜1000W供給する。この時、本実施例のP−C
VD装置では、下部電極3と真空排気経路5、又は、排
気邪魔板4とは十分に離されており、この間で局所放電
を起こすことなく、対向するシャワー電極2と下部電極
3の間で安定した放電を起こすことができた。又、排気
経路5を形成する邪魔板4に設けられた複数個の排気穴
4aによりシャワー電極2より,真空チャンバ1に導入
されたプロセスガスは均一にウエハー15上を流れてい
き,膜厚分布±3〜5%以下の優れた膜厚分布を持ち、
応力も1E+08〜1E+09dyn/cm2の小さく
制御された圧縮応力を持つSiN膜形成が可能になっ
た。
A film forming process using the P-CVD apparatus shown in FIG. 1 will be described. First, the Si wafer 15 is carried into the evacuated vacuum chamber 1, and SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen) are each used as a process gas for film formation at 10 to 500 SCCM,
The gas is introduced through the shower electrode 2 at 0 to 500 SCCM and 100 to 7000 SCCM, and is adjusted to a gas pressure of 0.1 to 8 Torr by an exhaust conductance adjusting valve 9 provided in the exhaust system. The substrate temperature is 250 to 450 ° C., and the discharge gap (the distance between the shower electrode 2 and the lower electrode 3) is
It is set to 5 to 50 mm. Thereafter, a high frequency power of 13.56 MHz is supplied from the high frequency power supply system 12 to the shower electrode 2 through the high frequency matching unit 100 at 100 to 1000 W, and a low frequency power of 14 to 50 kHz is supplied to the lower electrode 3 from the low frequency power supply 14 through the low frequency matching unit 13. Supply 50 to 1000 W of low frequency power. At this time, PC of this embodiment
In the VD device, the lower electrode 3 and the evacuation path 5 or the evacuation baffle plate 4 are sufficiently separated from each other, and between the shower electrode 2 and the lower electrode 3 facing each other without causing local discharge between them. Discharge was able to occur. Further, the process gas introduced into the vacuum chamber 1 from the shower electrode 2 through the plurality of exhaust holes 4 a provided in the baffle plate 4 forming the exhaust path 5 flows uniformly over the wafer 15 from the shower electrode 2, and the film thickness distribution Excellent film thickness distribution of ± 3-5% or less,
The formation of an SiN film having a small and controlled compressive stress of 1E + 08 to 1E + 09 dyn / cm 2 was also possible.

【0022】尚、本実施例では、真空チャンバ1の内壁
の加工は特に実施していないが、排気邪魔板4の設置安
定性のための機構等を設けることもできる。又、排気経
路5の面積を大きくし、排気コンダクタンスを小さくす
るために、排気経路5を形成する真空チャンバ1の内壁
部の一部に削り込みを入れること等も可能である。又、
真空排気経路5を構成する真空チャンバ1の底部の角加
工にR加工を用いたような曲線を持つ断面形状であって
も差し支えない。
Although the working of the inner wall of the vacuum chamber 1 is not particularly performed in the present embodiment, a mechanism for stably installing the exhaust baffle 4 may be provided. In order to increase the area of the exhaust path 5 and reduce the exhaust conductance, it is also possible to cut a part of the inner wall of the vacuum chamber 1 forming the exhaust path 5. or,
A cross-sectional shape having a curved line, such as a case where R machining is used for corner machining of the bottom of the vacuum chamber 1 constituting the evacuation path 5, may be used.

【0023】図2(B)は、本発明の第2の実施例の排
気邪魔板4である。排気邪魔板4の上部に0.5〜5m
m幅のスリット状の真空排気穴4eを備えている。構造
上、2〜6カ所スリットの切れる部分4fができるが、
このような真空チャンバ1の周全体にわたる排気経路5
の形成でガス流が限定された排気口6に集まることなく
等方的に真空排気経路内に導くことが可能になった。そ
の結果、第1の実施例で示した膜厚分布が更に改善さ
れ、±0.5〜2%以下の分布が得られ、ウエハー15
の外周部のデバイス製造可能領域を拡大させることがで
きた。
FIG. 2B shows an exhaust baffle 4 according to a second embodiment of the present invention. 0.5 to 5 m above the exhaust baffle 4
A slit-shaped vacuum exhaust hole 4e having a width of m is provided. Due to the structure, there is a part 4f where the slit can be cut at 2 to 6 places,
Exhaust path 5 over the entire circumference of such a vacuum chamber 1
The gas flow can be isotropically guided into the vacuum exhaust path without gathering at the limited exhaust port 6 due to the formation of. As a result, the film thickness distribution shown in the first embodiment is further improved, and a distribution of ± 0.5 to 2% or less is obtained.
The area where the device can be manufactured in the outer peripheral portion of the device can be expanded.

【0024】図3は、本発明のプラズマ処理装置を反応
性イオンエッチング装置の適用した場合の概略断面図で
ある。
FIG. 3 is a schematic sectional view when the plasma processing apparatus of the present invention is applied to a reactive ion etching apparatus.

【0025】装置の基本構成は、図1のP−CVD装置
と同じであるが、高周波電源12がウエハー保持電極を
兼ねる下部電極3に接続されている。真空排気経路5
は、図2(A)、又は、(B)に示した様な排気邪魔板
4を用いて、下部電極3との距離を広くし局所放電等を
抑制している。
The basic structure of the apparatus is the same as that of the P-CVD apparatus shown in FIG. 1, but a high-frequency power supply 12 is connected to the lower electrode 3 which also serves as a wafer holding electrode. Vacuum exhaust path 5
Uses an exhaust baffle plate 4 as shown in FIG. 2 (A) or (B) to increase the distance to the lower electrode 3 to suppress local discharge and the like.

【0026】CF4、C26、NF3等のフッ素系のガ
ス、及び、必要に応じて、O2、N2O等の酸素を含むガ
スを、シャワー電極2を通して、真空チャンバ1内に導
入し、0.01〜1Torrのガス圧に調整し、13.
56MHzの高周波電力100〜1000Wを下部電極
3に供給し、SiN膜、又は、SiO2膜等のエッチン
グを行ったところ、局所放電を起こすことなく、エッチ
ング均一性±3%以下の優れた特性が得られた。
A fluorine-containing gas such as CF 4 , C 2 F 6 and NF 3 and a gas containing oxygen such as O 2 and N 2 O are passed through the shower electrode 2 into the vacuum chamber 1 if necessary. And adjusted to a gas pressure of 0.01 to 1 Torr;
When a high frequency power of 100 MHz to 1000 W of 56 MHz is supplied to the lower electrode 3 and the SiN film or the SiO 2 film is etched, excellent characteristics with etching uniformity of ± 3% or less without causing local discharge. Obtained.

【0027】尚、本実施例では、下部電極3に低周波を
含め高周波電力を印加する場合について説明してきた
が、下部電極3がチャンバアース接地電位の装置であっ
ても、使用可能であることは言うまでもない。
In this embodiment, the case where high-frequency power including low-frequency is applied to the lower electrode 3 has been described. However, even if the lower electrode 3 is a device having a chamber ground potential, it can be used. Needless to say.

【0028】以上、本発明の各実施例では、主にSiN
膜に関するプロセスを基に説明してきたが、SiO2
アモルファスSi等の成膜装置、反応性エッチング装置
にも適用可能である。又、各実施例では、主たる放電
が、13.56MHzの高周波放電の実施例を示した
が、50kHzからの低周波による放電でもマイクロ波
による放電でも適用可能である。特に、近年の高密度プ
ラズマを用いた絶縁膜形成装置では、微細パターンの埋
め込みのため、及び、平坦化のためバイアスCVD方法
を用いており、本発明に関わる排気経路、排気邪魔板は
有効である。又、装置が半導体用、液晶用、又は、薄膜
太陽電池、薄膜磁気ヘッド等の他の薄膜デバイス用であ
っても、装置の大きさ等の変化であって、基本構成要素
は変わらず、本発明が適用出来る。
As described above, in each embodiment of the present invention, SiN is mainly used.
Although the explanation has been based on the process relating to the film, SiO 2 ,
The present invention is also applicable to a film forming apparatus made of amorphous Si or the like and a reactive etching apparatus. In each of the embodiments, the main discharge is the high-frequency discharge of 13.56 MHz. However, the present invention can be applied to a discharge at a low frequency of 50 kHz or a microwave. In particular, in recent years, an insulating film forming apparatus using high-density plasma uses a bias CVD method for embedding a fine pattern and for flattening, and the exhaust path and the exhaust baffle plate according to the present invention are effective. is there. Also, even if the device is for semiconductors, liquid crystals, or other thin-film devices such as thin-film solar cells and thin-film magnetic heads, changes in the size of the device, etc., and the basic components remain unchanged. The invention is applicable.

【0029】[0029]

【発明の効果】以上のとおり、本発明のプラズマ処理装
置では、ガス排気口に繋がる真空チャンバ内の真空排気
経路の断面を概略三角形形状にすることにより、下部電
極との距離を広くでき、又、概略四角形形状の様な鋭角
な角が下部電極の近くに存在しなくなり、局所放電等の
異常放電を抑制し安定した放電が得られ、優れた成膜、
又は、エッチング特性を有するプラズマ処理装置が得ら
れる。又、請求項2のプラズマ処理装置では、断面形状
が、概略逆ハ形状である排気邪魔板を前記真空チャンバ
内壁に沿わせる形で挿入されていることにより、真空チ
ャンバを大型化することなく、又、複雑な機構を設ける
ことなく、安価に断面が概略三角形形状の真空排気経路
を形成でき、安定した放電特性を持つプラズマ処理装置
が得られる。さらに請求項3のプラズマ処理装置では、
ガス流を等方的に真空排気経路内に導くことができ、形
成される膜厚分布等を更に改善できる。
As described above, in the plasma processing apparatus of the present invention, the cross-section of the vacuum exhaust path in the vacuum chamber connected to the gas exhaust port has a substantially triangular shape, so that the distance to the lower electrode can be increased. An acute angle such as a substantially rectangular shape is no longer present near the lower electrode, and an abnormal discharge such as a local discharge is suppressed, and a stable discharge is obtained.
Alternatively, a plasma processing apparatus having etching characteristics can be obtained. Further, in the plasma processing apparatus according to claim 2, since the exhaust baffle having a substantially inverted C-shaped cross section is inserted along the inner wall of the vacuum chamber, the vacuum chamber is not increased in size. Further, a vacuum exhaust path having a substantially triangular cross section can be formed at low cost without providing a complicated mechanism, and a plasma processing apparatus having stable discharge characteristics can be obtained. Furthermore, in the plasma processing apparatus of claim 3,
The gas flow can be isotropically guided into the evacuation path, and the distribution of the film thickness to be formed can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すP−CVD装置の概略
断面図である。
FIG. 1 is a schematic sectional view of a P-CVD apparatus showing one embodiment of the present invention.

【図2】排気邪魔板の構成例を示す一部拡大斜視図であ
る。
FIG. 2 is a partially enlarged perspective view showing a configuration example of an exhaust baffle plate.

【図3】本発明の反応性イオンエッチング装置への適用
例を示す概略断面図である。
FIG. 3 is a schematic sectional view showing an application example of the present invention to a reactive ion etching apparatus.

【図4】従来のP−CVD装置を示す概略断面図であ
る。
FIG. 4 is a schematic sectional view showing a conventional P-CVD apparatus.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 シャワー電極 3 下部電極 4 排気邪魔板 5 真空排気経路 6 ガス排気口 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Shower electrode 3 Lower electrode 4 Exhaust baffle plate 5 Vacuum exhaust path 6 Gas exhaust port

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/31 H01L 21/302 C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/31 H01L 21/302 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空状態維持可能な真空チャンバ内に、
プラズマを発生させるための平行平板型の高周波電極、
プロセスガス吹き出し口、及び、真空排気設備に繋がる
ガス排気口を有するプラズマ処理装置において、 前記排気口に繋がる真空チャンバ内に設けられた排気経
路の断面形状が概略三角形形状であることを特徴とする
プラズマ処理装置。
In a vacuum chamber capable of maintaining a vacuum state,
Parallel plate type high frequency electrode for generating plasma,
In a plasma processing apparatus having a process gas outlet and a gas exhaust port connected to a vacuum exhaust facility, a cross-sectional shape of an exhaust path provided in a vacuum chamber connected to the exhaust port is substantially triangular. Plasma processing equipment.
【請求項2】 概略逆ハ形状である排気邪魔板を前記真
空チャンバ内壁に沿わせて、前記排気経路の断面形状を
概略三角形形状としたことを特徴とする請求項1に記載
のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein an exhaust baffle plate having a substantially inverted C shape is formed along the inner wall of the vacuum chamber, and a cross-sectional shape of the exhaust path is made substantially triangular. .
【請求項3】 前記排気邪魔板は、実質前記チャンバの
周全体にわたるスリット状の真空排気穴を備えてなるこ
とを特徴とする請求項2に記載のプラズマ処理装置。
3. The plasma processing apparatus according to claim 2, wherein the exhaust baffle is provided with a slit-shaped vacuum exhaust hole substantially over the entire circumference of the chamber.
JP03249398A 1998-02-16 1998-02-16 Plasma processing equipment Expired - Fee Related JP3350433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03249398A JP3350433B2 (en) 1998-02-16 1998-02-16 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03249398A JP3350433B2 (en) 1998-02-16 1998-02-16 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH11233292A true JPH11233292A (en) 1999-08-27
JP3350433B2 JP3350433B2 (en) 2002-11-25

Family

ID=12360529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03249398A Expired - Fee Related JP3350433B2 (en) 1998-02-16 1998-02-16 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3350433B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039493A1 (en) * 2000-11-10 2002-05-16 Tokyo Electron Limited Plasma processing device and exhaust ring
WO2004097931A1 (en) * 2003-04-28 2004-11-11 Fujitsu Limited Method for fabricating semiconductor device
US7166166B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
KR100703654B1 (en) * 2005-09-12 2007-04-06 주식회사 아이피에스 Control Pressure of Structure And Chamber Interior Duct
KR100773724B1 (en) 2006-08-23 2007-11-06 주식회사 아이피에스 Thin film deposition apparatus
US7846291B2 (en) 1999-12-10 2010-12-07 Tokyo Electron Limited Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
EP2381483A1 (en) * 2008-12-26 2011-10-26 Ulvac, Inc. Film-forming device and film-forming method for forming passivation films as well as manufacturing method for solar cell elements
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
JP2015198111A (en) * 2014-03-31 2015-11-09 東京エレクトロン株式会社 substrate processing apparatus
KR20190085143A (en) * 2016-12-06 2019-07-17 어플라이드 머티어리얼스, 인코포레이티드 Particle reduction in physical vapor deposition chamber

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846291B2 (en) 1999-12-10 2010-12-07 Tokyo Electron Limited Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
US7879179B2 (en) 1999-12-10 2011-02-01 Tokyo Electron Limited Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
JP2002151471A (en) * 2000-11-10 2002-05-24 Tokyo Electron Ltd Plasma processing system
US6878234B2 (en) 2000-11-10 2005-04-12 Tokyo Electron Limited Plasma processing device and exhaust ring
US7255773B2 (en) 2000-11-10 2007-08-14 Tokyo Electron Limited Plasma processing apparatus and evacuation ring
WO2002039493A1 (en) * 2000-11-10 2002-05-16 Tokyo Electron Limited Plasma processing device and exhaust ring
US7166166B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
WO2004097931A1 (en) * 2003-04-28 2004-11-11 Fujitsu Limited Method for fabricating semiconductor device
US7183200B2 (en) 2003-04-28 2007-02-27 Fujitsu Limited Method for fabricating a semiconductor device
KR100703654B1 (en) * 2005-09-12 2007-04-06 주식회사 아이피에스 Control Pressure of Structure And Chamber Interior Duct
KR100773724B1 (en) 2006-08-23 2007-11-06 주식회사 아이피에스 Thin film deposition apparatus
EP2381483A4 (en) * 2008-12-26 2013-09-04 Ulvac Inc Film-forming device and film-forming method for forming passivation films as well as manufacturing method for solar cell elements
US8735201B2 (en) 2008-12-26 2014-05-27 Ulvac, Inc. Film-forming method for forming passivation film and manufacturing method for solar cell element
EP2381483A1 (en) * 2008-12-26 2011-10-26 Ulvac, Inc. Film-forming device and film-forming method for forming passivation films as well as manufacturing method for solar cell elements
JP2015198111A (en) * 2014-03-31 2015-11-09 東京エレクトロン株式会社 substrate processing apparatus
KR20190085143A (en) * 2016-12-06 2019-07-17 어플라이드 머티어리얼스, 인코포레이티드 Particle reduction in physical vapor deposition chamber

Also Published As

Publication number Publication date
JP3350433B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US8074599B2 (en) Plasma uniformity control by gas diffuser curvature
JP6088493B2 (en) Gas distribution system for ceramic showerhead in plasma etching reactor
JP5891300B2 (en) Gas distribution showerhead for inductively coupled plasma etching reactor
JP4541117B2 (en) Gas distribution plate assembly, plasma processing chamber and diffuser plate
TWI391034B (en) Contamination reducing liner for inductively coupled chamber
US20020134511A1 (en) Substrate supporting table,method for producing same, and processing system
US8394231B2 (en) Plasma process device and plasma process method
US20030119328A1 (en) Plasma processing apparatus, and cleaning method therefor
US11339475B2 (en) Film stack overlay improvement
JP3121524B2 (en) Etching equipment
WO2006017136A2 (en) Plasma uniformity control by gas diffuser curvature
JPS63238288A (en) Dry etching method
JP3350433B2 (en) Plasma processing equipment
JP3437926B2 (en) Plasma CVD apparatus, film forming method, and cleaning method
JP2004186404A (en) Plasma processing apparatus
JP3450173B2 (en) Plasma processing equipment
JP2630089B2 (en) Microwave plasma processing equipment
JP3282326B2 (en) Plasma processing equipment
JP3357737B2 (en) Discharge plasma processing equipment
TWI858421B (en) Semiconductor processing chamber for improved precursor flow
JP2003188162A (en) Plasma treatment apparatus
JP3279466B2 (en) Semiconductor wafer processing apparatus and semiconductor device
JP4546667B2 (en) Dry etching method
JP3261795B2 (en) Plasma processing equipment
JPH06120140A (en) Semiconductor manufacturing method and equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees