JPH11231939A - Method and device for controlling steering of unmanned vehicle - Google Patents

Method and device for controlling steering of unmanned vehicle

Info

Publication number
JPH11231939A
JPH11231939A JP10033080A JP3308098A JPH11231939A JP H11231939 A JPH11231939 A JP H11231939A JP 10033080 A JP10033080 A JP 10033080A JP 3308098 A JP3308098 A JP 3308098A JP H11231939 A JPH11231939 A JP H11231939A
Authority
JP
Japan
Prior art keywords
steering angle
unmanned vehicle
traveling
locus
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10033080A
Other languages
Japanese (ja)
Inventor
Naomichi Fujinaga
直道 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP10033080A priority Critical patent/JPH11231939A/en
Publication of JPH11231939A publication Critical patent/JPH11231939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an unmanned vehicle steering controlling method capable of improving the steering property of an unmanned vehicle having the possibility of traveling in the unbalanced state of right and left weight balance or driving balance about an advancing direction by setting up the reference steering angles of respective wheels so as to allow the vehicle to accurately travel along a required traveling locus. SOLUTION: After setting up the steering angles of respective wheels so as to allow an unmanned vehicle to travel along a required traveling locus, the unmanned vehicle is allowed to travel to detect the practical traveling locus of the vehicle. A deviation between the detected practical traveling locus and the required traveling locus is detected and the steering angles are corrected so that the deviation becomes zero. Consequently the influence of an unbalanced state of right and left weight balance or driving balance about the advancing direction of the unmanned vehicle can be canceled and the vehicle can be allowed to accurately travel along the required traveling locus. Namely the steering property of the unmanned vehicle can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,例えば車体の右側
に2輪,左側に1輪の操舵可能な駆動輪が配置されてい
るような,進行方向に対して左右の重量バランスや駆動
バランスが不釣り合いな状態で走行し得る無人車を,正
確に所望の走行軌跡に沿って走行させるように制御する
無人車の操向制御方法,及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle having a left and right steering wheel, such as two steerable driving wheels arranged on the right side of a vehicle body and one steering wheel on the left side. The present invention relates to an unmanned vehicle steering control method for controlling an unmanned vehicle that can run in an unbalanced state to accurately travel along a desired traveling locus, and a device thereof.

【0002】[0002]

【従来の技術】例えば,それぞれ独立して操舵可能な駆
動輪(以下,操舵駆動輪という)が複数配置され,上記
各車輪の駆動速度と操舵角をそれぞれ制御しながら走行
する無人車においては,該無人車を所定の進行方向に向
かって直進させる際の各車輪の操舵角(以下,基準操舵
角という)は,通常,上記進行方向に平行となる角度に
設定される。例えば,上記所定の進行方向が車体前方方
向であれば,各車輪の基準操舵角は全て車軸に平行とな
る角度に設定される。
2. Description of the Related Art For example, in an unmanned vehicle in which a plurality of drive wheels (hereinafter referred to as "steer drive wheels") that can be independently steered are arranged, and the vehicle travels while controlling the drive speed and the steering angle of each of the wheels, respectively. The steering angle (hereinafter referred to as a reference steering angle) of each wheel when the unmanned vehicle moves straight in a predetermined traveling direction is usually set to an angle parallel to the traveling direction. For example, if the predetermined traveling direction is the forward direction of the vehicle body, the reference steering angles of the respective wheels are all set to angles parallel to the axle.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,例えば
操舵駆動輪が車体の左側に2輪,右側に1輪配置されて
いる図6に示す無人車Vのように,進行方向に対して左
右の重量バランスや駆動バランスが不釣り合いな状態で
走行し得る無人車においては,各車輪を上述のような方
法で決定された基準操舵角に設定して走行させると,上
記重量バランスや駆動バランスの不釣り合いの影響によ
り,実際の走行軌跡は直線ではなく左右いずれかの方向
に曲がってしまうという現象が発生する(図7参照)。
このような場合,無人車Vの走行を制御する制御部にお
いては,各車輪を基準操舵角に設定することで車体は直
進しているものと推定されるため,実際の進行方向と推
定進行方向との間に差が生まれ,正確な走行制御が行え
ないこととなる。本発明は上記事情に鑑みてなされたも
のであり,その目的とするところは,車体を所望の走行
軌跡に沿って正確に走行させ得るように,各車輪の基準
操舵角を設定することにより無人車の操向性を向上させ
る無人車の操向制御方法,及びその装置を提供すること
である。
However, for example, an unmanned vehicle V shown in FIG. 6 in which two steering driving wheels are arranged on the left side of the vehicle body and one wheel is arranged on the right side of the vehicle body, the left and right weights with respect to the traveling direction. In an unmanned vehicle that can run in a state where the balance and the drive balance are unbalanced, when the wheels are set to the reference steering angle determined by the above-described method and run, the weight balance and the drive balance are unbalanced. , A phenomenon occurs in which the actual traveling locus is curved not in a straight line but in one of the left and right directions (see FIG. 7).
In such a case, in the control unit that controls the traveling of the unmanned vehicle V, since the vehicle body is estimated to be traveling straight by setting each wheel to the reference steering angle, the actual traveling direction and the estimated traveling direction And a difference is created between them, and accurate running control cannot be performed. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to set an unmanned vehicle by setting a reference steering angle of each wheel so that a vehicle body can travel accurately along a desired traveling locus. An object of the present invention is to provide an unmanned vehicle steering control method and a device thereof that improve the steerability of the vehicle.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の方法は,操舵角の制御が可能な2以上の車輪
であってそのうち少なくとも1つが更に速度の制御も可
能な車輪を具備し,車体の進行方向に対して左右の重量
バランス及び/若しくは駆動バランスが不釣り合いな状
態で走行し得る無人車の操向制御方法において,該無人
車が所望の走行軌跡に沿って走行するように上記各車輪
の操舵角を設定した上で上記無人車を走行させると共
に,該無人車の実走行軌跡を検出する実走行軌跡検出工
程と,上記実走行軌跡検出工程で得られた実走行軌跡
と,上記所望の走行軌跡とのズレを検出する走行軌跡ズ
レ検出工程と,上記走行軌跡ズレ検出工程で得られた上
記ズレを0とするような上記操舵角の修正量を算出する
操舵角修正量算出工程と,上記操舵角修正量算出工程で
得られた上記操舵角の修正量に基づいて上記実走行軌跡
検出工程で設定された各車輪の操舵角を修正する操舵角
修正工程とを具備してなることを特徴とする無人車の操
向制御方法として構成されている。上記実走行軌跡検出
工程は,例えば該無人車の走行距離とそれに対応する車
体姿勢を所定周期毎に検出することにより上記実走行軌
跡を検出するように構成できる。また,最も簡単な例と
しては,上記所望の走行軌跡を所定方向へ向かう直線と
し,上記実走行軌跡検出工程において,上記各車輪が上
記直線と平行となるような操舵角に設定する方法が挙げ
られる。この場合には,上記操舵角修正量算出工程にお
いて,上記走行軌跡ズレ検出工程で得られた上記ズレよ
り上記実走行軌跡の回転半径Rを求め,該無人車が上記
実走行軌跡と反対の方向に上記回転半径Rで走行するよ
うに上記操舵角の修正量を算出するようにすれば,上記
操舵角の修正量の算出が容易である。
SUMMARY OF THE INVENTION In order to achieve the above object, a method according to the present invention comprises two or more wheels whose steering angles can be controlled, at least one of which has a wheel whose speed can be further controlled. However, in a steering control method for an unmanned vehicle capable of traveling in a state in which the right and left weight balance and / or drive balance are unbalanced with respect to the traveling direction of the vehicle body, the unmanned vehicle may travel along a desired traveling locus. The vehicle travels after the unmanned vehicle travels after setting the steering angles of the respective wheels, and an actual travel locus detection step for detecting an actual travel locus of the unmanned vehicle; And a traveling locus deviation detecting step of detecting a deviation from the desired traveling locus, and a steering angle correction for calculating a correction amount of the steering angle such that the deviation obtained in the traveling locus deviation detecting step is set to 0. Quantity calculation process A steering angle correcting step of correcting the steering angle of each wheel set in the actual traveling trajectory detecting step based on the steering angle correction amount obtained in the steering angle correction amount calculating step. And a steering control method for an unmanned vehicle. The actual traveling trajectory detecting step may be configured to detect the actual traveling trajectory by detecting, for example, a traveling distance of the unmanned vehicle and a corresponding vehicle body posture at predetermined intervals. In addition, as the simplest example, there is a method in which the desired traveling trajectory is set as a straight line directed in a predetermined direction, and in the actual traveling trajectory detecting step, the steering angles are set such that the wheels are parallel to the straight line. Can be In this case, in the steering angle correction amount calculation step, the turning radius R of the actual traveling trajectory is obtained from the deviation obtained in the traveling trajectory deviation detecting step, and the unmanned vehicle is moved in the direction opposite to the actual traveling trajectory. If the correction amount of the steering angle is calculated so that the vehicle travels with the turning radius R, the correction amount of the steering angle can be easily calculated.

【0005】また,本方法を適用可能な無人車として
は,例えばそれぞれ独立して速度及び操舵角の制御が可
能な3つの車輪を具備すると共に,上記3つの車輪が車
体の進行方向に対して左右非対称となる状態で走行し得
るように構成されたものが考えられる。また,上記目的
を達成するために本発明の装置は,操舵角の制御が可能
な2以上の車輪であってそのうち少なくとも1つが更に
速度の制御も可能な車輪を具備し,車体の進行方向に対
して左右の重量バランス及び/若しくは駆動バランスが
不釣り合いな状態で走行し得る無人車の操向制御装置に
おいて,該無人車が所望の走行軌跡に沿って走行するよ
うに上記各車輪の操舵角を設定した上で上記無人車を走
行させると共に,該無人車の実走行軌跡を検出する実走
行軌跡検出手段と,上記実走行軌跡検出手段で得られた
実走行軌跡と,上記所望の走行軌跡とのズレを検出する
走行軌跡ズレ検出手段と,上記走行軌跡ズレ検出手段で
得られた上記ズレを0とするような上記操舵角の修正量
を算出する操舵角修正量算出手段と,上記操舵角修正量
算出手段で得られた上記操舵角の修正量に基づいて上記
実走行軌跡検出手段で設定された各車輪の操舵角を修正
する操舵角修正手段とを具備してなることを特徴とする
無人車の操向制御装置として構成されている。
An unmanned vehicle to which the present method can be applied includes, for example, three wheels capable of independently controlling the speed and the steering angle, and the three wheels are arranged in the traveling direction of the vehicle body. One that is configured to be able to travel in an asymmetric state is considered. Further, in order to achieve the above object, the device of the present invention comprises two or more wheels capable of controlling the steering angle, at least one of the wheels being capable of further controlling the speed, and is provided in the traveling direction of the vehicle body. On the other hand, in a steering control device for an unmanned vehicle capable of traveling in a state in which the right and left weight balance and / or drive balance are unbalanced, the steering angles of the wheels are adjusted so that the unmanned vehicle travels along a desired traveling locus. The actual traveling trajectory detecting means for causing the unmanned vehicle to travel while detecting the actual traveling trajectory of the unmanned vehicle, the actual traveling trajectory obtained by the actual traveling trajectory detecting means, and the desired traveling trajectory A travel path deviation detecting means for detecting a deviation from the steering angle, a steering angle correction amount calculating means for calculating a correction amount of the steering angle so as to make the deviation obtained by the traveling path deviation detection means zero, Angle correction calculation Steering angle correcting means for correcting the steering angle of each wheel set by the actual traveling trajectory detecting means based on the correction amount of the steering angle obtained by the means. It is configured as a steering control device.

【0006】[0006]

【作用】本発明に係る無人車の操向制御方法及びその装
置によれば,上記操舵角の修正によって無人車の進行方
向に対する左右の重量バランスや駆動バランスの不釣り
合いの影響が打ち消されるため,無人車を所望の走行軌
跡に沿って正確に走行させることが可能となる。即ち無
人車の操向性が向上する。
According to the method and apparatus for steering control of an unmanned vehicle according to the present invention, the correction of the steering angle cancels out the influence of imbalance between the left and right weight balance and the drive balance in the traveling direction of the unmanned vehicle. It is possible to cause the unmanned vehicle to travel accurately along a desired traveling locus. That is, the steerability of the unmanned vehicle is improved.

【0007】[0007]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る操向制御方法の手順を示すフローチャート,図
2は本発明の実施の形態に係る操向制御装置Z1の概略
構成を示すブロック図,図3は走行距離Dと車体姿勢φ
との関係から車体姿勢変化率Aを算出する方法の説明
図,図4は無人車Vの実際の走行軌跡における回転半径
Rの説明図,図5は各車輪の初期操舵角の修正量α1
α3 の算出方法の説明図,図6は3つの操舵駆動輪を左
右非対称に配置する無人車Vの構成を示す模式図であ
る。本実施の形態では,本発明を,車体の左側前後に車
輪W1,W2,車体の右側中央に車輪W3の合計3輪の
操舵駆動輪が配置された無人車V(図6参照)に適用し
た例を示す。本実施の形態に係る操向制御方法は,図1
のフローチャートに示す如く構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a flowchart showing a procedure of a steering control method according to the embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of the steering control device Z1 according to the embodiment of the present invention, and FIG. Is the mileage D and the body posture φ
Illustrating a method for computing the body attitude change ratio A from the relationship between FIG. 4 is an explanatory view of the rotation radius R of the actual traveling locus of the unmanned vehicle V, 5 correction amount alpha 1 of the initial steering angle of each wheel ~
illustration of calculation method for alpha 3, FIG. 6 is a schematic diagram showing a configuration of the unmanned vehicle V to place three of the steering drive wheels asymmetrically. In the present embodiment, the present invention is applied to an unmanned vehicle V (see FIG. 6) in which a total of three steering drive wheels, ie, wheels W1 and W2, and a wheel W3 are disposed in the center of the right side of the vehicle body on the left and right sides of the vehicle body. Here is an example. The steering control method according to the present embodiment is described in FIG.
Is configured as shown in the flowchart of FIG.

【0008】また,上記無人車Vに対して上記操向制御
方法を適用するにあたって用いられる操向制御装置Z1
は,図2に示すように,例えばエンコーダやジャイロな
どにより,走行中の無人車Vの走行距離とそれに対応す
る車体姿勢(方向角)を所定の周期で検出する車体姿勢
検出部1(実走行軌跡検出手段の一例)と,上記車体姿
勢検出部1で検出された所定周期毎の無人車Vの走行距
離とそれに対応する車体姿勢を順次記憶する車体姿勢記
憶部2と,上記車体姿勢記憶部2に記憶された所定周期
毎の無人車Vの走行距離とそれに対応する車体姿勢から
車体姿勢変化率を算出する車体姿勢変化率算出部3(走
行軌跡ズレ検出手段の一例)と,上記車体姿勢変化率算
出部3で得られた車体姿勢変化率に基づいて各車輪W
1,W2,W3の操舵角の修正量を算出する操舵角修正
量算出部4(操舵角修正量算出手段の一例)と,上記操
舵角修正量算出部4で得られた修正量により無人車Vの
操舵角を修正する操舵角修正部5(操舵角修正手段の一
例)とを具備して構成される。尚,上記車体姿勢検出部
1,上記車体姿勢記憶部2,上記車体姿勢変化率算出部
3,上記操舵角修正量算出部4,及び上記操舵角修正部
5については上記無人車V上に設置してもよいし,無人
車Vとは別体として構成してもよい。
A steering control device Z1 used in applying the steering control method to the unmanned vehicle V
As shown in FIG. 2, a vehicle-body-posture detecting unit 1 (actual traveling-vehicle detecting unit 1) detects a traveling distance of a traveling unmanned vehicle V and a corresponding vehicle body posture (direction angle) at a predetermined cycle by using, for example, an encoder or a gyro. An example of a trajectory detecting means), a vehicle body posture storage unit 2 for sequentially storing the traveling distance of the unmanned vehicle V detected by the vehicle body posture detection unit 1 and a vehicle body posture corresponding to the traveling distance, and the vehicle body posture storage unit A vehicle body posture change rate calculation unit 3 (an example of a running locus deviation detecting unit) for calculating a vehicle body posture change rate from the travel distance of the unmanned vehicle V and the vehicle body posture corresponding thereto corresponding to a predetermined period stored in the storage unit 2; Each wheel W is determined based on the body posture change rate obtained by the change rate calculation unit 3.
A steering angle correction amount calculation unit 4 (an example of a steering angle correction amount calculation unit) that calculates the correction amounts of the steering angles of W1, W2, and W3, and an unmanned vehicle based on the correction amounts obtained by the steering angle correction amount calculation unit 4. And a steering angle correcting unit 5 (an example of a steering angle correcting unit) for correcting the steering angle of the V. Note that the vehicle body posture detecting unit 1, the vehicle body posture storage unit 2, the vehicle body posture change rate calculating unit 3, the steering angle correction amount calculating unit 4, and the steering angle correcting unit 5 are installed on the unmanned vehicle V. Alternatively, it may be configured separately from the unmanned vehicle V.

【0009】以下,図1に示すフローチャートに従っ
て,本実施の形態に係る操向制御方法の手順を具体的に
説明する。まず,無人車Vの各車輪W1〜W3を,全て
所定の進行方向に平行となるような操舵角(以下,初期
操舵角という)に設定した状態で無人車Vの走行を開始
させる(ステップS1)。ここでは,上記所定の進行方
向を前方直進方向(所望の走行軌跡の一例)とする。無
人車Vが走行を開始すると,車体姿勢検出部1により,
無人車Vの車体姿勢(方向角)とその時の走行距離とが
所定周期で検出され,検出された所定周期毎の車体姿勢
φi は,そのときの無人車Vの走行距離と対応させて車
体姿勢記憶部2に順次記憶される(ステップS2〜S
4)。上記ステップS2〜S4の処理は無人車が走行を
終了するまで継続される。この無人車Vの走行は,実走
行軌跡の算出に必要な数nだけ上記車体姿勢φi が得ら
れるまで続けられる。ここで,上記車体姿勢検出部1に
よる無人車Vの走行距離とそれに対応する車体姿勢の検
出工程(ステップS1〜S4)が,実走行軌跡検出工程
の一例である。無人車Vの走行が終了すると,車体姿勢
変化率算出部3により,上記車体姿勢記憶部2に記憶さ
れたn個の車体姿勢φ1 〜φn とその時の走行距離D1
〜Dnより,車体姿勢変化率A(実走行軌跡と所望の走
行軌跡とのズレの一例)が近似処理により求められる
(ステップS5)(図3参照)。ここで,上記車体姿勢
変化率算出部3による上記車体姿勢変化率Aの算出工程
(ステップS5)が,走行軌跡ズレ検出工程の一例であ
る。
The procedure of the steering control method according to the present embodiment will be specifically described below with reference to the flowchart shown in FIG. First, the traveling of the unmanned vehicle V is started in a state where the wheels W1 to W3 of the unmanned vehicle V are all set to a steering angle (hereinafter, referred to as an initial steering angle) that is parallel to a predetermined traveling direction (step S1). ). Here, the predetermined traveling direction is a forward straight traveling direction (an example of a desired traveling locus). When the unmanned vehicle V starts running, the vehicle body posture detecting unit 1
Body attitude of the unmanned vehicle V (the direction angle) and the travel distance at that time is detected in a predetermined period, the body attitude phi i for each detected predetermined period, the vehicle body in correspondence with the travel distance of the unmanned vehicle V at that time Are sequentially stored in the posture storage unit 2 (steps S2 to S
4). The processing in steps S2 to S4 is continued until the unmanned vehicle ends traveling. The travel of the unmanned vehicle V, the number n only the body attitude φ i required for calculating the actual running locus is continued until obtained. Here, the detection process (steps S1 to S4) of the traveling distance of the unmanned vehicle V and the corresponding vehicle posture by the vehicle posture detection unit 1 is an example of the actual traveling trajectory detection process. When traveling of the unmanned vehicle V is completed, the vehicle body attitude change rate calculating section 3, the travel distance D 1 of the said vehicle body attitude storage section 2 in the stored n-number of the vehicle body attitude phi 1 to [phi] n at that time
Than to D n, (an example of a deviation between the actual travel locus and desired travel locus) body attitude change rate A is obtained by approximation processing (step S5) (see Fig. 3). Here, the process of calculating the vehicle body attitude change rate A by the vehicle body attitude change rate calculation unit 3 (step S5) is an example of a travel locus deviation detection step.

【0010】続いて,操舵角修正量算出部4において,
次の方法により上記初期操舵角の修正量が算出される。
まず,次式により,上記無人車Vの実走行軌跡の回転半
径Rが算出される(ステップS6)(図4参照)。
Subsequently, in the steering angle correction amount calculating section 4,
The correction amount of the initial steering angle is calculated by the following method.
First, the turning radius R of the actual traveling locus of the unmanned vehicle V is calculated by the following equation (step S6) (see FIG. 4).

【数1】 そして,算出された回転半径Rに基づいて,理想状態
(重量バランスや駆動バランスの不釣り合いを考慮しな
い状態)において無人車Vが上記実走行軌跡と反対の方
向に回転半径Rの走行軌跡を描くように,各車輪W1〜
W3についての上記初期操舵角(車軸に平行となる操舵
角)に対する修正量α1 〜α3 がそれぞれ算出される
(ステップS7)。具体的には,車体中心を原点として
車軸方向にX軸,車軸に垂直な方向にY軸をとったと
き,上記走行によって得られた走行軌跡における回転中
心O0 の座標が(0,R)であったとすると(図4参
照),新しい回転中心O1 の座標を(0,−R)とし,
各車輪W1〜W3をそれぞれ上記回転中心O1 と各車輪
W1〜W3の回転中心とを結ぶ直線に垂直な方向へ向け
たときの上記初期操舵角に対する修正量α1 〜α3 が,
次式により求められる。
(Equation 1) Then, based on the calculated radius of gyration R, the unmanned vehicle V draws a traveling trajectory with a radius of gyration R in a direction opposite to the actual traveling trajectory in an ideal state (a state in which the imbalance between the weight balance and the driving balance is not considered). Thus, each wheel W1
Correction amounts α 1 to α 3 for the initial steering angle (the steering angle parallel to the axle) for W3 are calculated (step S7). Specifically, when the X axis is taken in the axle direction and the Y axis is taken in a direction perpendicular to the axle with the origin at the center of the vehicle body, the coordinates of the rotation center O 0 in the travel locus obtained by the above travel are (0, R) When was (see FIG. 4), the new center of rotation O 1 coordinates and (0, -R),
Each wheel W1~W3 is the initial modifications to the steering angle quantity alpha 1 to? 3 when towards the rotational center O 1 and the straight line perpendicular to the direction connecting the center of rotation of the wheels W1~W3 respectively,
It is obtained by the following equation.

【数2】 上記操舵角修正量算出部4において上記初期操舵角の修
正量α1 〜α3 が算出されると,操舵角修正部5によ
り,上記修正量に基づいて各車輪W1〜W3の初期操舵
角が修正される(ステップS8)。以後,上記修正され
て得られた操舵角を基準操舵角として無人車Vの走行が
制御される。上記のようにして,操舵角制御の基準とな
る基準操舵角を設定することにより,上記修正分によっ
て無人車Vの進行方向に対する左右の重量バランスや駆
動バランスの不釣り合いの影響が打ち消されるため,車
輪をそれぞれ基準操舵角に合わせた場合の進行方向への
直進性が向上すると共に,上記基準操舵角を基準とした
操舵角制御の精度が向上する。即ち無人車Vの操向性が
向上する。
(Equation 2) When correction amount alpha 1 to? 3 of the initial steering angle in the steering angle correction amount calculating section 4 is calculated by the steering angle correction unit 5, the initial steering angle of each wheel W1~W3 based on the correction amount is It is corrected (step S8). Thereafter, the traveling of the unmanned vehicle V is controlled using the corrected steering angle as a reference steering angle. By setting the reference steering angle as a reference of the steering angle control as described above, the influence of the imbalance of the right and left weight balance and the drive balance with respect to the traveling direction of the unmanned vehicle V is canceled by the correction amount. When the wheels are adjusted to the reference steering angles, the straightness in the traveling direction is improved, and the accuracy of the steering angle control based on the reference steering angles is improved. That is, the steerability of the unmanned vehicle V is improved.

【0011】[0011]

【実施例】上記実施の形態に係る無人車Vにおいては,
車軸に垂直な方向に対する左右の重量バランス,駆動バ
ランスは釣り合っているため,横方向に向かって走行す
る場合(横行)には全ての車輪を進行方向に平行に向け
ることで直進性は保たれる。従って,前後進と横行とで
基準操舵角を切り換えながら走行制御を行うことが望ま
しい。また,上記実施の形態では,所望の走行軌跡を直
線とし,上記各車輪が上記直線と平行となるような操舵
角を初期操舵角としたが,これに限られるものではな
く,例えば上記所望の走行軌跡を曲線とし,上記ステッ
プS5において上記所望の走行軌跡と実走行軌跡とのズ
レを求め,ステップS6〜S8において上記ズレを0と
するように操舵角を修正するようにすることも可能であ
る。但しこの場合には,上記実施の形態に係る方法と比
較して操舵角の修正量の算出は容易ではない。また,上
記実施の形態では操舵駆動輪が3輪の場合を例に挙げた
が,これに限られるものではなく,2輪,或いは4輪以
上の操舵駆動輪を有する場合でも,進行方向に対して左
右の重量バランスや駆動バランスが不釣り合いな状態で
走行し得る無人車であれば同様に適用可能であることは
言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an unmanned vehicle V according to the above embodiment,
Since the right and left weight balance and drive balance in the direction perpendicular to the axle are balanced, when traveling in the lateral direction (traverse), all wheels are oriented parallel to the traveling direction to maintain straightness. . Therefore, it is desirable to perform traveling control while switching the reference steering angle between forward and backward traveling and traversing. Further, in the above-described embodiment, the desired traveling locus is defined as a straight line, and the steering angle at which the wheels are parallel to the straight line is defined as the initial steering angle. However, the present invention is not limited to this. The traveling locus may be a curve, and the deviation between the desired traveling locus and the actual traveling locus may be determined in step S5, and the steering angle may be corrected in steps S6 to S8 such that the deviation is zero. is there. However, in this case, it is not easy to calculate the correction amount of the steering angle as compared with the method according to the above embodiment. In the above embodiment, the case where the number of the steering drive wheels is three has been described as an example. However, the present invention is not limited to this. Even when the vehicle has two or four or more steering drive wheels, Needless to say, the present invention can be similarly applied to an unmanned vehicle that can travel in a state where the right and left weight balance and drive balance are unbalanced.

【0012】[0012]

【発明の効果】以上説明したように,本発明の方法は,
操舵角の制御が可能な2以上の車輪であってそのうち少
なくとも1つが更に速度の制御も可能な車輪を具備し,
車体の進行方向に対して左右の重量バランス及び/若し
くは駆動バランスが不釣り合いな状態で走行し得る無人
車の操向制御方法において,該無人車が所望の走行軌跡
に沿って走行するように上記各車輪の操舵角を設定した
上で上記無人車を走行させると共に,該無人車の実走行
軌跡を検出する実走行軌跡検出工程と,上記実走行軌跡
検出工程で得られた実走行軌跡と,上記所望の走行軌跡
とのズレを検出する走行軌跡ズレ検出工程と,上記走行
軌跡ズレ検出工程で得られた上記ズレを0とするような
上記操舵角の修正量を算出する操舵角修正量算出工程
と,上記操舵角修正量算出工程で得られた上記操舵角の
修正量に基づいて上記実走行軌跡検出工程で設定された
各車輪の操舵角を修正する操舵角修正工程とを具備して
なることを特徴とする無人車の操向制御方法として構成
されているため,上記操舵角の修正によって該無人車の
進行方向に対する左右の重量バランスや駆動バランスの
不釣り合いの影響が打ち消され,無人車を所望の走行軌
跡に沿って正確に走行させることが可能となる。即ち無
人車の操向性が向上する。また,最も簡単な例として
は,上記所望の走行軌跡を所定方向へ向かう直線とし,
上記実走行軌跡検出工程において,上記各車輪が上記直
線と平行となるような操舵角に設定する方法が挙げられ
るが,この場合には,上記操舵角修正量算出工程におい
て,上記走行軌跡ズレ検出工程で得られた上記ズレより
上記実走行軌跡の回転半径Rを求め,該無人車が上記実
走行軌跡と反対の方向に上記回転半径Rで走行するよう
に上記操舵角の修正量を算出するようにすれば,上記操
舵角の修正量の算出が容易である。
As described above, the method of the present invention is
Two or more wheels capable of controlling the steering angle, at least one of which has wheels capable of further controlling the speed,
In a steering control method for an unmanned vehicle capable of traveling in a state in which the right and left weight balance and / or drive balance are unbalanced with respect to the traveling direction of the vehicle body, the unmanned vehicle may travel along a desired traveling locus. Setting the steering angle of each wheel, driving the unmanned vehicle, and detecting an actual traveling trajectory of the unmanned vehicle; an actual traveling trajectory obtained in the actual traveling trajectory detecting step; A travel locus deviation detecting step for detecting a deviation from the desired travel locus, and a steering angle correction amount calculating for calculating the steering angle correction amount such that the deviation obtained in the travel locus deviation detection step becomes zero. And a steering angle correction step of correcting the steering angle of each wheel set in the actual traveling trajectory detection step based on the correction amount of the steering angle obtained in the steering angle correction amount calculation step. Characterized by becoming Since the method is configured as a steering control method for an unmanned vehicle, the correction of the steering angle cancels out the influence of imbalance between the left and right weight balance and the drive balance with respect to the traveling direction of the unmanned vehicle, so that the unmanned vehicle has a desired traveling trajectory. It becomes possible to run accurately along. That is, the steerability of the unmanned vehicle is improved. Also, as the simplest example, the desired traveling locus is a straight line directed in a predetermined direction,
In the actual traveling trajectory detecting step, there is a method of setting the steering angle so that each wheel is parallel to the straight line. In this case, in the steering angle correction amount calculating step, the traveling trajectory deviation detection is performed. A rotational radius R of the actual traveling locus is obtained from the deviation obtained in the step, and a correction amount of the steering angle is calculated so that the unmanned vehicle travels in the direction opposite to the actual traveling locus at the rotational radius R. This makes it easy to calculate the correction amount of the steering angle.

【0013】また,本発明の装置は,操舵角の制御が可
能な2以上の車輪であってそのうち少なくとも1つが更
に速度の制御も可能な車輪を具備し,車体の進行方向に
対して左右の重量バランス及び/若しくは駆動バランス
が不釣り合いな状態で走行し得る無人車の操向制御装置
において,該無人車が所望の走行軌跡に沿って走行する
ように上記各車輪の操舵角を設定した上で上記無人車を
走行させると共に,該無人車の実走行軌跡を検出する実
走行軌跡検出手段と,上記実走行軌跡検出手段で得られ
た実走行軌跡と,上記所望の走行軌跡とのズレを検出す
る走行軌跡ズレ検出手段と,上記走行軌跡ズレ検出手段
で得られた上記ズレを0とするような上記操舵角の修正
量を算出する操舵角修正量算出手段と,上記操舵角修正
量算出手段で得られた上記操舵角の修正量に基づいて上
記実走行軌跡検出手段で設定された各車輪の操舵角を修
正する操舵角修正手段とを具備してなることを特徴とす
る無人車の操向制御装置として構成されており,上記操
向制御方法を適用することにより,上記操舵角の修正に
よって該無人車の進行方向に対する左右の重量バランス
や駆動バランスの不釣り合いの影響が打ち消され,無人
車を所望の走行軌跡に沿って正確に走行させることが可
能となる。即ち無人車の操向性が向上する。
Further, the device of the present invention comprises two or more wheels capable of controlling the steering angle, at least one of the wheels being capable of further controlling the speed, and having at least one wheel capable of controlling the speed. In a steering control device for an unmanned vehicle capable of traveling in a state where the weight balance and / or the drive balance are unbalanced, the steering angles of the wheels are set so that the unmanned vehicle travels along a desired traveling locus. The unmanned vehicle is caused to travel, and an actual traveling locus detecting means for detecting an actual traveling locus of the unmanned vehicle, and a deviation between the actual traveling locus obtained by the actual traveling locus detecting means and the desired traveling locus. Traveling locus deviation detecting means for detecting, steering angle correction amount calculating means for calculating the steering angle correction amount such that the deviation obtained by the traveling locus deviation detecting means becomes zero, and the steering angle correction amount calculation Obtained by means A steering angle correction means for correcting the steering angle of each wheel set by the actual travel locus detection means based on the correction amount of the steering angle. By applying the steering control method described above, the correction of the steering angle cancels out the effects of imbalance between the left and right weight balance and the drive balance in the traveling direction of the unmanned vehicle. It is possible to travel accurately along the travel locus. That is, the steerability of the unmanned vehicle is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る操向制御方法の手
順を示すフローチャート。
FIG. 1 is a flowchart showing a procedure of a steering control method according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係る操向制御装置Z1
の概略構成を示すブロック図。
FIG. 2 is a steering control device Z1 according to the embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of FIG.

【図3】 走行距離Dと車体姿勢φとの関係から車体姿
勢変化率Aを算出する方法の説明図。
FIG. 3 is an explanatory diagram of a method of calculating a body posture change rate A from a relationship between a traveling distance D and a body posture φ.

【図4】 無人車Vの実際の走行軌跡における回転半径
Rの説明図。
FIG. 4 is an explanatory diagram of a turning radius R in an actual traveling locus of the unmanned vehicle V.

【図5】 各車輪の初期操舵角の修正量α1 〜α3 の算
出方法の説明図。
FIG. 5 is an explanatory diagram of a method of calculating correction amounts α 1 to α 3 of initial steering angles of respective wheels.

【図6】 3つの操舵駆動輪を左右非対称に配置する無
人車Vの構成を示す模式図。
FIG. 6 is a schematic diagram showing a configuration of an unmanned vehicle V in which three steering drive wheels are arranged asymmetrically in the left-right direction.

【図7】 各車輪を進行方向に平行にした時の上記無人
車Vの走行軌跡の一例を示す模式図。
FIG. 7 is a schematic diagram showing an example of a traveling locus of the unmanned vehicle V when each wheel is parallel to a traveling direction.

【符号の説明】[Explanation of symbols]

1…車体姿勢検出部(実走行軌跡検出手段の一例) 2…車体姿勢記憶部 3…車体姿勢変化率算出部(走行軌跡ズレ検出手段の一
例) 4…操舵角修正量算出部(操舵角修正量算出手段の一
例) 5…操舵角修正部(操舵角修正手段の一例)
DESCRIPTION OF SYMBOLS 1 ... Vehicle body attitude | position detection part (an example of an actual travel locus detection means) 2 ... Vehicle body attitude storage part 3 ... Vehicle body attitude change rate calculation part (an example of a travel locus deviation detection means) 4 ... Steering angle correction amount calculation part (steering angle correction) An example of the amount calculation means) 5. Steering angle correction unit (an example of the steering angle correction means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 操舵角の制御が可能な2以上の車輪であ
ってそのうち少なくとも1つが更に速度の制御も可能な
車輪を具備し,車体の進行方向に対して左右の重量バラ
ンス及び/若しくは駆動バランスが不釣り合いな状態で
走行し得る無人車の操向制御方法において,該無人車が
所望の走行軌跡に沿って走行するように上記各車輪の操
舵角を設定した上で上記無人車を走行させると共に,該
無人車の実走行軌跡を検出する実走行軌跡検出工程と,
上記実走行軌跡検出工程で得られた実走行軌跡と,上記
所望の走行軌跡とのズレを検出する走行軌跡ズレ検出工
程と,上記走行軌跡ズレ検出工程で得られた上記ズレを
0とするような上記操舵角の修正量を算出する操舵角修
正量算出工程と,上記操舵角修正量算出工程で得られた
上記操舵角の修正量に基づいて上記実走行軌跡検出工程
で設定された各車輪の操舵角を修正する操舵角修正工程
とを具備してなることを特徴とする無人車の操向制御方
法。
At least one of the two wheels is capable of controlling a steering angle, and at least one of the two wheels is further capable of controlling a speed. In a steering control method for an unmanned vehicle capable of traveling in an unbalanced state, the steering angle of each of the wheels is set such that the unmanned vehicle travels along a desired traveling locus, and then the unmanned vehicle travels. An actual traveling locus detecting step of detecting an actual traveling locus of the unmanned vehicle;
A travel locus deviation detecting step for detecting a deviation between the actual travel locus obtained in the actual travel locus detection step and the desired travel locus, and the deviation obtained in the travel locus deviation detection step is set to 0. A steering angle correction amount calculating step of calculating the steering angle correction amount, and each of the wheels set in the actual traveling trajectory detecting step based on the steering angle correction amount obtained in the steering angle correction amount calculating step. A steering angle correcting step of correcting the steering angle of the vehicle.
【請求項2】 上記実走行軌跡検出工程において,該無
人車の走行距離とそれに対応する車体姿勢を所定周期毎
に検出することにより上記実走行軌跡が検出される請求
項1記載の無人車の操向制御方法。
2. The unmanned vehicle according to claim 1, wherein, in the actual traveling trajectory detecting step, the actual traveling trajectory is detected by detecting a traveling distance of the unmanned vehicle and a corresponding vehicle body posture at predetermined intervals. Steering control method.
【請求項3】 上記所望の走行軌跡が所定方向へ向かう
直線であり,上記実走行軌跡検出工程で設定される上記
各車輪の操舵角が,上記各車輪が上記直線と平行となる
ような操舵角である請求項1又は2記載の無人車の操向
制御方法。
3. A steering system according to claim 1, wherein the desired traveling trajectory is a straight line directed in a predetermined direction, and the steering angle of each wheel set in the actual traveling trajectory detecting step is such that each wheel is parallel to the straight line. The steering control method for an unmanned vehicle according to claim 1 or 2, wherein the corner is a corner.
【請求項4】 上記操舵角修正量算出工程において,上
記走行軌跡ズレ検出工程で得られた上記ズレより上記実
走行軌跡の回転半径Rを求め,該無人車が上記実走行軌
跡と反対の方向に上記回転半径Rで走行するように上記
操舵角の修正量を算出する請求項3記載の無人車の操向
制御方法。
4. In the steering angle correction amount calculating step, a turning radius R of the actual traveling locus is obtained from the deviation obtained in the traveling locus deviation detecting step, and the unmanned vehicle is moved in a direction opposite to the actual traveling locus. 4. The steering control method for an unmanned vehicle according to claim 3, wherein the correction amount of the steering angle is calculated so that the vehicle travels at the turning radius R.
【請求項5】 上記無人車が,それぞれ独立して速度及
び操舵角の制御が可能な3つの車輪を具備すると共に,
上記3つの車輪が車体の進行方向に対して左右非対称と
なる状態で走行し得るように構成されてなる請求項1〜
4のいずれかに記載の無人車の操向制御方法。
5. The unmanned vehicle has three wheels each capable of independently controlling a speed and a steering angle.
The vehicle according to claim 1, wherein the three wheels can travel in a state of being left-right asymmetric with respect to the traveling direction of the vehicle body.
5. The steering control method for an unmanned vehicle according to any one of 4.
【請求項6】 操舵角の制御が可能な2以上の車輪であ
ってそのうち少なくとも1つが更に速度の制御も可能な
車輪を具備し,車体の進行方向に対して左右の重量バラ
ンス及び/若しくは駆動バランスが不釣り合いな状態で
走行し得る無人車の操向制御装置において,該無人車が
所望の走行軌跡に沿って走行するように上記各車輪の操
舵角を設定した上で上記無人車を走行させると共に,該
無人車の実走行軌跡を検出する実走行軌跡検出手段と,
上記実走行軌跡検出手段で得られた実走行軌跡と,上記
所望の走行軌跡とのズレを検出する走行軌跡ズレ検出手
段と,上記走行軌跡ズレ検出手段で得られた上記ズレを
0とするような上記操舵角の修正量を算出する操舵角修
正量算出手段と,上記操舵角修正量算出手段で得られた
上記操舵角の修正量に基づいて上記実走行軌跡検出手段
で設定された各車輪の操舵角を修正する操舵角修正手段
とを具備してなることを特徴とする無人車の操向制御装
置。
6. A weight balance and / or drive for right and left with respect to a traveling direction of a vehicle body, wherein at least one of the wheels is capable of controlling a steering angle and at least one of the wheels is further capable of controlling a speed. In a steering control device for an unmanned vehicle that can travel in an unbalanced state, the steering angle of each of the wheels is set such that the unmanned vehicle travels along a desired traveling locus, and then the unmanned vehicle travels. And an actual traveling locus detecting means for detecting an actual traveling locus of the unmanned vehicle;
A traveling locus deviation detecting means for detecting a deviation between the actual traveling locus obtained by the actual traveling locus detecting means and the desired traveling locus, and the deviation obtained by the traveling locus deviation detecting means is set to 0. Steering angle correction amount calculating means for calculating the steering angle correction amount, and each of the wheels set by the actual travel locus detecting means based on the steering angle correction amount obtained by the steering angle correction amount calculating means. And a steering angle correcting means for correcting the steering angle of the vehicle.
JP10033080A 1998-02-16 1998-02-16 Method and device for controlling steering of unmanned vehicle Pending JPH11231939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10033080A JPH11231939A (en) 1998-02-16 1998-02-16 Method and device for controlling steering of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10033080A JPH11231939A (en) 1998-02-16 1998-02-16 Method and device for controlling steering of unmanned vehicle

Publications (1)

Publication Number Publication Date
JPH11231939A true JPH11231939A (en) 1999-08-27

Family

ID=12376732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10033080A Pending JPH11231939A (en) 1998-02-16 1998-02-16 Method and device for controlling steering of unmanned vehicle

Country Status (1)

Country Link
JP (1) JPH11231939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293389A (en) * 2006-04-20 2007-11-08 Murata Mach Ltd Guided vehicle and its initial-value input method
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method
CN102632891A (en) * 2012-04-06 2012-08-15 中国人民解放军军事交通学院 Computation method for tracking running track of unmanned vehicle in real time
CN110154787A (en) * 2019-06-27 2019-08-23 浙江亿控自动化设备有限公司 A kind of Twin Rudders wheel automatic guided vehicle and its control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113807U (en) * 1983-08-17 1984-08-01 株式会社小松製作所 Steering control device for unmanned vehicles
JPH05333929A (en) * 1992-05-27 1993-12-17 Mitsubishi Agricult Mach Co Ltd Automatic straight device controller for mobile working machine
JPH06149375A (en) * 1992-11-12 1994-05-27 Nippon Sharyo Seizo Kaisha Ltd Device for guiding automated guided vehicle
JPH07116087A (en) * 1993-09-22 1995-05-09 Matsushita Electric Ind Co Ltd Movable working robot
JPH0818A (en) * 1994-06-20 1996-01-09 Mitsubishi Agricult Mach Co Ltd Direct advance control unit for mobile farming machine
JPH08161048A (en) * 1994-12-09 1996-06-21 Hitachi Kiden Kogyo Ltd Travel wheel steering angle determining method for unmanned carriage
JPH09301155A (en) * 1996-05-15 1997-11-25 Shinko Electric Co Ltd Automatic guided vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113807U (en) * 1983-08-17 1984-08-01 株式会社小松製作所 Steering control device for unmanned vehicles
JPH05333929A (en) * 1992-05-27 1993-12-17 Mitsubishi Agricult Mach Co Ltd Automatic straight device controller for mobile working machine
JPH06149375A (en) * 1992-11-12 1994-05-27 Nippon Sharyo Seizo Kaisha Ltd Device for guiding automated guided vehicle
JPH07116087A (en) * 1993-09-22 1995-05-09 Matsushita Electric Ind Co Ltd Movable working robot
JPH0818A (en) * 1994-06-20 1996-01-09 Mitsubishi Agricult Mach Co Ltd Direct advance control unit for mobile farming machine
JPH08161048A (en) * 1994-12-09 1996-06-21 Hitachi Kiden Kogyo Ltd Travel wheel steering angle determining method for unmanned carriage
JPH09301155A (en) * 1996-05-15 1997-11-25 Shinko Electric Co Ltd Automatic guided vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293389A (en) * 2006-04-20 2007-11-08 Murata Mach Ltd Guided vehicle and its initial-value input method
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method
CN102632891A (en) * 2012-04-06 2012-08-15 中国人民解放军军事交通学院 Computation method for tracking running track of unmanned vehicle in real time
CN102632891B (en) * 2012-04-06 2014-09-17 中国人民解放军军事交通学院 Computation method for tracking running track of unmanned vehicle in real time
CN110154787A (en) * 2019-06-27 2019-08-23 浙江亿控自动化设备有限公司 A kind of Twin Rudders wheel automatic guided vehicle and its control method
CN110154787B (en) * 2019-06-27 2023-08-15 浙江亿控自动化设备有限公司 Double-rudder-wheel unmanned carrier and control method thereof

Similar Documents

Publication Publication Date Title
JPH0324605A (en) Method for controlling travel of moving robot
WO2007105077A2 (en) Trajectory tracking control system and method for mobile unit
US9321498B2 (en) Method of estimating mounting angle error of gyroscopes by using a turning device, and corresponding turning device
KR101915887B1 (en) Travelling apparatus, control method of travelling apparatus, and control program of travelling apparatus
JPH0358949B2 (en)
JP4264399B2 (en) Automated guided vehicle
JPH075922A (en) Steering control method for unmanned work vehicle
JP2003276628A (en) Automatic steering device
JPH11231939A (en) Method and device for controlling steering of unmanned vehicle
JP3902448B2 (en) Straight traveling control device and straight traveling control method for trackless traveling body
JP3024964B1 (en) Vehicle running control device and vehicle using the same
JP2003067053A (en) Unmanned carriage
JPH0687348A (en) Slip detection device for vehicle
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP2003241837A (en) Automated guided vehicle
JP2002108453A (en) Unmanned vehicle
JP3182972B2 (en) Rear wheel steering control device for vehicle
JPS6015270A (en) Steering angle detector of vehicle
JPH06341852A (en) Underwater navigation body and its attitude control method
JP2002108447A (en) Gyroscopic guidance type unmanned carrier device
JPH07101369B2 (en) Automatic steering control system
JPS63149265A (en) Actual rear wheel steering angle control device for vehicle
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JPS63104111A (en) Unmanned traveling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918