JPH07116087A - Movable working robot - Google Patents

Movable working robot

Info

Publication number
JPH07116087A
JPH07116087A JP5236231A JP23623193A JPH07116087A JP H07116087 A JPH07116087 A JP H07116087A JP 5236231 A JP5236231 A JP 5236231A JP 23623193 A JP23623193 A JP 23623193A JP H07116087 A JPH07116087 A JP H07116087A
Authority
JP
Japan
Prior art keywords
main body
carpet
straight
detecting
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5236231A
Other languages
Japanese (ja)
Other versions
JP3314477B2 (en
Inventor
Yoshifumi Takagi
祥史 高木
Masahiro Kimura
昌弘 木村
Yasumichi Kobayashi
保道 小林
Hidetaka Yabuuchi
秀隆 薮内
Mitsuyasu Ogawa
光康 小川
Toshiaki Fujiwara
俊明 藤原
Osamu Eguchi
修 江口
Hirofumi Inui
弘文 乾
Takafumi Ishibashi
崇文 石橋
Yoshitaka Kuroki
義貴 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23623193A priority Critical patent/JP3314477B2/en
Publication of JPH07116087A publication Critical patent/JPH07116087A/en
Application granted granted Critical
Publication of JP3314477B2 publication Critical patent/JP3314477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To run a working robot with compensation for an affection by a degree of weave of a carpet with a simple structure by providing running means with rectilinearly moving means for rectilinearly moving a body in a desired direction in accordance with an output from' direction measuring means, and correcting means for adjusting the rate of amplitude of output from rotation detecting means for detecting a rotating angle so as to correct the rate of amplitude in the desired direction. CONSTITUTION:Running control means 20 receives an output from rotation detecting means 10 for detecting a rotating angle of a driven wheel 9 relative to a body, and rectilinearly moving means 51 in the running control means 20 controls drive motors 3L, 3R in order to rectilinearly move the body in a desired direction in accordance with an output from a direction measuring means 21. Adjusting means 52 receives and amplifies an output from the rotation detecting means 10, and correcting means 55 corrects the desired direction for the rectilinearly moving means 51 by an amplitude value. As a result, a rate of variation theta' in the angle of the drive wheel is amplified by the adjusting means 52 so as to estimate an actual slip angle theta even though an affection by a degree of weaves of a carpet is present, and accordingly, this actual slip angle is corrected by the correcting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動床面掃除機・自動
床面仕上げ装置等のように往復移動を繰り返しながら自
動的に作業を行う移動作業ロボットに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile work robot, such as an automatic floor cleaner or an automatic floor finishing device, which automatically performs work while repeating reciprocating movement.

【0002】[0002]

【従来の技術】近年、作業機器に走行駆動装置・センサ
類および走行制御手段等を付加して、自動的に作業を行
う各種の移動作業ロボットが開発されている。例えば自
走式掃除機は、清掃機能として本体底部に吸込みノズル
やブラシなどを備え、移動機能として走行および操舵手
段と走行時の障害物を検知する障害物検知手段と位置を
認識する位置認識手段とを備え、この障害物検知手段に
よって清掃場所の周囲の壁等に沿って移動しながら位置
認識手段によって清掃区域を認識し、その清掃区域内全
体を移動して清掃するものである。
2. Description of the Related Art In recent years, various types of mobile work robots have been developed in which a work drive device, sensors, travel control means and the like are added to a work machine to automatically perform work. For example, a self-propelled vacuum cleaner has a suction nozzle, a brush, etc. at the bottom of the main body as a cleaning function, and an obstacle detection means for detecting traveling and steering means and an obstacle during traveling and a position recognition means for recognizing a position as a moving function. The position detecting means recognizes the cleaning area while moving along the wall around the cleaning place by the obstacle detecting means, and the entire cleaning area is moved and cleaned.

【0003】ここでまず、本発明に関連する絨毯目につ
いて説明する。絨毯目とは何かというと、絨毯の植毛
が、基布に対して垂直でなくやや斜めであるために生じ
る毛並みの性質のことである。
First, the carpet pattern related to the present invention will be described. What is a carpet pattern? It is a property that is the same as that of a carpet, because the tufting of the carpet is not perpendicular to the base cloth but rather oblique.

【0004】では、絨毯上を直進走行する場合の絨毯目
の影響について図9・図10・図11に基づいて説明す
る。図9は、絨毯のない平坦な床面上で本体を直進運転
させた移動軌跡を示す。この時は絨毯がないので当然絨
毯目の影響はなく、本体1の移動軌跡はロボット運転者
の希望どおりの方向に直進した破線aになる。一方図1
0に示すように、絨毯目の方向(毛並みが寝る方向)が
例えば左から右である絨毯の上で本体1を直進運転させ
ると、走行中本体1は、所望の破線aの方向を向いてい
るにもかかわらず、絨毯目の影響により逐次少しずつ右
方向に平行移動する。この結果、移動軌跡は、直線aか
ら右へ角度θだけずれた実線bになる。この角度θのず
れが生じる状態で往復移動した時、直進軌跡間で隙間が
できて清掃のやり残しが生じたり、逆に軌跡間が狭くな
って同じ場所を何回か通過して清掃面積の効率が低下し
たり(角度θが大きいと意図した清掃方向と反対側に進
むこともある)する。
Now, the influence of the stitches of the carpet when traveling straight on the carpet will be described with reference to FIGS. 9, 10 and 11. FIG. 9 shows a movement trajectory in which the main body is driven straight on a flat floor surface without a carpet. At this time, since there is no carpet, there is no influence of the carpet eyes, and the movement locus of the main body 1 is a broken line a which goes straight in the direction desired by the robot driver. Meanwhile, Figure 1
As shown in 0, when the main body 1 is driven straight ahead on a carpet whose carpet direction (the direction in which the fur coat lies) is, for example, from left to right, the running main body 1 faces the desired broken line a. Despite that, due to the influence of the carpet, it gradually moves in parallel to the right. As a result, the movement locus becomes the solid line b which is deviated from the straight line a to the right by the angle θ. When reciprocating with this deviation of the angle θ, a gap is created between the straight trajectories, leaving behind uncleaned parts. The efficiency may be reduced (the angle θ may be large, the direction may be opposite to the intended cleaning direction).

【0005】そこで、この角度θを検出する方法とし
て、図11に示す絨毯目検出手段が考えられた。図11
を用いて従来の移動作業ロボットの絨毯目検出手段の構
成を説明する。ローラ43は床面Fに接地し、ローラ軸
46を介して回転自由にレバー42に支持されている。
レバー42はレバー軸45を介して回動自由に支持軸4
1に支持されている。ローラ43も含め、レバー42か
ら床面Fまでの部分でレバー部を構成している。支持軸
41は本体1に固定された取付台48に回転自由に取り
付けられており、その回転中心線は床面Fに垂直(ライ
ンd)である。一方回転検出器47は取付台48に固定
され、支持軸41の本体1に対する回転角度を検出す
る。レバー42と支持軸41は、スプリング等からなる
弾性体44で連結されており、その力により、ローラ4
3は適切な荷重で床面Fに付勢されている。
Therefore, as a method of detecting this angle θ, a carpet stitch detecting means shown in FIG. 11 has been considered. Figure 11
The configuration of the carpet pattern detecting means of the conventional mobile work robot will be described with reference to FIG. The roller 43 is grounded on the floor surface F and is rotatably supported by the lever 42 via a roller shaft 46.
The lever 42 is freely rotatable via a lever shaft 45.
Supported by 1. Including the roller 43, the portion from the lever 42 to the floor surface F constitutes a lever portion. The support shaft 41 is rotatably attached to a mounting base 48 fixed to the main body 1, and its rotation center line is perpendicular to the floor surface F (line d). On the other hand, the rotation detector 47 is fixed to the mounting base 48 and detects the rotation angle of the support shaft 41 with respect to the main body 1. The lever 42 and the support shaft 41 are connected by an elastic body 44 made of a spring or the like.
3 is urged to the floor surface F with an appropriate load.

【0006】以上の構成により動作は次のようになる。
本体1が移動する時、ローラ43は本体1の移動軌跡の
方向を向きながらローラ軸46を中心にして床面F上を
転がることにより、本体1に追従する。この時のローラ
43の方向(すなわち本体1の移動軌跡の方向)は支持
軸41に伝達され、回転検出器47がこの方向を検出す
る。さらにローラ43は、床面Fに付勢されているの
で、床面Fの凹凸等の外乱による、不用意な角度振れが
生じにくい。
With the above structure, the operation is as follows.
When the main body 1 moves, the roller 43 follows the main body 1 by rolling on the floor surface F around the roller shaft 46 while facing the direction of the movement trajectory of the main body 1. The direction of the roller 43 at this time (that is, the direction of the movement trajectory of the main body 1) is transmitted to the support shaft 41, and the rotation detector 47 detects this direction. Further, since the roller 43 is biased to the floor surface F, inadvertent angular shake due to disturbance such as unevenness of the floor surface F is unlikely to occur.

【0007】上述の絨毯目検出手段による絨毯目検出の
原理を、再び図10を用いて説明する。本体1に対して
自由に向きを変えることのできるローラ43は、これ自
体は、絨毯目の影響をほとんど受けず(発明者らは、ロ
ーラ43の接地面が面積が小さく、表面がなめらかで摩
擦係数が小さい時に、絨毯目の影響を受けにくいことを
確認している)にあくまで本体1の移動軌跡の方向を向
いて転がることによって、絨毯目を検出できる。つま
り、本体1が破線aの方向を向きながら絨毯目によって
実線bに沿って直進する時、ローラ43は実線bの方向
を向いている。この時本体1とローラ43の間に相対的
な角度差が生じるが、この角度差が、すなわち前述した
絨毯目によって生じる本体1の向き(破線a)と移動軌
跡(実線b)とのずれ角度θである。ちなみに、絨毯目
の方向が右から左(図と反対向き)であれば、ずれ角度
θは反対向きに生じるし、絨毯の毛足が長い・植毛密度
が高い等により絨毯目の影響が大きければ(絨毯目が強
ければ)、ずれ角度θは大きくなる。絨毯目検出手段は
この角度θを検出する。さらに言えば、検出した角度
θ、つまり絨毯目の影響により右方向にずれる分だけ、
本体1を左(破線c)に向けて直進させると、移動軌跡
としては所望の破線aを得ることができる。
The principle of carpet pattern detection by the above-mentioned carpet pattern detection means will be described again with reference to FIG. The roller 43, which can freely change its direction with respect to the main body 1, is hardly affected by the carpet itself. (The inventors have found that the ground surface of the roller 43 has a small area, and the surface is smooth and frictional. It has been confirmed that when the coefficient is small, it is less likely to be affected by the carpet eyes.) The carpet eyes can be detected only by rolling in the direction of the movement trajectory of the main body 1. That is, when the main body 1 goes straight along the solid line b by the carpet while facing the direction of the broken line a, the roller 43 faces the direction of the solid line b. At this time, a relative angular difference is generated between the main body 1 and the roller 43, and this angular difference is the deviation angle between the direction of the main body 1 (broken line a) and the movement locus (solid line b) caused by the above-mentioned carpet. θ. By the way, if the direction of the carpet is from right to left (opposite to the figure), the deviation angle θ will be in the opposite direction, and if the effect of the carpet is large due to the long length of the carpet, the high density of the hair, etc. The deviation angle θ increases (if the carpet is strong). The carpet stitch detecting means detects this angle θ. Moreover, the detected angle θ, that is, the amount of shift to the right due to the influence of the carpet,
When the main body 1 is moved straight to the left (broken line c), a desired broken line a can be obtained as a movement locus.

【0008】次に、従来の移動作業ロボットの全体構成
を自走式掃除機を例にとって図12に示す。絨毯目を検
出する専用センサとして、上述した絨毯目検出手段24
を有する。清掃を行わないで本体1を移動させたい時に
は、この時不必要となる清掃手段である床ノズル18と
絨毯目検出手段24を、昇降アーム35・昇降支点軸3
4・昇降作用点軸33等からなる昇降手段により床面か
ら上昇させて、これらを段差や突起から保護するもので
ある。
Next, FIG. 12 shows the entire structure of a conventional mobile work robot, taking a self-propelled cleaner as an example. As a dedicated sensor for detecting the carpet pattern, the above-mentioned carpet pattern detecting means 24
Have. When it is desired to move the main body 1 without cleaning, the floor nozzle 18 and the carpet eye detecting means 24, which are unnecessary cleaning means at this time, are attached to the lifting arm 35 and the lifting fulcrum shaft 3.
4. Raising and lowering means for raising and lowering from the floor surface by means of a raising and lowering action point shaft 33 and the like to protect them from steps and protrusions.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記し
た絨毯目検出手段を設けた従来の移動作業ロボットで
は、本体1の足回りの構成が複雑過密になり、設計・製
作コストが大きくなっていた。また、絨毯目の影響は本
体方向にも現れ、軌跡ずれの修正は平行移動分のみでは
不十分であった。
However, in the conventional mobile work robot provided with the above-mentioned carpet eye detecting means, the structure of the undercarriage of the main body 1 becomes complicated and dense, and the designing and manufacturing cost becomes high. In addition, the influence of the carpet pattern also appeared in the direction of the main body, and the correction of the trajectory deviation was insufficient with the parallel movement alone.

【0010】本発明は上記従来の移動作業ロボットが有
していた課題を解決しようとするものであって、絨毯目
検出の専用センサを無くして本体の足回りの構成を簡素
にし、そのかわりに、感度は悪いが本体荷重を支える従
輪を絨毯目検出に利用して、感度を補う調整手段を設け
て、従来とほぼ同等に絨毯目の影響を修正した作業走行
ができる移動作業ロボットを提供することを第一の目的
としている。
The present invention is intended to solve the problems of the above-mentioned conventional mobile work robots, and eliminates the dedicated sensor for detecting carpet eyes to simplify the structure of the underbody of the main body. Provided is a mobile work robot that uses a secondary wheel that has a poor sensitivity but supports the main body load for carpet eye detection, and is provided with an adjusting means for compensating for the sensitivity, so that the work traveling can be performed with the effect of the carpet eye corrected almost the same as before. That is the primary purpose.

【0011】また前記第一の目的に関連して、作業場所
によって異なる調整手段の増幅率を個々に記憶し、場所
に応じて増幅率を容易に選択して絨毯目の影響を修正し
た作業走行ができる移動作業ロボットを提供することを
第二の目的としている。
Further, in connection with the first object, the amplification factor of the adjusting means which is different depending on the work location is individually stored, and the amplification factor is easily selected according to the location to correct the influence of the carpet pattern. A second object is to provide a mobile work robot capable of doing the above.

【0012】また、本体方向の誤差も活用して絨毯目の
影響をより精密に修正した作業走行できる移動作業ロボ
ットを提供することを第三の目的としている。
A third object of the present invention is to provide a mobile work robot capable of performing work traveling in which the influence of the direction of the main body is utilized to more accurately correct the influence of the carpet pattern.

【0013】[0013]

【課題を解決するための手段】第一の目的を達成するた
めの本発明の第一の手段は、左右独立の駆動輪、支持軸
が本体に対して回転自由な従輪からなる、本体を移動さ
せる駆動手段および操舵手段と、前記駆動手段と操舵手
段とを制御し本体の走行制御を行う走行制御手段と、本
体の方向を計測する方向計測手段と、従輪の支持軸の回
転角度を検出する回転検出手段と、清掃等の作業を行な
う作業手段とを備え、前記走行制御手段が、方向計測手
段の出力に基づいて本体を目標方向に直進させる直進手
段と、回転検出手段の出力を増幅しかつ増幅率を調整で
きる調整手段と、直進の目標方向に回転検出手段の出力
の増幅値分の修正を施す修正手段を有する移動作業ロボ
ットとするものである。
[Means for Solving the Problems] A first means of the present invention for achieving the first object is to move a main body composed of left and right independent drive wheels and a supporting wheel whose support shaft is rotatable with respect to the main body. Driving means and steering means, traveling control means for controlling the driving means and steering means to control traveling of the main body, direction measuring means for measuring the direction of the main body, and detecting the rotation angle of the support shaft of the driven wheel. A rotation detecting means and a working means for performing work such as cleaning are provided, and the traveling control means amplifies the output of the rotation detecting means and the straight moving means for moving the main body straight in the target direction based on the output of the direction measuring means. In addition, the mobile work robot has an adjusting unit that can adjust the amplification factor and a correcting unit that corrects the amplification value of the output of the rotation detecting unit in the straight-ahead target direction.

【0014】第二の目的を達成するための本発明の第二
の手段は、前記本発明の第一の手段の構成に加え、走行
制御手段が、何通りかの増幅値を記憶してかつ自由にそ
のうちの1つを容易に選択できる増幅率記録手段を有す
る移動作業ロボットとするものである。
A second means of the present invention for achieving the second object is, in addition to the configuration of the first means of the present invention, that the traveling control means stores a number of amplification values and This is a mobile work robot having an amplification factor recording means capable of easily selecting one of them freely.

【0015】第三の目的を達成するための本発明の第三
の手段は、本体を移動させる駆動手段および操舵手段
と、前記駆動手段と操舵手段とを制御し本体の走行制御
を行う走行制御手段と、本体の方向を計測する方向計測
手段と、本体が走行中に絨毯目の方向と強さを検出する
絨毯目検出手段と、清掃等の作業を行なう作業手段とを
備え、前記走行制御手段が、方向計測手段の出力に基づ
いて本体を目標方向に直進させる直進手段と、直進中の
本体方向の目標方向に対する誤差を計算する制御誤差演
算手段と、直進の目標方向に制御誤差演算手段と絨毯目
検出手段の出力の和分の修正を施す修正手段を有する移
動作業ロボットとするものである。
A third means of the present invention for achieving the third object is a drive means and a steering means for moving the main body, and a travel control for controlling the travel of the main body by controlling the drive means and the steering means. Means, a direction measuring means for measuring the direction of the main body, a carpet eye detecting means for detecting the direction and strength of the carpet eyes while the main body is running, and a working means for performing work such as cleaning. A linear movement means for moving the main body straight in the target direction based on the output of the direction measuring means; a control error calculation means for calculating an error of the main body direction during the straight movement with respect to the target direction; and a control error calculation means for the straight movement target direction. And a mobile work robot having a correction means for correcting the sum of the outputs of the carpet stitch detection means.

【0016】[0016]

【作用】本発明の第一の手段は、絨毯目検出の専用セン
サを無くして本体の足回りの構成を簡素にし、そのかわ
り、本体荷重を支える従輪の支持軸の回転角度を検出す
る回転検出手段を設けることによって、感度は悪いが従
輪を絨毯目検出に利用でき、さらに調整手段を設けるこ
とによって、回転検出手段の出力を増幅して感度の悪さ
を補うことができるものである。
The first means of the present invention eliminates the dedicated sensor for detecting carpet stitches to simplify the structure of the undercarriage of the main body, and instead, detects the rotation angle of the support shaft of the subordinate wheel supporting the load of the main body. By providing the means, the follower wheel can be used for carpet pattern detection although the sensitivity is poor, and by providing the adjusting means, the output of the rotation detecting means can be amplified to compensate for the poor sensitivity.

【0017】本発明の第二の手段は、増幅率記録手段を
設けることによって、作業場所によって異なる調整手段
の増幅率を個々に記憶して、場所に応じた増幅率を容易
に選択できるものである。
According to the second means of the present invention, by providing the amplification factor recording means, the amplification factors of the adjusting means which differ depending on the work place are individually stored, and the amplification factor according to the place can be easily selected. is there.

【0018】本発明の第三の手段は、本体が受ける絨毯
目の影響として、絨毯目検出手段が平行移動成分を検出
するのに加え、制御誤差演算手段を設けることによっ
て、本体方向の目標方向に対する角度誤差を抽出でき、
修正手段が、この平行移動分と角度誤差分の和分の修正
を直進の目標方向に施すことによって、絨毯目の影響を
より精密に修正できるものである。
A third means of the present invention is that, in addition to detecting the parallel movement component by the carpet stitch detecting means as an effect of the carpet stitch received by the main body, by providing a control error computing means, a target direction in the main body direction is obtained. You can extract the angle error for
The correction means corrects the sum of the parallel movement and the angular error in the straight-ahead target direction, whereby the effect of the carpet pattern can be corrected more accurately.

【0019】[0019]

【実施例】【Example】

(実施例1)以下、本発明の第一の手段の実施例である
移動作業ロボットの構成を、自走式掃除機を例にとって
図1・図2に基づいて説明する。図1は本実施例の自走
式掃除機の縦断面図、図2は同じく横断面図(図1の断
面A−A)である。1は自走式掃除機の本体(以下単に
本体と称する)、2L・2Rはそれぞれ本体1の左右に
設けた駆動輪で、駆動モータ3L・3Rで減速機4L・
4Rを介して左右独立に駆動される。5L・5Rはそれ
ぞれ駆動モータ3L・3Rに接続されたロータリエンコ
ーダ等からなるモータ回転検出器で、駆動モータ3L・
3Rの軸回転数を検出している。また9は、本体1に回
転自在に取り付けた従輪である。以上、駆動輪2L・2
R・駆動モータ3L・3R・減速機4L・4R・回転検
出手段5L・5R・従輪9は本体1を移動させる駆動手
段と操舵手段を構成している。31は蓄電池であり、本
体1の全体に電力を供給している。12は本体1の周囲
に本体1より突出する接触検知手段で、その表面は弾性
材で構成され、本体1が周囲の壁面・柱・床面からの突
起物・段差・家具・人間等の障害物障害物に接触したと
きの衝撃を和らげ、かつその接触を検出する。22は本
体1の周囲の障害物までの距離を計測する測距手段で、
本体1の周囲に設けた超音波センサから構成されてい
る。21は本体1の方向を計測する方向計測手段で、本
実施例ではレートジャイロおよびこの出力を積分する積
分器等から成っている。20は、駆動モータ3L・3R
を制御し、本体1の走行制御を行なう走行制御手段であ
る。14は電動送風機、15は集塵室、16・17はそ
の内部に設けたフィルターである。18は本体1の底部
に設けた床ノズルで、接続パイプ19を介して集塵室1
5と連通している。以上、電動送風機14・集塵室15
・フィルタ16・17・床ノズル18・接続パイプ19
は、清掃手段を構成している。45はハンドルで、人が
本体1の移動を操作するときの取っ手となる。35は本
体1に固定された昇降支点軸34に支持された昇降アー
ムで、一端は、床ノズル18に固定された昇降作用点軸
33に支持され、その反対側には、長穴43を有し、こ
れに沿ってスライドする前スライド軸38・後スライド
軸41を介して、昇降アーム35を操作する収納式のペ
ダル40が設けてある。本体1と接触検知手段12のペ
ダル40を引き出す位置には、切り欠きがあり、本体1
の切り欠きの側面には、ペダル40を床ノズル18を上
昇させた時の位置でロックする突起50が設けてある。
以上、昇降アーム35・昇降支点軸34・昇降作用点軸
33・前スライド軸38・後スライド軸41・ペダル4
0・突起50は床ノズル18を昇降させる昇降手段を構
成している。
(Embodiment 1) Hereinafter, the configuration of a mobile work robot which is an embodiment of the first means of the present invention will be described with reference to FIGS. 1 and 2 by taking a self-propelled cleaner as an example. FIG. 1 is a vertical cross-sectional view of the self-propelled vacuum cleaner of the present embodiment, and FIG. 2 is a horizontal cross-sectional view thereof (cross-section AA of FIG. 1). 1 is a main body of a self-propelled cleaner (hereinafter simply referred to as a main body), 2L and 2R are drive wheels provided on the left and right sides of the main body 1, respectively, and drive motors 3L and 3R are speed reducers 4L and 4L.
Left and right are independently driven via 4R. The motor rotation detectors 5L and 5R are rotary encoders and the like connected to the drive motors 3L and 3R, respectively.
The shaft rotation speed of 3R is detected. Reference numeral 9 is a subordinate wheel rotatably attached to the main body 1. Above, drive wheels 2L ・ 2
The R, the drive motors 3L and 3R, the speed reducers 4L and 4R, the rotation detection means 5L and 5R, and the driven wheels 9 constitute drive means and steering means for moving the main body 1. Reference numeral 31 is a storage battery, which supplies power to the entire main body 1. Reference numeral 12 denotes a contact detection means that projects from the main body 1 around the main body 1. The surface of the main body 1 is made of an elastic material, and the main body 1 has obstacles such as projections, steps, furniture, human beings, etc. It reduces the impact when it contacts an obstacle and detects the contact. Reference numeral 22 is a distance measuring means for measuring a distance to an obstacle around the main body 1,
It is composed of an ultrasonic sensor provided around the main body 1. Reference numeral 21 is a direction measuring means for measuring the direction of the main body 1, and in this embodiment, it is composed of a rate gyro and an integrator for integrating the output. 20 is a drive motor 3L / 3R
Is a traveling control means for controlling traveling of the main body 1. Reference numeral 14 is an electric blower, 15 is a dust collecting chamber, and 16 and 17 are filters provided therein. Reference numeral 18 is a floor nozzle provided at the bottom of the main body 1, and the dust collection chamber 1 is connected via a connection pipe 19.
It communicates with 5. Above, electric blower 14 and dust collection chamber 15
・ Filter 16 ・ 17 ・ Floor nozzle 18 ・ Connecting pipe 19
Constitutes a cleaning means. A handle 45 serves as a handle when a person operates the movement of the main body 1. Reference numeral 35 is an elevating arm supported by an elevating fulcrum shaft 34 fixed to the main body 1, one end of which is supported by an elevating operation point shaft 33 fixed to the floor nozzle 18, and an elongated hole 43 is provided on the opposite side. Then, a retractable pedal 40 for operating the elevating arm 35 is provided via a front slide shaft 38 and a rear slide shaft 41 that slide along this. There is a notch at the position where the main body 1 and the pedal 40 of the contact detection means 12 are pulled out.
A protrusion 50 for locking the pedal 40 at a position when the floor nozzle 18 is raised is provided on a side surface of the notch.
As described above, the lifting arm 35, the lifting fulcrum shaft 34, the lifting action point shaft 33, the front slide shaft 38, the rear slide shaft 41, and the pedal 4
The 0 / protrusion 50 constitutes an elevating means for elevating the floor nozzle 18.

【0020】次に、本実施例の従輪の詳細と回転検出手
段の関係について、その構成を、図3・図4を用いて説
明する。図3は従輪9および回転検出手段10の縦断面
図、図4は従輪9の横断面図(図3の断面B−B)であ
る。61は従輪の支持軸で、本体1に固定されたベアリ
ング64を介して、回転自在に本体1に取り付けられて
いる。62はフレームで支持軸61にしっかり固定され
ている。63はローラで、フレーム62に固定されたロ
ーラ軸66に対して自由に回転できる。そして、本体重
量を安定に支えるため接地幅を大きくとり、かつ本体1
に対しての方向転換を滑らかに行うため、回転動作を互
いに独立させた複数(図では3個)のローラ63を設け
ている。一方10は回転検出手段で、本体1に固定さ
れ、その検出軸10’は衝撃等を吸収するカップリング
65を介して支持軸61に固定されている。よってロー
ラ63の本体1に対する相対的な方向が支持軸61に伝
達され、支持軸61の本体に対する回転角度を回転検出
手段10が検出できるようになっている。
Next, the details of the subordinate wheel of this embodiment and the relationship between the rotation detecting means will be described with reference to FIGS. 3 and 4. 3 is a vertical sectional view of the driven wheel 9 and the rotation detecting means 10, and FIG. 4 is a lateral sectional view of the driven wheel 9 (cross section BB in FIG. 3). Reference numeral 61 denotes a support shaft for the follower wheel, which is rotatably attached to the main body 1 via a bearing 64 fixed to the main body 1. A frame 62 is firmly fixed to the support shaft 61. Reference numeral 63 denotes a roller, which can freely rotate with respect to a roller shaft 66 fixed to the frame 62. And, in order to support the weight of the main body stably, the ground contact width is set large and the main body 1
In order to smoothly perform the direction change with respect to, a plurality of (in the figure, three) rollers 63 that rotate independently of each other are provided. On the other hand, 10 is a rotation detecting means, which is fixed to the main body 1, and its detecting shaft 10 ′ is fixed to the support shaft 61 via a coupling 65 that absorbs shock and the like. Therefore, the relative direction of the roller 63 to the main body 1 is transmitted to the support shaft 61, and the rotation detecting means 10 can detect the rotation angle of the support shaft 61 with respect to the main body.

【0021】次に本実施例の制御構成を図5の制御ブロ
ック図に基づいて説明する。駆動モータ3L・3Rの回
転数を検出するモータ回転検出器5L・5Rと、測距手
段22・接触検知手段12・方向計測手段21と、従輪
9の支持軸61の本体1に対する回転角度を検出する回
転検出手段10の出力は、走行制御手段20に伝達され
る。走行制御手段20は、これらの出力を判断して駆動
モータ3L・3Rに制御信号を出力し、本体1の移動方
向・走行距離を制御する。本実施例では走行制御手段2
0は、直進手段51と調整手段52・修正手段55を有
している。直進手段51は、方向計測手段21の出力に
基づき、本体1を所定の目標方向に直進させるよう駆動
モータ3L・3Rを制御する。調整手段52は、回転検
出手段10の出力を受けてこれを増幅し、その増幅率は
操作パネル60に設けた調整つまみ52’により自由に
変えることができる。調整つまみ52’も含めて調整手
段とする。修正手段55は、調整手段52で増幅された
回転検出手段10の出力を受けて、直進手段51の目標
方向を増幅値分だけ修正する。また走行制御手段20
は、清掃移動時には清掃手段である電動送風機14と床
ノズル18に設けた回転式ブラシとを駆動する。
Next, the control configuration of this embodiment will be described with reference to the control block diagram of FIG. Motor rotation detectors 5L and 5R that detect the number of rotations of the drive motors 3L and 3R, distance measuring means 22, contact detecting means 12, direction measuring means 21, and the rotation angle of the support shaft 61 of the driven wheel 9 with respect to the main body 1 are detected. The output of the rotation detecting means 10 is transmitted to the traveling control means 20. The traveling control means 20 judges these outputs and outputs a control signal to the drive motors 3L and 3R to control the moving direction and traveling distance of the main body 1. In this embodiment, the traveling control means 2
Reference numeral 0 has a straight-moving means 51, an adjusting means 52, and a correcting means 55. The straight driving means 51 controls the drive motors 3L and 3R so as to move the main body 1 straight in a predetermined target direction based on the output of the direction measuring means 21. The adjusting means 52 receives the output of the rotation detecting means 10 and amplifies it, and the amplification factor can be freely changed by the adjusting knob 52 ′ provided on the operation panel 60. The adjusting knob 52 'is also included in the adjusting means. The correction means 55 receives the output of the rotation detection means 10 amplified by the adjustment means 52, and corrects the target direction of the straight traveling means 51 by the amplification value. Further, the traveling control means 20
Drives the electric blower 14 as a cleaning means and the rotary brush provided on the floor nozzle 18 during the cleaning movement.

【0022】以上が本実施例の自走式掃除機の構成であ
る。それでは次に、本実施例の動作について説明する。
まず図6に基づいて、自律走行で清掃を行うときの移動
パターンの一例を説明する。清掃区域を四角枠内とす
る。まずスタート位置Sから前進を開始する。そして、
前方の壁面w1を検出するか、一定距離L進んだところ
で停止し、本体1の方向を、清掃を進める壁面w3側に
少し変えて、今度は後退を始める。そして、後方の壁面
w2を検出すると、本体1は先述同様に方向を変えて再
び前進を始める。以降はこの繰り返しで清掃を進め、側
方の壁面w3を検出すると自律移動清掃を終了する。こ
の時、前進と後退は直進手段51を用いた直進動作で行
うが、その目標方向は、前進と後退の一往復で予め決め
られた清掃幅Wだけ清掃方向に進むよう設定される。
The above is the configuration of the self-propelled vacuum cleaner of the present embodiment. Next, the operation of this embodiment will be described.
First, an example of a movement pattern when cleaning is performed autonomously will be described with reference to FIG. The cleaning area is within the rectangular frame. First, the forward movement is started from the start position S. And
The front wall surface w1 is detected or stopped after a certain distance L is advanced, the direction of the main body 1 is slightly changed to the wall surface w3 side where the cleaning is advanced, and the retreat is started this time. Then, when the rear wall surface w2 is detected, the main body 1 changes its direction in the same manner as described above and starts moving forward again. After that, the cleaning is advanced by repeating this process, and when the side wall surface w3 is detected, the autonomous moving cleaning ends. At this time, the forward movement and the backward movement are performed by the straight movement operation using the straight movement means 51, and the target direction thereof is set so as to advance in the cleaning direction by a predetermined cleaning width W in one reciprocation of the forward movement and the backward movement.

【0023】次に図7に基づいて、本実施例の絨毯目の
影響による軌跡ずれの検出とその修正について説明す
る。本体1が絨毯目の方向が左から右である絨毯上を走
行する時、本体1は目標方向の破線a方向を向きながら
目の方向に平行移動して実線bの軌跡をたどる(参照:
従来の技術)。この時従輪9も絨毯目の影響を受けて平
行移動するが、本体1に対して従輪9の支持軸61は回
転自由なので、本体1に対して方向を固定されている駆
動輪2L・2Rに比べて平行移動の度合いは少なく、残
りは本体1に対する従輪のローラ63の角度変化θ’と
して現れる。実はこの従輪9による角度検出は、従来の
技術で説明した検出原理そのものである。しかし実際に
は、角度θ’は、駆動輪2L・2R・従輪ローラ63の
接地圧・接地面積・接地面の材質や本体の重量バラン
ス、絨毯の種類にもよるが、軌跡のずれ角度θの約5〜
7割の値となる。よって、この角度θ’を先述の回転検
出器10で検出し、調整手段52でθ’を増幅すること
により、実際のずれ角度θを推測することが可能であ
る。そして、先述の修正手段55が、推測された角度θ
だけ直進の目標方向を修正(図破線c)すれば、走行軌
跡を所望の破線aとすることができる。
Next, with reference to FIG. 7, the detection and correction of the trajectory deviation due to the influence of the carpet pattern of this embodiment will be described. When the main body 1 travels on a carpet in which the direction of the eyes of the carpet is from left to right, the main body 1 moves parallel to the direction of the eyes while facing the direction of the broken line a of the target direction, and follows the locus of the solid line b (see:
Conventional technology). At this time, the driven wheel 9 also moves in parallel due to the influence of the carpet, but since the support shaft 61 of the driven wheel 9 is free to rotate with respect to the main body 1, the drive wheels 2L and 2R fixed in direction to the main body 1 are used. Compared with this, the degree of parallel movement is small, and the rest appears as an angle change θ ′ of the roller 63 of the driven wheel with respect to the main body 1. Actually, the angle detection by the driven wheel 9 is the detection principle itself described in the conventional technique. However, actually, the angle θ ′ depends on the ground pressure, ground area, ground material of the driving wheels 2L, 2R, and the follower roller 63, the weight balance of the main body, the type of carpet, and the deviation angle θ of the trajectory. About 5
The value is 70%. Therefore, it is possible to estimate the actual deviation angle θ by detecting the angle θ ′ by the rotation detector 10 described above and amplifying θ ′ by the adjusting means 52. Then, the correction means 55 described above uses the estimated angle θ.
By correcting the straight-ahead target direction (broken line c in the figure), the running locus can be set to the desired broken line a.

【0024】以上により、絨毯目検出の専用センサを無
くすことによって、本体の足回りの構成が簡素になって
コストダウンもでき、そのかわりに、本体荷重を支える
従輪9の支持軸61の回転角度を検出してこの出力を増
幅することにより、従来の技術で説明した絨毯目検出手
段24の代用とでき、絨毯目による軌跡のずれ角度を推
測・修正して作業走行できる移動作業ロボットを構成す
ることができる。
As described above, by eliminating the dedicated sensor for detecting the stitches of the carpet, the structure of the underbody of the main body can be simplified and the cost can be reduced. Instead, the rotation angle of the support shaft 61 of the driven wheel 9 for supporting the main body load can be reduced. By detecting and amplifying this output, it can be used as a substitute for the carpet stitch detecting means 24 described in the prior art, and a mobile work robot capable of estimating and correcting the deviation angle of the trajectory due to the carpet stitch and constructing a mobile work robot can be constructed. be able to.

【0025】なお、調整手段52の増幅率は微調整を行
ったほうがよいので、調整つまみ52’を設けて容易に
調整できるようにしている。調整つまみ52’の仕様・
形態については、増幅率の調整が自由で容易という意図
を満たしていれば、図5に示したものに限定するもので
はない。
Since it is better to finely adjust the amplification factor of the adjusting means 52, the adjusting knob 52 'is provided for easy adjustment. Specifications of adjustment knob 52 '
The form is not limited to that shown in FIG. 5 as long as the purpose is that the adjustment of the amplification factor is free and easy.

【0026】また、回転検出手段10による検出角度
θ’としては、逐次サンプリングしておいて、いくつか
の平均値を用いると、信頼性の高いデータが得られる。
Further, as the detected angle θ ′ by the rotation detecting means 10, if the values are sampled successively and several average values are used, highly reliable data can be obtained.

【0027】(実施例2)以下、本発明の第二の手段の
実施例である移動作業ロボットを、自走式掃除機を例に
とって説明する。本体構成は前記実施例1の図1・図2
と同様なので説明を省略する。また、従輪の詳細と回転
検出手段の関係も前記実施例1の図3・図4と同様なの
で説明を省略する。
(Embodiment 2) Hereinafter, a mobile work robot which is an embodiment of the second means of the present invention will be described by taking a self-propelled cleaner as an example. The structure of the main body is as shown in FIGS.
The description is omitted because it is the same as. Further, the relationship between the details of the driven wheels and the rotation detecting means is the same as that of the first embodiment shown in FIGS.

【0028】図5は本実施例の第二の手段における制御
ブロック図で、基本的には前記実施例1の説明と共通な
ので、追加部分のみについて説明する。本実施例では走
行制御手段20は、増幅率記録手段53を有している。
増幅率記録手段53は、調整手段の増幅率を何通りか
(図では6通り)記憶し、操作パネル60に設けた選択
スイッチ53’により、希望する増幅率を選択して調整
手段52に出力する。記憶・選択の操作手順の例として
は、選択スイッチ53’の任意の番号を3秒間押し続け
ればそのときの調整つまみ52’が示す増幅率がその番
号に記憶され、また、任意の番号を一瞬押せば記憶して
いる増幅率が選択できる、オフを押せば選択が解除さ
れ、調整つまみ52’が示す増幅率が選択される、のよ
うな操作が考えられる。選択スイッチ53’も含めて増
幅率記録手段とする。
FIG. 5 is a control block diagram in the second means of the present embodiment. Since it is basically common to the explanation of the first embodiment, only the additional portion will be explained. In the present embodiment, the traveling control means 20 has an amplification factor recording means 53.
The amplification factor recording means 53 stores the number of amplification factors of the adjusting means (six in the figure), selects a desired amplification factor with the selection switch 53 ′ provided on the operation panel 60, and outputs it to the adjusting means 52. To do. As an example of the storage / selection operation procedure, if an arbitrary number of the selection switch 53 ′ is pressed and held for 3 seconds, the amplification factor indicated by the adjustment knob 52 ′ at that time is stored in that number, and the arbitrary number is momentarily displayed. An operation in which the stored amplification rate can be selected by pressing the button, the selection is canceled by pressing OFF, and the amplification rate indicated by the adjustment knob 52 ′ is selected can be considered. The selection switch 53 ′ is also included in the amplification factor recording means.

【0029】以上の構成による本体1の動作は、前記実
施例1の図6・図7と同様なので説明を省略する。
The operation of the main body 1 having the above-mentioned configuration is the same as that of the first embodiment shown in FIGS.

【0030】以上により、ある決まった何ヶ所かの場所
で繰り返し作業走行させるとき、絨毯の種類・使用年数
や作業方向等、各作業場所によって増幅率が微妙に異な
ることが予想されるので、各場所に応じて一度最適な増
幅率を調整・記憶しておけば、毎回調整する必要がな
く、増幅率の選択が容易に行え、各場所で絨毯目の影響
を修正した作業走行ができる移動作業ロボットを構成す
ることができる。
From the above, when the work is repeatedly carried out at a certain number of places, it is expected that the amplification factor is slightly different depending on each work place, such as the kind of carpet, the number of years of use, and the working direction. Once the optimum amplification factor is adjusted and stored according to the location, it is not necessary to adjust it each time, the amplification factor can be selected easily, and work can be performed at each location with the effect of the carpet pattern corrected. A robot can be configured.

【0031】本発明の第二の手段は、増幅率記録手段を
設けることによって、作業場所によって異なる調整手段
の増幅率を個々に記憶して、場所に応じた増幅率を容易
に選択できるものである。
According to the second means of the present invention, by providing the amplification factor recording means, the amplification factors of the adjusting means which differ depending on the work place are individually stored, and the amplification factor according to the place can be easily selected. is there.

【0032】なお、選択スイッチ53’の仕様・形態に
ついては、増幅率の記憶・選択操作容易という意図を満
たしていれば、図5に示したものに限定するものではな
い。
The specification and form of the selection switch 53 'are not limited to those shown in FIG. 5 as long as the intention of storing and selecting the amplification factor is easy.

【0033】(実施例3)以下、本発明の第三の手段の
実施例である移動作業ロボットを、自走式掃除機を例に
とって説明する。本体構成は前記実施例1の図1・図2
と同様なので説明を省略する。また、従輪の詳細と回転
検出手段の関係も前記実施例1の図3・図4と同様なの
で説明を省略する。ただし、絨毯目の影響による軌跡ず
れ検出する手段として、回転検出手段10および調整手
段52・52’のかわりに、従来の技術で説明した専用
センサである絨毯目検出手段24に置き換えてもよい。
以下単に絨毯目検出手段という言葉で説明を行うことに
する。
(Embodiment 3) A mobile work robot which is an embodiment of the third means of the present invention will be described below by taking a self-propelled cleaner as an example. The structure of the main body is as shown in FIGS.
The description is omitted because it is the same as. Further, the relationship between the details of the driven wheels and the rotation detecting means is the same as that of the first embodiment shown in FIGS. However, as the means for detecting the trajectory deviation due to the influence of the carpet stitches, the rotation detecting means 10 and the adjusting means 52, 52 'may be replaced with the carpet stitch detecting means 24 which is a dedicated sensor described in the conventional art.
Hereinafter, the description will be simply made with the term "carpet stitch detecting means".

【0034】図5は本実施例の第三の手段における制御
ブロック図で、基本的には前記実施例1の説明と共通な
ので、追加および異なる部分のみについて説明する。本
実施例では走行制御手段20は、制御誤差演算手段54
を有している。制御誤差演算手段54は、直進手段51
による直進中の方向計測手段21の出力を受けて、本体
1の方向の目標方向に対する誤差を計算する。修正手段
55は絨毯目検出手段24(調整手段52)と制御誤差
演算手段54の出力を受けて、直進手段51の目標方向
を両手段の出力和の分だけ修正する。
FIG. 5 is a control block diagram in the third means of the present embodiment. Since it is basically common to the explanation of the first embodiment, only the addition and different parts will be explained. In the present embodiment, the traveling control means 20 includes the control error calculation means 54.
have. The control error calculating means 54 is a straight traveling means 51.
By receiving the output of the direction measuring means 21 while the vehicle is traveling straight, the error of the direction of the main body 1 with respect to the target direction is calculated. The correcting means 55 receives the outputs of the carpet detecting means 24 (adjusting means 52) and the control error calculating means 54, and corrects the target direction of the straight traveling means 51 by the sum of the outputs of both means.

【0035】以上が本実施例の自走式掃除機の構成であ
る。それでは次に、動作について説明する。自律走行で
清掃を行うときの移動パターンの一例については前記実
施例1の図6と同様なので説明を省略する。
The above is the configuration of the self-propelled vacuum cleaner of the present embodiment. Next, the operation will be described. An example of the movement pattern when cleaning is performed autonomously is the same as that in FIG. 6 of the first embodiment, and therefore the description thereof is omitted.

【0036】次に図8に基づいて、本実施例の絨毯目の
影響による軌跡ずれの検出とその修正について説明す
る。本体1が絨毯目の方向が左から右である絨毯上を走
行する時、従来の技術の項では、本体1は目標方向の破
線a(破線a’)方向を向きながら目の方向に平行移動
して実線bの軌跡をたどると説明した。しかし厳密に見
ると、本体1の方向自体も絨毯目の影響によりわずかに
右側に傾き、一点鎖線dの方向を向く(図で角度θ
g)。そして、この一点鎖線dの方向に対して、平行移
動による角度ずれθcが生じる。よって各角度ずれθg
とθcの和として軌跡ずれ角θが生じ、走行軌跡として
実線bとなる。走行駆動系の性能にもよるが、実際、本
体1の方向の傾き角度θgは、平行移動による角度ずれ
θcの約1割程度であり、影響度としては小さいが、直
進距離が長いときにはθgの成分も無視できなくなる。
また、θgを零にするべく直進手段51による直進制御
のフィードバックゲイン(制御量)を大きくすると、蛇
行して安定した直進ができない。よって、θcを絨毯目
検出手段24で検出し、θgを方向計測手段21の出力
を用いて前述の制御誤差演算手段54により抽出するこ
とにより、厳密なずれ角度θを検出することができる。
そして、先述の修正手段55が、角度θcとθgの和で
ある角度θだけ直進の目標方向を修正(図破線c)すれ
ば、走行軌跡を所望の破線aとすることができる。
Next, with reference to FIG. 8, the detection and correction of the trajectory deviation due to the influence of the carpet pattern of this embodiment will be described. When the main body 1 travels on a carpet in which the direction of the eyes of the carpet is from left to right, according to the conventional art, the main body 1 moves parallel to the direction of the eyes while facing the target direction of the broken line a (broken line a ′). It was explained that the trajectory of the solid line b is followed. Strictly speaking, however, the direction of the main body 1 itself is also slightly tilted to the right due to the influence of the carpet and faces the direction of the chain line d (angle θ in the figure).
g). Then, an angle deviation θc occurs due to the parallel movement with respect to the direction of the one-dot chain line d. Therefore, each angle deviation θg
And θc, the locus deviation angle θ is generated, and the running locus becomes the solid line b. Although it depends on the performance of the traveling drive system, the inclination angle θg in the direction of the main body 1 is actually about 10% of the angular deviation θc due to the parallel movement, and although the influence is small, the inclination angle θg of Ingredients can no longer be ignored.
Further, if the feedback gain (control amount) of the straight-ahead control by the straight-ahead traveling means 51 is increased so that θg becomes zero, the vehicle will meander and cannot make a stable straight-ahead drive. Therefore, the strict deviation angle θ can be detected by detecting θc by the carpet detecting means 24 and extracting θg by the control error calculating means 54 using the output of the direction measuring means 21.
Then, if the above-mentioned correction means 55 corrects the target direction of straight traveling by the angle θ which is the sum of the angles θc and θg (broken line c in the figure), the traveling locus can be set to the desired broken line a.

【0037】以上により、平行移動成分だけでなく、本
体1の直進目標方向に対する制御角度誤差分も修正する
ことによって、絨毯目の影響をより精密に修正して作業
走行できる移動作業ロボットを構成できる。
As described above, by correcting not only the parallel movement component but also the control angle error of the main body 1 with respect to the straight-ahead target direction, it is possible to construct a mobile work robot capable of more accurately correcting the influence of the carpet pattern and traveling. .

【0038】また、絨毯目検出手段24と制御誤差演算
手段54による検出角度θとしては、逐次サンプリング
しておいて、いくつかの平均値を用いると、信頼性の高
いデータが得られる。
Further, as the detection angle θ by the carpet stitch detecting means 24 and the control error calculating means 54, highly reliable data can be obtained by successively sampling and using some average values.

【0039】[0039]

【発明の効果】以上のように本発明の第一の手段によれ
ば、絨毯目検出の専用センサを無くすことにより本体の
足回りの構成を簡素化してコストダウンをし、そのかわ
りに、本体荷重を支える従輪の支持軸の回転角度を検出
する回転検出手段を設けることにより、感度は悪いが従
輪を絨毯目検出に利用し、さらに調整手段を設けること
により、回転検出手段の出力を増幅して感度の悪さを補
い、よって、従来とほぼ同等な絨毯目の影響を修正した
作業走行をする移動作業ロボットを実現することができ
るものである。
As described above, according to the first means of the present invention, the structure of the underbody of the main body is simplified and the cost is reduced by eliminating the dedicated sensor for detecting the carpet stitches. By providing rotation detection means for detecting the rotation angle of the support shaft of the subordinate wheel that supports the load, the subordinate wheel is used for carpet detection, although the sensitivity is poor, and by providing adjustment means, the output of the rotation detection means is amplified. Thus, it is possible to realize a mobile work robot that compensates for the poor sensitivity and thus performs work traveling with the effect of the carpet eyes almost the same as the conventional one corrected.

【0040】また、本発明の第二の手段によれば、増幅
率記録手段を設けることにより、作業場所によって異な
る調整手段の増幅率を場所ごとに記憶し、場所に応じた
増幅率を容易に選択して、絨毯目の影響を修正した作業
走行をする移動作業ロボットを実現することができるも
のである。
Further, according to the second means of the present invention, by providing the amplification factor recording means, the amplification factor of the adjusting means which is different depending on the work place is stored for each place, and the amplification factor according to the place can be easily obtained. It is possible to realize a mobile work robot which selects and corrects the influence of the carpet pattern to perform work traveling.

【0041】また、本発明の第三の手段によれば、本体
が受ける絨毯目の影響として、絨毯目検出手段が平行移
動成分を検出するのに加え、制御誤差演算手段を設ける
ことによって、本体方向の目標方向に対する誤差を抽出
し、修正手段が直進の目標方向にこの平行移動分と角度
誤差分の和分の修正を施すことによって、絨毯目の影響
をより精密に修正した作業走行ができる移動作業ロボッ
トを実現することができるものである。
Further, according to the third means of the present invention, as the effect of the carpet stitch received by the main body, in addition to the parallel movement component being detected by the carpet stitch detecting means, the control error calculating means is provided, whereby the main body is provided. By extracting the error with respect to the target direction of the direction and correcting the sum of the parallel movement amount and the angular error in the straight target direction by the correction means, it is possible to perform work traveling in which the influence of the carpet stitch is corrected more precisely. It is possible to realize a mobile work robot.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一・第二・第三の手段の実施例であ
る移動作業ロボットの縦断面図
FIG. 1 is a vertical cross-sectional view of a mobile work robot that is an embodiment of the first, second, and third means of the present invention.

【図2】同移動作業ロボットの横断面図FIG. 2 is a cross-sectional view of the mobile work robot.

【図3】同移動作業ロボットの従輪の詳細と回転検出手
段の関係を示す縦断面図
FIG. 3 is a vertical cross-sectional view showing the relationship between the details of the slave wheels of the mobile work robot and the rotation detection means.

【図4】同移動作業ロボットの従輪の横断面図FIG. 4 is a cross-sectional view of a follower wheel of the mobile work robot.

【図5】同移動作業ロボットの走行制御手段の制御ブロ
ック図
FIG. 5 is a control block diagram of travel control means of the mobile work robot.

【図6】同移動作業ロボットの自律走行清掃の移動パタ
ーンを示す図
FIG. 6 is a diagram showing a movement pattern for autonomous traveling cleaning of the mobile work robot.

【図7】本発明の第一・第二の手段の実施例である移動
作業ロボットの絨毯目による軌跡ずれの検出・修正につ
いて説明する図
FIG. 7 is a diagram for explaining detection / correction of a trajectory deviation due to a carpet of a mobile work robot that is an embodiment of the first and second means of the present invention.

【図8】本発明の第三の手段の実施例である移動作業ロ
ボットの絨毯目による軌跡ずれの検出・修正について説
明する図
FIG. 8 is a diagram for explaining detection / correction of a trajectory deviation due to a carpet of a mobile work robot, which is an embodiment of a third means of the present invention.

【図9】従来の移動作業ロボットのベアフロア上での直
進走行を示す図
FIG. 9 is a diagram showing straight running of a conventional mobile work robot on a bare floor.

【図10】同移動作業ロボットの絨毯上での直進走行お
よび絨毯目の検知原理を示す図
FIG. 10 is a diagram showing a principle of straight traveling on a carpet and detection of a carpet eye of the mobile work robot.

【図11】同移動作業ロボットの絨毯目検出手段の概略
FIG. 11 is a schematic view of a carpet eye detecting means of the mobile work robot.

【図12】同移動作業ロボットの縦断面図FIG. 12 is a vertical sectional view of the mobile work robot.

【符号の説明】[Explanation of symbols]

1 本体 2 駆動輪 3 駆動モータ 4 減速機 5 モータ回転検出器 9 従輪 10 回転検出手段 12 接触検知手段 14 電動送風機 15 集塵室 16,17 フィルター 18 床ノズル 19 接続パイプ 20 走行制御手段 21 方向計測手段 24 絨毯目検出手段 51 直進手段 52 調整手段 52’ 調整つまみ 53 増幅率記録手段 53’ 選択スイッチ 54 制御誤差演算手段 55 修正手段 61 支持軸 1 main body 2 drive wheel 3 drive motor 4 speed reducer 5 motor rotation detector 9 driven wheel 10 rotation detection means 12 contact detection means 14 electric blower 15 dust collection chamber 16, 17 filter 18 floor nozzle 19 connection pipe 20 travel control means 21 direction measurement Means 24 Carpet detecting means 51 Straightening means 52 Adjusting means 52 'Adjustment knob 53 Amplification factor recording means 53' Selection switch 54 Control error calculating means 55 Correcting means 61 Support shaft

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 1/02 L 9323−3H (72)発明者 薮内 秀隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小川 光康 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤原 俊明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江口 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 乾 弘文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石橋 崇文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 黒木 義貴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location G05D 1/02 L 9323-3H (72) Inventor Hidetaka Yabuuchi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Mitsuyasu Ogawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshiaki Fujiwara 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Osamu Eguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Hirofumi Inui 1006 Kadoma, Kadoma City Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Takafumi Ishibashi Kadoma City, Osaka Prefecture Daiji Kadoma 1006 Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshitaka Kuroki Kadoma, Osaka Prefecture 1006 Kadoma Matsushita Electric Industrial Co., Ltd. The Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 左右独立の駆動輪、支持軸が本体に対し
て回転自由な従輪からなる、本体を移動させる駆動手段
および操舵手段と、前記駆動手段と操舵手段とを制御し
本体の走行制御を行う走行制御手段と、本体の方向を計
測する方向計測手段と、従輪の支持軸の回転角度を検出
する回転検出手段と、清掃等の作業を行なう作業手段と
を備え、前記走行制御手段が、方向計測手段の出力に基
づいて本体を目標方向に直進させる直進手段と、回転検
出手段の出力を増幅しかつ増幅率を調整できる調整手段
と、直進の目標方向に回転検出手段の出力の増幅値分の
修正を施す修正手段を有する移動作業ロボット。
1. A drive means and a steering means for moving the main body, which are left and right independent drive wheels and a support wheel whose support shaft is freely rotatable with respect to the main body, and a traveling control of the main body by controlling the drive means and the steering means. The travel control means, the direction measurement means for measuring the direction of the main body, the rotation detection means for detecting the rotation angle of the support shaft of the driven wheel, and the working means for performing work such as cleaning. , A straight advancing means for moving the main body straight in a target direction based on the output of the direction measuring means, an adjusting means for amplifying the output of the rotation detecting means and adjusting the amplification factor, and an amplification of the output of the rotation detecting means for the straight advancing target direction. A mobile work robot having a correction means for correcting the value.
【請求項2】 走行制御手段が、何通りかの増幅値を記
憶してかつ自由にそのうちの1つを容易に選択できる増
幅率記録手段を有する請求項1記載の移動作業ロボッ
ト。
2. The mobile work robot according to claim 1, wherein the traveling control means has an amplification factor recording means capable of storing several kinds of amplification values and easily selecting one of them.
【請求項3】 本体を移動させる駆動手段および操舵手
段と、前記駆動手段と操舵手段とを制御し本体の走行制
御を行う走行制御手段と、本体の方向を計測する方向計
測手段と、本体が走行中に絨毯目の方向と強さを検出す
る絨毯目検出手段と、清掃等の作業を行なう作業手段と
を備え、前記走行制御手段が、方向計測手段の出力に基
づいて本体を目標方向に直進させる直進手段と、直進中
の本体方向の目標方向に対する誤差を計算する制御誤差
演算手段と、直進の目標方向に制御誤差演算手段と絨毯
目検出手段の出力の和分の修正を施す修正手段を有する
移動作業ロボット。
3. A drive means and a steering means for moving the main body, a travel control means for controlling the drive means and the steering means to control the travel of the main body, a direction measuring means for measuring the direction of the main body, and the main body. It is provided with a carpet eye detecting means for detecting the direction and strength of the carpet eye during traveling, and a working means for performing work such as cleaning, and the traveling control means directs the main body to the target direction based on the output of the direction measuring means. Straight-moving means for moving straight, control error calculating means for calculating an error of the main body direction while moving straight ahead, and correction means for correcting the sum of the outputs of the control-error calculating means and the carpet detecting means in the straight-direction target direction. Mobile work robot having.
JP23623193A 1993-09-22 1993-09-22 Mobile work robot Expired - Fee Related JP3314477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23623193A JP3314477B2 (en) 1993-09-22 1993-09-22 Mobile work robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23623193A JP3314477B2 (en) 1993-09-22 1993-09-22 Mobile work robot

Publications (2)

Publication Number Publication Date
JPH07116087A true JPH07116087A (en) 1995-05-09
JP3314477B2 JP3314477B2 (en) 2002-08-12

Family

ID=16997737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23623193A Expired - Fee Related JP3314477B2 (en) 1993-09-22 1993-09-22 Mobile work robot

Country Status (1)

Country Link
JP (1) JP3314477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231939A (en) * 1998-02-16 1999-08-27 Shinko Electric Co Ltd Method and device for controlling steering of unmanned vehicle
JP2006288513A (en) * 2005-04-07 2006-10-26 Amano Corp Floor cleaner including filter clogging detection function
WO2013185102A1 (en) * 2012-06-08 2013-12-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231939A (en) * 1998-02-16 1999-08-27 Shinko Electric Co Ltd Method and device for controlling steering of unmanned vehicle
JP2006288513A (en) * 2005-04-07 2006-10-26 Amano Corp Floor cleaner including filter clogging detection function
JP4703239B2 (en) * 2005-04-07 2011-06-15 アマノ株式会社 Floor cleaning machine with filter clogging detection function
WO2013185102A1 (en) * 2012-06-08 2013-12-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US9223312B2 (en) 2012-06-08 2015-12-29 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US9427875B2 (en) 2012-06-08 2016-08-30 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US9969089B2 (en) 2012-06-08 2018-05-15 Irobot Corporation Carpet drift estimation using differential sensors for visual measurements
US10974391B2 (en) 2012-06-08 2021-04-13 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
EP2858794B1 (en) 2012-06-08 2021-04-14 iRobot Corporation Carpet drift estimation and compensation using two sets of sensors
EP2858794B2 (en) 2012-06-08 2024-02-28 iRobot Corporation Carpet drift estimation and compensation using two sets of sensors
US11926066B2 (en) 2012-06-08 2024-03-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements

Also Published As

Publication number Publication date
JP3314477B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
CN101926631B (en) Robot cleaner and method of its travel control
JPH064130A (en) Cleaning robot
JPH0732751B2 (en) Self-propelled vacuum cleaner
JPH05228090A (en) Self-traveling type cleaner
JPS62152424A (en) Self-propelling cleaner
JPS62109528A (en) Self-propelling type cleaner
JP2003310509A (en) Mobile cleaner
JPS62152421A (en) Self-propelling cleaner
CN110573050A (en) Self-propelled sweeper
JPH07116087A (en) Movable working robot
JP3079686B2 (en) Mobile work robot
JP3713734B2 (en) Mobile robot
JP3191334B2 (en) Mobile work robot
JP3227710B2 (en) Mobile work robot
JP3528200B2 (en) Self-propelled vacuum cleaner
JP3446354B2 (en) Self-propelled vacuum cleaner
JP3003260B2 (en) Carpet detection device and mobile work robot having the same
JP3355506B2 (en) Robots for mobile work
JP3227758B2 (en) Mobile work robot
JP3319107B2 (en) Mobile work robot
JP2002355205A (en) Moving work robot
JP3446286B2 (en) Self-propelled vacuum cleaner
JPH08196496A (en) Self-advancing vacuum cleaner
JP3319090B2 (en) Mobile work robot
EP4248828A1 (en) Robot cleaner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees