JPH11231061A - Manufacture of scintillator for computer-operated tomographic device - Google Patents

Manufacture of scintillator for computer-operated tomographic device

Info

Publication number
JPH11231061A
JPH11231061A JP10330077A JP33007798A JPH11231061A JP H11231061 A JPH11231061 A JP H11231061A JP 10330077 A JP10330077 A JP 10330077A JP 33007798 A JP33007798 A JP 33007798A JP H11231061 A JPH11231061 A JP H11231061A
Authority
JP
Japan
Prior art keywords
bar
deposit
scintillator
gap
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10330077A
Other languages
Japanese (ja)
Other versions
JP4215320B2 (en
Inventor
Robert J Riedner
ロバート・ジョセフ・リードナー
Matthew R Schedler
マシュー・アール・スケドゥラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH11231061A publication Critical patent/JPH11231061A/en
Application granted granted Critical
Publication of JP4215320B2 publication Critical patent/JP4215320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1067Continuous longitudinal slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1961Severing delaminating means [e.g., chisel, etc.]

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of a scintillator by using an inner-diameter saw provided with a saw cutter having an inner-periphery cutting edge coated with diamond. SOLUTION: A plurality of scintillator wafers are stacked and cut with an inner-diameter saw to obtain a plurality of first rod materials. After the rod materials are arranged on a mount to make first gaps 28, the gaps are filled with filling-type reflecting material 114. The inner-diameter saw is used to cut the first rod materials at 90 degrees to the longitudinal direction to obtain second rod materials 118. The second rod materials 118 are arranged on the mount in spaced relationship to provide second gaps 32 similar to the first gaps. Similarly with the first gap 28, the second gaps 32 are filled with the filling-type reflecting material to form a scintillator array. In the method, the frequency of handling operation is minimized and a time is thus saved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンピュータ断層撮
影(CT)技術に関するものであって、更に詳しく言え
ば、CT装置に関連して使用される検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to computer tomography (CT) technology, and more particularly, to a detector used in connection with a CT apparatus.

【0002】[0002]

【発明の背景】少なくとも一部のコンピュータ断層撮影
(CT)装置構成においては、X線源から投射された扇
形ビームは(一般に「撮影平面」と呼ばれる)直交座標
系のX−Y平面内に位置するように平行化される。この
X線ビームは撮影すべき対象物(たとえば患者)を通過
する。対象物によって減衰させられた後、X線ビームは
放射線検出器アレイに入射する。検出器アレイによって
受光されるX線ビームの強度は、対象物によるX線の減
衰度に依存する。アレイ中の各々の検出器素子は独立の
電気信号を生じるが、この電気信号はその検出器位置に
おけるX線ビーム減衰度の測定値である。全ての検出器
素子からの減衰度測定値を独立に収集することによって
透過率分布が求められる。
BACKGROUND OF THE INVENTION In at least some computer tomography (CT) arrangements, a fan beam projected from an X-ray source is positioned in an XY plane of a rectangular coordinate system (commonly referred to as an "imaging plane"). Are parallelized. This X-ray beam passes through the object to be imaged (eg, a patient). After being attenuated by the object, the X-ray beam is incident on a radiation detector array. The intensity of the X-ray beam received by the detector array depends on the degree of attenuation of the X-ray by the object. Each detector element in the array produces an independent electrical signal, which is a measure of the x-ray beam attenuation at that detector location. The transmission distribution is determined by independently collecting attenuation measurements from all detector elements.

【0003】公知の第三世代CT装置においては、X線
源及び検出器アレイは撮影平面内かつ撮影すべき対象物
の周囲でガントリーと共に回転する。その結果、X線ビ
ームが対象物を横切る角度は絶えず変化する。通例、X
線源はX線管を含んでいて、それは焦点からX線ビーム
を放射する。また、X線検出器は受光されたX線ビーム
を平行化するためのコリメータ、コリメータに隣接した
シンチレータ、及びシンチレータに隣接したホトダイオ
ードを通例含んでいる。
[0003] In known third generation CT systems, the x-ray source and detector array rotate with the gantry in the imaging plane and around the object to be imaged. As a result, the angle at which the X-ray beam traverses the object is constantly changing. Usually, X
The source includes an X-ray tube, which emits an X-ray beam from a focal point. The X-ray detector typically includes a collimator for collimating the received X-ray beam, a scintillator adjacent to the collimator, and a photodiode adjacent to the scintillator.

【0004】1回の走査に際してより多数の断面に関す
るデータを得るためにはマルチスライスCT装置が使用
される。公知のマルチスライスCT装置は、通例、一般
に三次元(3D)検出器として知られる検出器を含んで
いる。かかる三次元検出器においては、多数の検出器セ
ルが複数の行及び列を成して配列された独立のチャネル
を形成している。
A multi-slice CT apparatus is used to obtain data on a larger number of cross sections in one scan. Known multi-slice CT devices typically include a detector commonly known as a three-dimensional (3D) detector. In such a three-dimensional detector, a number of detector cells form independent channels arranged in a plurality of rows and columns.

【0005】三次元検出器用のシンチレータは、約1×
2×3mmの寸法を持ったシンチレータ素子を含むこと
がある。その場合、素子間のギャップは僅か数ミル(た
とえば、約0.004インチ)という小さい値を有す
る。かかる素子が小さい寸法を有すると共に互いに近接
している結果、様々な問題が生じる。たとえば、1個の
シンチレータ素子に入射する信号が上方に反射したり、
あるいは隣接する素子に入射したりする結果、分解能の
不都合な低下を生じることがある。
A scintillator for a three-dimensional detector is about 1 ×
It may include a scintillator element with dimensions of 2 × 3 mm. In that case, the gap between the elements has a small value of only a few mils (eg, about 0.004 inches). Various problems arise as a result of such elements having small dimensions and being close to each other. For example, a signal incident on one scintillator element is reflected upward,
Alternatively, the light may be incident on an adjacent element, so that the resolution may be disadvantageously reduced.

【0006】通例、シンチレータは精密ダイシング・ソ
ー、エッチング又はレーザ切断法によって切断される。
かかる切断は所望の寸法を得るために必要とされる。シ
ンチレータを切断するための最も普通の方法は、ダイヤ
モンドのこ(ダイヤモンド・ソー)の外径(OD)のこ
刃を使用するものである。セラミックのごとき材料を切
断するため、外径のこはのこ刃の外周上にダイヤモンド
被膜を有している。のこ刃の剛性を維持して正確な切断
を行うためには、たとえば10000〜30000rp
mという極めて早い回転速度が使用される。しかしなが
ら、ギャップのアスペクト比が10を越える場合、セラ
ミック・シンチレータにおいてたとえば4ミルという切
断ギャップを達成するのは困難なことがある。詳しく述
べれば、10を越えるアスペクト比を有するシンチレー
タの場合、外径のこは不正確な切断をもたらすことが多
い。その上、一度に1個のシンチレータのみを切断する
場合には、各々の三次元アレイについて多数の取扱い操
作が必要とされる。このような方法は時間及び費用を浪
費するものである。
[0006] Typically, the scintillator is cut by a precision dicing saw, etching or laser cutting method.
Such cutting is required to obtain the desired dimensions. The most common method for cutting a scintillator uses a diamond saw (diamond saw) outer diameter (OD) saw blade. To cut materials such as ceramics, the outer diameter saw has a diamond coating on the outer periphery of the saw blade. In order to perform accurate cutting while maintaining the rigidity of the saw blade, for example, 10,000 to 30,000 rpm
A very fast rotation speed of m is used. However, if the gap aspect ratio exceeds 10, it may be difficult to achieve a cutting gap of, for example, 4 mils in a ceramic scintillator. In particular, for scintillators having aspect ratios greater than 10, outer diameter saws often result in inaccurate cuts. Moreover, cutting only one scintillator at a time requires multiple handling operations for each three-dimensional array. Such a method is time and money consuming.

【0007】このようなわけで、三次元シンチレータ用
シンチレータの切断精度を高めるための方法を提供する
ことは望ましいものである。また、かかるシンチレータ
を製造するために必要な取扱い操作の数を最小限に減少
させる方法を提供することも望ましいものである。
For this reason, it is desirable to provide a method for increasing the cutting accuracy of a scintillator for a three-dimensional scintillator. It would also be desirable to provide a method that minimizes the number of handling operations required to manufacture such a scintillator.

【0008】[0008]

【発明の概要】上記及びその他の目的は、多数のセラミ
ック・シンチレータを一度で正確に切断する工程を含ん
だシンチレータ製造方法によって達成することができ
る。本発明の方法を使用すれば、シンチレータが数イン
チの厚さ及び10を越えるアスペクト比を有する場合で
あっても、セラミック・シンチレータをかなり早い速度
で切断することができる。実施の一態様に従って一層詳
しく述べれば、内径(ID)のこを用いてシンチレータ
素子が切断される。内径のこは、ダイヤモンドで被覆さ
れた内周切刃を有するのこ刃を具備している。かかるの
こ刃の外側表面は高応力状態に緊張させることができる
ため、内径のこ刃は外径のこ刃よりも遥かに大きい剛性
を有する。このような緊張状態は、非常に深い切込みを
行う場合であっても正確な切断を可能にする。
SUMMARY OF THE INVENTION These and other objects can be achieved by a method for manufacturing a scintillator that includes the step of accurately cutting a large number of ceramic scintillators at once. Using the method of the present invention, ceramic scintillators can be cut at a much faster rate, even when the scintillator has a thickness of several inches and an aspect ratio of more than 10. In more detail according to one embodiment, the scintillator element is cut using an inner diameter (ID) saw. The inner diameter saw has a saw blade having an inner peripheral cutting edge coated with diamond. Because the outer surface of such a saw blade can be tensioned to high stress conditions, the inner saw blade has much greater rigidity than the outer saw blade. Such tensioning allows for accurate cutting even when making very deep cuts.

【0009】実施の一態様に従えば、ダイヤモンドで被
覆された内径のこを用いてシンチレータ・ウェーハの堆
積物を第1の方向に切断することにより、第1の棒材堆
積物が得られる。第1の棒材堆積物を第1の棒材に分離
した後、内径のこの内周切刃を用いて第1の切断方向に
対し90゜の方向に注型済みの第1の棒材を切断するこ
とにより、第2の棒材堆積物が得られる。第2の棒材堆
積物を第2の棒材に分離した後、第2の棒材間にギャッ
プを生じるようにして第2の棒材が取付具上に配置さ
れ、ギャップが注型反射材で充填され、次いで第2の棒
材を最終の寸法を有するように研削することによって完
成したシンチレータ・アレイが得られる。
According to one embodiment, a first bar deposit is obtained by cutting a deposit on a scintillator wafer in a first direction using a diamond-coated inner saw. After separating the first bar deposit into the first bar, the first bar which has been cast in the direction of 90 ° with respect to the first cutting direction using the inner cutting edge having the inner diameter is removed. By cutting, a second bar deposit is obtained. After separating the second bar deposit into a second bar, the second bar is placed on the fixture with a gap between the second bars, and the gap is cast reflector And then grinding the second bar to have the final dimensions to obtain a finished scintillator array.

【0010】上記の方法はより高い精度でシンチレータ
を製造することを容易にする。更にまた、若干数の大き
いシンチレータ部材について切断及び注型を行うことは
小さな画素又は小さなアレイの取扱いを最小限にまで減
少させ、従って時間の節約をもたらす。
The above method facilitates producing scintillators with higher accuracy. Furthermore, cutting and casting a small number of large scintillator members reduces handling of small pixels or small arrays to a minimum, thus saving time.

【0011】[0011]

【発明の実施の形態】図1は、第1のギャップ28及び
第2のギャップ32を有するアレイを成すように配列さ
れた複数のシンチレータ素子24を含むシンチレータ2
0の斜視図である。シンチレータ素子24は、多結晶質
セラミック・シンチレータ材料又は単結晶シンチレータ
材料から加工されたものである。X線ビームが衝突した
場合、シンチレータ素子24は光出力信号を生じる。そ
の光出力はホトダイオード・アレイと光学的に結合され
る。かかるアレイ中の各々のホトダイオードは独立の減
衰度信号を生じ、そして全てのホトダイオードからの信
号を独立に収集することによって透過率分布が求められ
る。
FIG. 1 shows a scintillator 2 including a plurality of scintillator elements 24 arranged in an array having a first gap 28 and a second gap 32. FIG.
FIG. The scintillator element 24 is processed from a polycrystalline ceramic scintillator material or a single crystal scintillator material. When the X-ray beam strikes, scintillator element 24 produces a light output signal. The light output is optically coupled to a photodiode array. Each photodiode in such an array produces an independent attenuation signal, and the transmission distribution is determined by collecting the signals from all the photodiodes independently.

【0012】シンチレータ20を製造するためには、図
2及び3について述べれば、低融点の接着剤、溶解可能
な接着剤又はその他の一時接着剤(図示せず)を用いて
シンチレータ・ウェーハ100同士を一時的に結合する
ことによって堆積物104が形成される。内径(ID)
のこの内周切刃を用いてかかる堆積物104を切断する
ことにより、第1の棒材堆積物108が得られる。内径
のこは当業界において公知である。とは言え、今日ま
で、かかる内径のこがシンチレータの製造において使用
されたことはなかった。内径のこ刃は外径のこ刃よりも
正確に堆積物104を切断することができる。なぜな
ら、内径のこ刃は外径側が高応力状態に緊張しており、
従って遥かに大きい剛性を有するからである。切断後、
一時接着剤による結合を破壊することにより、第1の棒
材堆積物108が第1の棒材110に分離される。
To manufacture the scintillator 20, referring to FIGS. 2 and 3, the scintillator wafers 100 are joined together using a low melting point adhesive, a dissolvable adhesive or another temporary adhesive (not shown). Are temporarily combined to form a deposit 104. Inner diameter (ID)
By cutting the deposit 104 using this inner peripheral cutting edge, a first bar deposit 108 is obtained. Inner diameter saws are known in the art. However, to date, such bore saws have not been used in the manufacture of scintillators. The inner saw blade can cut the deposit 104 more accurately than the outer saw blade. Because the inner diameter saw blade is tensioned on the outer diameter side in a high stress state,
Therefore, it has much higher rigidity. After cutting,
By breaking the bond with the temporary adhesive, the first bar deposit 108 is separated into the first bar 110.

【0013】次に図4及び5について述べれば、第1の
棒材110がアレイ112を成すように配列され、そし
て取付具(図示せず)上に配置される。その際には、第
1の棒材110を互いに離隔させることによって第1の
ギャップ28が設けられる。通常、ギャップ28の幅は
0.5〜6ミルの範囲内にある。実施の一態様に従え
ば、ギャップ28の幅は約4ミルであり、またそれの高
さ/幅比は最大30である。次に、たとえば二酸化チタ
ン(TiO2 )及び注型可能な重合体から成る注型反射
材114でギャップ28が充填される。硬化後、複数の
アレイ112が堆積され、そして内径のこの内周切刃を
用いて第1の切断方向と垂直な方向に切断することによ
って第2の棒材堆積物116が得られる。次いで、第2
の棒材堆積物116が第2の棒材118に分離される。
かかる第2の棒材118がアレイを成すように配列さ
れ、そして取付具(図示せず)上に配置される。その際
には、第2の棒材118を互いに離隔させることによっ
て第2のギャップ32が設けられる。実施の一態様に従
えば、ギャップ32の幅はギャップ28の幅に等しい。
Referring now to FIGS. 4 and 5, first bars 110 are arranged in an array 112 and are disposed on a fixture (not shown). At that time, the first gap 28 is provided by separating the first rods 110 from each other. Typically, the width of gap 28 is in the range of 0.5 to 6 mils. According to one embodiment, the width of the gap 28 is about 4 mils and its height / width ratio is up to 30. The gap 28 is then filled with a casting reflector 114, for example made of titanium dioxide (TiO 2 ) and a castable polymer. After curing, a plurality of arrays 112 are deposited and a second bar deposit 116 is obtained by cutting in a direction perpendicular to the first cutting direction using this inner diameter cutting edge. Then the second
Is separated into a second bar 118.
Such second bars 118 are arranged in an array and placed on a fixture (not shown). In this case, the second gap 32 is provided by separating the second rods 118 from each other. According to one embodiment, the width of the gap 32 is equal to the width of the gap 28.

【0014】次に図6について述べれば、ギャップ28
を充填するために使用された材料と同様な注型反射材1
14でギャップ32が充填される。硬化後、アレイが取
付具から分離され、そしてアレイの周囲に反射材114
が注型される。最終の研削仕上後、約1×2×3mmの
寸法を有するシンチレータ素子24を含む完成したシン
チレータ20が得られる。なお、シンチレータ素子の寸
法は実施の態様に応じて上記のものと異なることがあ
る。
Referring now to FIG.
Cast reflector 1 similar to the material used to fill the
At 14, the gap 32 is filled. After curing, the array is separated from the fixture and a reflector 114 is provided around the array.
Is cast. After a final grinding finish, a finished scintillator 20 including scintillator elements 24 having dimensions of about 1 × 2 × 3 mm is obtained. Note that the dimensions of the scintillator element may be different from those described above depending on the embodiment.

【0015】別の実施の態様に従えば、シンチレータ2
0と同様なシンチレータ(図示せず)が製造されるが、
この場合には第1の棒材堆積物が第1の棒材110に分
離されない。すなわち、第1の棒材堆積物がアレイを成
すように配列され、そして取付具上に配置される。その
際には、第1の棒材堆積物を互いに離隔させることによ
って第1のギャップが設けられる。かかる第1のギャッ
プはギャップ28と同様なものであり、そして材料11
4と同様な注型反射材で充填される。硬化後、内径のこ
の内周切刃を用いて第1の切断方向と垂直な方向に第1
の棒材堆積物を切断することによって第2の棒材堆積物
が得られる。次いで、第2の棒材堆積物がアレイを成す
ように配列され、そして取付具(図示せず)上に配置さ
れる。その際には、第2の棒材堆積物を互いに離隔させ
ることにより、第2のギャップ32と同様な第2のギャ
ップが設けられる。
According to another embodiment, the scintillator 2
A scintillator (not shown) similar to 0 is manufactured,
In this case, the first bar deposit is not separated into the first bars 110. That is, the first bar deposits are arranged in an array and placed on a fixture. In so doing, a first gap is provided by separating the first bar deposits from each other. Such a first gap is similar to gap 28, and material 11
Filled with a cast reflector similar to 4. After hardening, the first cutting direction is perpendicular to the first cutting direction using the inner peripheral cutting edge of the inner diameter.
The second bar deposit is obtained by cutting the bar deposit. The second bar deposits are then arranged in an array and placed on a fixture (not shown). At this time, a second gap similar to the second gap 32 is provided by separating the second bar deposits from each other.

【0016】次に、第1のギャップを充填するために使
用された材料と同様な注型反射材で第2のギャップが充
填される。反射材を硬化させた後、アレイが取付具から
分離され、そしてアレイの周囲に反射材114と同様な
反射材が注型される。次いで、内径のこの切刃を用いて
各ウェーハの厚さ方向にシンチレータ・アレイを切断す
ることにより、シンチレータ・アレイから複数のシンチ
レータが切り出される。最終の研削仕上後、約1×2×
3mmの寸法を有するシンチレータ素子を含む完成した
シンチレータ20が得られる。なお、シンチレータ素子
の寸法は実施の態様に応じて上記のものと異なることが
ある。
Next, the second gap is filled with a cast reflector similar to the material used to fill the first gap. After curing the reflector, the array is separated from the fixture and a reflector similar to reflector 114 is cast around the array. Next, a plurality of scintillators are cut out from the scintillator array by cutting the scintillator array in the thickness direction of each wafer using the cutting blade having the inner diameter. After the final grinding finish, about 1 × 2 ×
A completed scintillator 20 including a scintillator element having a dimension of 3 mm is obtained. Note that the dimensions of the scintillator element may be different from those described above depending on the embodiment.

【0017】上記の方法は三次元シンチレータの製造を
容易にする。更にまた、上記の方法は三次元シンチレー
タを切断する際の位置精度を高め、それによって時間の
節約及び屑材の低減をもたらす。本発明の若干の実施の
態様に関する上記の説明によれば、本発明の目的が達成
されることは明らかである。上記に本発明が詳しく記載
されているとは言え、その説明は本発明の例示を目的と
したものに過ぎないのであって、本発明の範囲を制限す
るものと解すべきでない。従って、本発明の範囲はもっ
ぱら前記特許請求の範囲によって制限されることを理解
すべきである。
The above method facilitates the production of a three-dimensional scintillator. Furthermore, the above method increases the positional accuracy when cutting the three-dimensional scintillator, thereby saving time and reducing waste material. From the above description of some embodiments of the invention, it is apparent that the objects of the invention have been achieved. Although the invention has been described in detail above, the description is merely for the purpose of illustrating the invention and should not be construed as limiting the scope of the invention. Therefore, it is to be understood that the scope of the present invention is limited solely by the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複数のシンチレータ素子を含むシンチレータの
斜視図である。
FIG. 1 is a perspective view of a scintillator including a plurality of scintillator elements.

【図2】シンチレータ・ウェーハの堆積物の斜視図であ
る。
FIG. 2 is a perspective view of a deposit on a scintillator wafer.

【図3】図2に示された堆積物から切出された第1の棒
材堆積物の斜視図である。
FIG. 3 is a perspective view of a first bar deposit that has been cut from the deposit shown in FIG. 2;

【図4】図3に示された第1の棒材堆積物から分離され
た第1の棒材のアレイの斜視図である。
FIG. 4 is a perspective view of an array of first bars separated from the first bar deposit shown in FIG. 3;

【図5】図4に示されたアレイの堆積物の斜視図であ
る。
FIG. 5 is a perspective view of a deposit of the array shown in FIG.

【図6】最終の注型工程前におけるアレイの斜視図であ
る。
FIG. 6 is a perspective view of the array before a final casting step.

【符号の説明】[Explanation of symbols]

20 シンチレータ 24 シンチレータ素子 28 第1のギャップ 32 第2のギャップ 100 シンチレータ・ウェーハ 104 堆積物 108 第1の棒材堆積物 110 第1の棒材 112 アレイ 114 注型反射材 116 第2の棒材堆積物 118 第2の棒材 Reference Signs List 20 scintillator 24 scintillator element 28 first gap 32 second gap 100 scintillator wafer 104 deposit 108 first bar deposit 110 first bar 112 array 114 casting reflector 116 second bar deposit Object 118 2nd bar

───────────────────────────────────────────────────── フロントページの続き (72)発明者 マシュー・アール・スケドゥラー アメリカ合衆国、ウィスコンシン州、ホワ イトフィッシュ・ベイ、ノース・ケント・ アヴェニュー、5328番 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Matthew R. Scheduler, No. 5328, North Kent Avenue, Whitefish Bay, Wisconsin, United States

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 内周切刃を有するのこ刃を具備した内径
のこを用いてコンピュータ断層撮影装置用のシンチレー
タを製造する方法において、 複数のシンチレータを結合して堆積物を形成する工程、
及び前記内径のこの切刃を用いて前記堆積物を切断して
複数の第1の棒材堆積物を得る工程を含むことを特徴と
する方法。
1. A method of manufacturing a scintillator for a computed tomography apparatus using an inner diameter saw having a saw blade having an inner peripheral cutting edge, comprising: combining a plurality of scintillators to form a deposit.
And cutting the deposit with the cutting edge of the inner diameter to obtain a plurality of first bar deposits.
【請求項2】 低融点の接着剤を用いて前記シンチレー
タ同士が一時的に結合される請求項1記載の方法。
2. The method according to claim 1, wherein the scintillators are temporarily bonded to each other using a low melting point adhesive.
【請求項3】 前記シンチレータが多結晶質セラミック
・シンチレータである請求項1記載の方法。
3. The method of claim 1, wherein said scintillator is a polycrystalline ceramic scintillator.
【請求項4】 前記シンチレータが単結晶シンチレータ
である請求項1記載の方法。
4. The method of claim 1, wherein said scintillator is a single crystal scintillator.
【請求項5】 更に、前記第1の棒材堆積物を第1の棒
材に分離する工程、ギャップにより離隔させた状態で前
記第1の棒材を取付具上に配置する工程、前記第1の棒
材同士を結合して第1の棒材アレイを得る工程、並びに
前記第1の棒材の表面上及び前記ギャップ中に反射材を
注型する工程を含んでいる請求項1記載の方法。
5. The method according to claim 1, further comprising the steps of: separating the first bar deposit into first bars; arranging the first bar on a fixture while being separated by a gap; 2. The method of claim 1, further comprising the steps of: joining the bars together to obtain a first bar array; and casting a reflector on the surface of the first bars and into the gap. Method.
【請求項6】 前記第1の棒材を切断して所望寸法のア
レイを得るため、前記内径のこの切刃を用いて前記第1
の棒材堆積物アレイを切断して複数の第2の棒材を得る
工程、第2のギャップにより離隔させた状態で前記第2
の棒材を取付具上に配置する工程、並びに前記第2の棒
材の表面上及び前記第2のギャップ中に反射材を注型す
る工程を含んでいる請求項5記載の方法。
6. The cutting blade of said inner diameter is used to cut said first bar to obtain an array of desired dimensions.
Obtaining a plurality of second bars by cutting the bar material deposit array of the second embodiment, wherein the second bars are separated by a second gap.
6. The method of claim 5, further comprising the steps of: disposing said bar on a fixture; and casting a reflector on the surface of said second bar and into said second gap.
【請求項7】 前記第1の棒材を切断して所望寸法のア
レイを得るため、複数の前記第1の棒材アレイを配列し
て第2の堆積物とする工程、前記内径のこの切刃を用い
て前記第2の堆積物を切断して複数の第2の棒材堆積物
を得る工程、前記第2の棒材堆積物を複数の第2の棒材
に分離する工程、第2のギャップにより離隔させた状態
で前記第2の棒材を取付具上に配置する工程、並びに前
記第2の棒材の表面上及び前記第2のギャップ中に反射
材を注型する工程を含んでいる請求項5記載の方法。
7. A step of arranging a plurality of said first bar arrays to form a second deposit in order to cut said first bar into an array of a desired size; Cutting the second deposit using a blade to obtain a plurality of second bar deposits, separating the second bar deposit into a plurality of second rods, Disposing the second rod on the fixture while being separated by the gap, and casting a reflective material on the surface of the second rod and in the second gap. The method of claim 5, wherein
【請求項8】 前記所望寸法のアレイがX×Y×Zの寸
法を持ったシンチレータ素子を含む場合において、Xが
約1mm、Yが約3mm、かつZが約2mmである請求
項5記載の方法。
8. The method of claim 5, wherein X is about 1 mm, Y is about 3 mm, and Z is about 2 mm when the array of desired dimensions includes scintillator elements having dimensions of X × Y × Z. Method.
【請求項9】 更に、前記第1の棒材堆積物を取付具上
に配置する工程、前記第1の棒材堆積物を互いに離隔さ
せてアレイを得る工程、及び前記第1の棒材堆積物の表
面上に反射材を注型する工程を含んでいる請求項1記載
の方法。
9. The method of claim 1, further comprising: disposing the first bar deposit on a fixture; separating the first bar deposit from each other to obtain an array; and depositing the first bar deposit. The method of claim 1 including the step of casting a reflector on the surface of the object.
【請求項10】 前記第1の棒材堆積物を互いに離隔さ
せてアレイを得る工程によって複数のギャップが生じる
請求項9記載の方法。
10. The method of claim 9, wherein the step of separating the first bar deposits from each other to obtain an array creates a plurality of gaps.
【請求項11】 前記ギャップが約0.5〜6ミルの範
囲内の幅を有する請求項10記載の方法。
11. The method of claim 10 wherein said gap has a width in the range of about 0.5 to 6 mils.
【請求項12】 内周切刃を有するのこ刃を具備した内
径のこを用いてコンピュータ断層撮影装置用のシンチレ
ータを製造する方法において、 複数のシンチレータ・ウェーハを結合して堆積物を形成
する工程、 前記内径のこの切刃を用いて前記堆積物を切断して複数
の第1の棒材堆積物を得る工程、 取付具上において前記第1の棒材堆積物を互いに離隔さ
せる工程、 反射材を注型してアレイを形成する工程、 前記内径のこの切刃を用いて前記第1の棒材堆積物を切
断して複数の第2の棒材堆積物を得る工程、 取付具上において前記第2の棒材堆積物を互いに離隔さ
せる工程、 反射材を注型してアレイを形成する工程、 前記アレイを切断して複数のシンチレータを得る工程、
及び各々のシンチレータの周囲に反射材を注型する工程
を含むことを特徴とする方法。
12. A method of manufacturing a scintillator for a computed tomography apparatus using an inner diameter saw having a saw blade having an inner peripheral cutting edge, wherein a plurality of scintillator wafers are combined to form a deposit. Using the cutting blade of the inner diameter to cut the deposit to obtain a plurality of first bar deposits; separating the first bar deposits from each other on a fixture; Casting a bar to form an array; cutting the first bar deposit using the cutting edge of the inner diameter to obtain a plurality of second bar deposits; Separating the second bar deposits from each other; casting a reflector to form an array; cutting the array to obtain a plurality of scintillators;
And casting a reflector around each of the scintillators.
【請求項13】 更に、前記取付具上において前記第1
の棒材堆積物を互いに離隔させた後、前記第1の棒材堆
積物の表面上に反射材を注型する工程を含んでいる請求
項12記載の方法。
13. The method according to claim 13, further comprising:
13. The method of claim 12, including the step of casting a reflector on the surface of the first bar deposit after separating the bar deposits from each other.
【請求項14】 更に、前記取付具上において前記第2
の棒材堆積物を互いに離隔させた後、前記第2の棒材堆
積物の表面上に反射材を注型する工程を含んでいる請求
項12記載の方法。
14. The method according to claim 14, further comprising:
13. The method of claim 12, including the step of casting a reflective material on the surface of said second bar deposit after separating said bar deposits from each other.
【請求項15】 前記取付具上において前記第1の棒材
堆積物を互いに離隔させる工程によって複数のギャップ
が生じる請求項12記載の方法。
15. The method of claim 12, wherein the step of separating the first bar deposits on the fixture results in a plurality of gaps.
【請求項16】 前記ギャップが約0.5〜6ミルの範
囲内の幅を有する請求項15記載の方法。
16. The method of claim 15, wherein said gap has a width in the range of about 0.5 to 6 mils.
【請求項17】 前記堆積物の厚さが前記ギャップの幅
の10倍より大きい請求項15記載の方法。
17. The method of claim 15, wherein the thickness of the deposit is greater than ten times the width of the gap.
【請求項18】 前記取付具上において前記第2の棒材
堆積物を互いに離隔させる工程によって複数の第2のギ
ャップが生じる請求項12記載の方法。
18. The method of claim 12, wherein the step of separating the second bar deposits on the fixture results in a plurality of second gaps.
【請求項19】 前記第2のギャップが約0.5〜6ミ
ルの範囲内の幅を有する請求項18記載の方法。
19. The method of claim 18, wherein said second gap has a width in the range of about 0.5 to 6 mils.
JP33007798A 1997-11-26 1998-11-20 Manufacturing method of scintillator for computer tomography apparatus Expired - Fee Related JP4215320B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/977441 1997-11-25
US08/977,441 US6245184B1 (en) 1997-11-26 1997-11-26 Method of fabricating scintillators for computed tomograph system

Publications (2)

Publication Number Publication Date
JPH11231061A true JPH11231061A (en) 1999-08-27
JP4215320B2 JP4215320B2 (en) 2009-01-28

Family

ID=25525130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33007798A Expired - Fee Related JP4215320B2 (en) 1997-11-26 1998-11-20 Manufacturing method of scintillator for computer tomography apparatus

Country Status (5)

Country Link
US (1) US6245184B1 (en)
JP (1) JP4215320B2 (en)
CN (1) CN1168419C (en)
DE (1) DE19838855B4 (en)
IL (1) IL127117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333489A (en) * 2003-04-30 2004-11-25 Ge Medical Systems Global Technology Co Llc Computerized tomography (ct) detector array having non-pixel type scintillator array
JP2016223845A (en) * 2015-05-28 2016-12-28 株式会社東芝 Radiation detector, radiation detection device, and method for manufacturing radiation detector

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504156B1 (en) * 1999-07-16 2003-01-07 Kabushiki Kaisha Toshiba Ceramic scintillator material and manufacturing method thereof, and radiation detector therewith and radiation inspection apparatus therewith
US6749761B1 (en) * 2000-10-10 2004-06-15 Cti Pet Systems, Inc. Method for producing a high resolution detector array
DE10054678A1 (en) * 2000-11-03 2002-05-16 Siemens Ag Method for producing a one-dimensional or multi-dimensional detector array
DE10054680B4 (en) * 2000-11-03 2007-04-19 Siemens Ag Method for producing a two-dimensional detector array for detecting electromagnetic radiation
US6448566B1 (en) 2001-03-15 2002-09-10 Ge Medical Systems Global Technology Company, Llc Scintillator arrays for radiation detectors and methods for making same
US7462852B2 (en) * 2001-12-17 2008-12-09 Tecomet, Inc. Devices, methods, and systems involving cast collimators
US7518136B2 (en) * 2001-12-17 2009-04-14 Tecomet, Inc. Devices, methods, and systems involving cast computed tomography collimators
US7785098B1 (en) 2001-06-05 2010-08-31 Mikro Systems, Inc. Systems for large area micro mechanical systems
CA2702143C (en) * 2001-06-05 2014-02-18 Mikro Systems, Inc. Methods for manufacturing three-dimensional devices and devices created thereby
US7141812B2 (en) * 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
US7157014B1 (en) 2001-10-05 2007-01-02 Cit Pet Systems, Inc. Method for producing a high resolution detector array
US20030236388A1 (en) * 2002-06-12 2003-12-25 General Electric Company Epoxy polymer precursors and epoxy polymers resistant to damage by high-energy radiation
US7049600B2 (en) * 2002-09-18 2006-05-23 The Board Of Trustees Of The Leland Stanford Junior University Scintillation crystal detection arrays for radiation imaging devices
EP1562717A4 (en) * 2002-10-07 2006-12-13 Tecomet Inc Cast collimator and method for making same
EP1578552A4 (en) * 2002-12-09 2006-11-22 Tecomet Inc Densified particulate/binder composites
US6947517B2 (en) * 2003-03-03 2005-09-20 Ge Medical Systems Global Technology Company, Llc Scintillator array having a reflector with integrated air gaps
JP2008514965A (en) * 2004-09-30 2008-05-08 スタンフォード ユニバーシティ Semiconductor crystal high-resolution imaging device
DE102005035421A1 (en) * 2005-07-28 2007-02-08 Siemens Ag Moldable and curing reflector material with increased reflectivity
DE102005045594A1 (en) * 2005-09-23 2007-03-29 Siemens Ag Detector e.g. X-ray detector, manufacturing method for x-ray computer tomography device, involves manufacturing number of individual scintillator units from scintillator material, where units have dimensions of pixel and are cubic-shaped
US20080116584A1 (en) * 2006-11-21 2008-05-22 Arkalgud Sitaram Self-aligned through vias for chip stacking
US8242454B2 (en) 2008-05-30 2012-08-14 Saint-Gobain Ceramics & Plastics, Inc. Scintillator and methods of making and using same
WO2010036801A2 (en) 2008-09-26 2010-04-01 Michael Appleby Systems, devices, and/or methods for manufacturing castings
CN101561508B (en) * 2009-05-21 2012-05-23 清华大学 Crystal module for gamma ray detector, manufacturing method thereof and gamma ray detector
CN101561506B (en) * 2009-05-21 2012-05-23 清华大学 Crystal module for gamma ray detector, manufacturing method thereof and gamma ray detector
WO2012004703A2 (en) * 2010-07-06 2012-01-12 Koninklijke Philips Electronics N.V. METHOD FOR PRODUCING A SCINTILLATOR ARRAY WITH SILVER (Ag) BASED SPACERS
CN102176335A (en) * 2011-01-29 2011-09-07 江苏中惠医疗科技股份有限公司 Method for manufacturing crystal array of gamma-ray detector
US8813824B2 (en) 2011-12-06 2014-08-26 Mikro Systems, Inc. Systems, devices, and/or methods for producing holes
CN103376459B (en) * 2012-04-27 2015-12-09 上海联影医疗科技有限公司 The manufacture method of scintillant detector crystal array
CN104769455B (en) * 2012-10-24 2017-05-17 日立金属株式会社 Method for producing radiation detector
JP2016177009A (en) * 2015-03-18 2016-10-06 東芝メディカルシステムズ株式会社 Reflector, scintillator array, manufacturing method of scintillator array and radiation detector
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
CN108107063A (en) * 2017-12-15 2018-06-01 公安部第三研究所 A kind of the perspective detection device and method of so many energy
CN109991648A (en) * 2017-12-29 2019-07-09 北京一轻研究院 A method of making scintillator arrays

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041228A (en) 1956-11-26 1962-06-26 I J Mccullough Method of making luminescent screens
US4353957A (en) * 1973-09-24 1982-10-12 Tam Ceramics Inc. Ceramic matrices for electronic devices and process for forming same
JPS59154407A (en) 1983-02-22 1984-09-03 Sumitomo Electric Ind Ltd Image fiber
US4533489A (en) 1983-12-07 1985-08-06 Harshaw/Filtrol Partnership Formable light reflective compositions
JPH01257293A (en) * 1988-04-06 1989-10-13 Hitachi Medical Corp Manufacturing method of radiation detector and x-ray ct device
JPH0695504B2 (en) * 1989-10-31 1994-11-24 直江津電子工業株式会社 Wafer supply / collection device in a wafer single-wafer inner peripheral blade two-division cutting device
JPH0612768B2 (en) * 1990-05-18 1994-02-16 信越半導体株式会社 Method and apparatus for cutting single crystal ingot by inner peripheral blade slicer
JPH04122608A (en) * 1990-09-14 1992-04-23 Shin Etsu Handotai Co Ltd Method and apparatus for severing single crystal ingot by slicer with inner peripheral blade
JP2918003B2 (en) * 1991-03-20 1999-07-12 信越化学工業株式会社 Scintillator block for radiation detector
US5059800A (en) 1991-04-19 1991-10-22 General Electric Company Two dimensional mosaic scintillation detector
JPH05116138A (en) * 1991-09-30 1993-05-14 Mitsubishi Materials Corp Slicing machine
JP2930823B2 (en) 1991-12-11 1999-08-09 株式会社東芝 Detector for X-ray CT scanner and scintillator channel separator for X-ray detector
JP3332200B2 (en) 1995-11-29 2002-10-07 日立金属株式会社 Radiation detector for X-ray CT
US5866908A (en) 1996-02-20 1999-02-02 Saint-Gobain/Norton Industrial Ceramics Corporation Reflector compensation for scintillator array with low temperature expansion
DE19643644C1 (en) * 1996-10-22 1998-04-09 Siemens Ag Radiation detector array production method for high energy radiation esp. for X-ray image system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333489A (en) * 2003-04-30 2004-11-25 Ge Medical Systems Global Technology Co Llc Computerized tomography (ct) detector array having non-pixel type scintillator array
JP2016223845A (en) * 2015-05-28 2016-12-28 株式会社東芝 Radiation detector, radiation detection device, and method for manufacturing radiation detector

Also Published As

Publication number Publication date
CN1223848A (en) 1999-07-28
IL127117A (en) 2002-12-01
IL127117A0 (en) 1999-09-22
DE19838855A1 (en) 1999-05-27
DE19838855B4 (en) 2009-06-10
CN1168419C (en) 2004-09-29
JP4215320B2 (en) 2009-01-28
US6245184B1 (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP4215320B2 (en) Manufacturing method of scintillator for computer tomography apparatus
JP4215318B2 (en) Manufacturing method of scintillator for computer tomography apparatus
EP1161693B1 (en) X-ray pixel detector fabrication method
US7067814B2 (en) Radiation detector and a method of manufacturing the detector
EP0506023B1 (en) High precision single-focal-line collimator and method for manufacturing such a collimator.
US20050211906A1 (en) Radiation detector and a method of manufacturing the detector
JP2005516228A (en) Asymmetrically arranged cross-connected scintillation crystals
US20030226972A1 (en) Production method for making position-sensitive radiation detector arrays
JP2010127630A (en) Radiation detector, x-ray ct apparatus and method for manufacturing the radiation detector
US7019298B2 (en) Radiation detector and method of producing the same
US6793857B2 (en) Method for producing a one- or multidimensional detector array
JP2002207082A (en) Two-dimensional radiation detector and its production method
WO2004051312A1 (en) Radiation detector and medical image diagnosing device
JPH08233942A (en) Manufacture of radiation detector array
JP2002311142A (en) Method of manufacturing x-ray solid-state detector and x-ray ct apparatus
JP2000098040A (en) Manufacture of solid detector for ct
JPH08271637A (en) Manufacture of radiation detector array
JPH09292469A (en) Manufacture of radiation detector array
JPS6111660Y2 (en)
JP2001356174A (en) Two-dimensional radiation detector and its manufacturing method
JP2000088965A (en) Solid state detector x-ray ct system
JPH05119158A (en) Manufacture of solid detector
JPH11248843A (en) Two-dimensional array radiation detector
JPH04145667A (en) Manufacture of radiation detector
JP2000346949A (en) Manufacture of x-ray solid detector, x-ray solid detector manufactured by the same, and ct scanner apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees