JPH11231031A - Magnetic domain observing method and magnetic domain observation device - Google Patents

Magnetic domain observing method and magnetic domain observation device

Info

Publication number
JPH11231031A
JPH11231031A JP10048979A JP4897998A JPH11231031A JP H11231031 A JPH11231031 A JP H11231031A JP 10048979 A JP10048979 A JP 10048979A JP 4897998 A JP4897998 A JP 4897998A JP H11231031 A JPH11231031 A JP H11231031A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
hall element
magnetic domain
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10048979A
Other languages
Japanese (ja)
Inventor
Koichi Kitazawa
宏一 北沢
Tetsuya Hasegawa
哲也 長谷川
Tomoaki Fukumura
知昭 福村
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10048979A priority Critical patent/JPH11231031A/en
Publication of JPH11231031A publication Critical patent/JPH11231031A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To observe a micro magnetic domain by scanning the surface of a magnetic material by a Hall element with resolution in a specific range while applying the magnetic field on the magnetic material. SOLUTION: In a Hall element, a semiconductor pattern formed of GaAs/ AlGaAs heterojunction is formed on a material. An intersecting area of a current line 2 of the semiconductor pattern and a voltage detection line orthogonal to the current line 2 becomes a magnetic field detecting part which is kept within a range of about 2 μm×2 μm. The resolution of the Hall element is therefore about 2 μm×2 μm or less. In the case of the surface of a magnetic material not having enough conductivity, a conductive thin film of Au or the like is formed on the surface of the magnetic material. A probe 4 of STM is formed on the surface of the substrate near the magnetic field detecting part. A magnetic domain observation device is composed of this Hall element, a magnetic field applying means, and a temperature control means added, if necessary. The change of magnetic domain structure consequent to the magnetic field fluctuation of the magnetic material surface can therefore be observed at real time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強い磁場中におい
て磁性体表面の磁区構造を観察することが可能な磁区観
察方法およびこの方法に用いる磁区観察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic domain observing method capable of observing a magnetic domain structure on a magnetic material surface in a strong magnetic field, and a magnetic domain observing apparatus used in the method.

【0002】[0002]

【従来の技術】磁性体の磁区構造は、磁性体表面に存在
する磁区の構造から知ることができる。磁性体の性質を
詳細に調べるためには、磁場による磁区構造の変化を知
ることが重要である。例えば、フェライト焼結磁石の磁
化反転のメカニズムを調べるためには、逆磁区の成長や
磁化の回転を知る必要がある。磁場印加の前後において
磁区構造を比較することにより、逆磁区成長や磁化回転
について推定することも可能であるが、より正確な情報
を得るためには、磁場強度の変化に伴う磁区構造の変化
をリアルタイムで調べることが好ましい。しかし、従
来、フェライト焼結磁石の磁区などの微小磁区の構造変
化を、磁場中で調べる提案はなされていない。
2. Description of the Related Art The magnetic domain structure of a magnetic material can be known from the structure of magnetic domains existing on the surface of the magnetic material. In order to investigate the properties of the magnetic material in detail, it is important to know the change in the magnetic domain structure due to the magnetic field. For example, in order to investigate the mechanism of magnetization reversal of a sintered ferrite magnet, it is necessary to know the growth of reverse magnetic domains and the rotation of magnetization. By comparing the magnetic domain structure before and after applying a magnetic field, it is possible to estimate the reverse domain growth and magnetization rotation.However, in order to obtain more accurate information, the change in the magnetic domain structure due to the change in the magnetic field strength must be determined. It is preferable to check in real time. However, no proposal has been made so far for examining a structural change of a minute magnetic domain such as a magnetic domain of a sintered ferrite magnet in a magnetic field.

【0003】従来、磁区観察には、ビッター法、磁気光
学顕微鏡、電子線、磁気力顕微鏡など利用されている。
しかし、ビッター法および磁気光学顕微鏡は、微小磁区
を観察するためには分解能が不十分である。また、電子
線による観察では、磁場が電子線に影響を与えるため、
磁場中での使用が難しい。また、磁気力顕微鏡では、磁
性体からなる探針を走査させる必要があり、この探針が
磁場の影響を受けるので、磁場中での使用が難しい。
Conventionally, for domain observation, a bitter method, a magneto-optical microscope, an electron beam, a magnetic force microscope, and the like have been used.
However, the bitter method and the magneto-optical microscope have insufficient resolution for observing minute magnetic domains. Also, in electron beam observation, the magnetic field affects the electron beam,
Difficult to use in a magnetic field. Further, in a magnetic force microscope, it is necessary to scan a probe made of a magnetic material, and since the probe is affected by a magnetic field, it is difficult to use the probe in a magnetic field.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、強力
な磁場中において、磁性体表面に存在する微小な磁区の
観察を可能とすることである。
SUMMARY OF THE INVENTION An object of the present invention is to enable observation of minute magnetic domains existing on the surface of a magnetic material in a strong magnetic field.

【0005】[0005]

【課題を解決するための手段】このような目的は、下記
(1)〜(7)のいずれかの構成により達成される。 (1) 磁性体に磁場を印加しながら、分解能が2μm
×2μm以下であるホール素子で前記磁性体表面を走査
することにより、前記磁性体表面の磁区の構造を観察す
る磁区観察方法。 (2) 前記磁場の強度が0.1T以上である上記
(1)の磁区観察方法。 (3) 前記磁性体の温度を制御しながら磁区を観察す
る上記(1)または(2)の磁区観察方法。 (4) 前記磁性体の表面と前記ホール素子の磁場検出
部との距離を一定に保ちながら磁区を観察する上記
(1)〜(3)のいずれかの磁区観察方法。 (5) 前記ホール素子の磁場検出部の近傍に、走査型
探針顕微鏡の探針を形成し、磁区観察と同時に前記磁性
体の表面形状の観察を行う上記(1)〜(4)のいずれ
かの磁区観察方法。 (6) 分解能が2μm×2μm以下であるホール素子
と、磁場印加手段とを有する磁区観察装置。 (7) 温度制御手段を有する上記(6)の磁区観察装
置。
This and other objects are achieved by any one of the following constitutions (1) to (7). (1) Resolution is 2 μm while applying a magnetic field to a magnetic material
A magnetic domain observation method for observing the structure of magnetic domains on the surface of the magnetic material by scanning the surface of the magnetic material with a Hall element having a size of × 2 μm or less. (2) The magnetic domain observation method according to the above (1), wherein the intensity of the magnetic field is 0.1 T or more. (3) The magnetic domain observation method according to the above (1) or (2), wherein the magnetic domain is observed while controlling the temperature of the magnetic body. (4) The magnetic domain observation method according to any one of (1) to (3), wherein the magnetic domain is observed while maintaining a constant distance between the surface of the magnetic body and the magnetic field detection unit of the Hall element. (5) Any of the above (1) to (4), wherein a probe of a scanning probe microscope is formed in the vicinity of the magnetic field detecting section of the Hall element, and the surface shape of the magnetic body is observed simultaneously with the observation of the magnetic domains. How to observe the magnetic domain. (6) A magnetic domain observation device including a Hall element having a resolution of 2 μm × 2 μm or less and a magnetic field applying unit. (7) The magnetic domain observation device according to (6), further comprising a temperature control means.

【0006】[0006]

【発明の実施の形態】本発明では、磁区観察の際の空間
分解能を高くするために、磁場検出部の寸法が極めて小
さいホール素子を用いる。ホール素子は、強力な磁場
中、例えば1T以上の磁場中であっても、磁場の影響を
受けることなく磁区観察が可能である。また、ホール素
子は、磁性体に印加する外部磁場の強度を正確に測定で
きるので、磁性体表面の磁束密度分布を正確に知ること
ができる。したがって本発明では、強力な磁場中におい
て磁性体表面の微小磁区の構造を調べることができ、磁
場の変動に伴う磁区の変化を動的に知ることができる。
また、磁性体の温度を制御しながら磁区を観察すれば、
温度変化に伴う磁区の変化を動的に知ることができる。
なお、印加する磁場の強度は、観察対象となる磁性体に
種類に応じて適宜決定すればよいが、通常、0.1T以
上とする。また、印加磁場強度の上限は特にないが、通
常、10T程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a Hall element having a very small size of a magnetic field detecting section is used in order to increase the spatial resolution in observing a magnetic domain. The Hall element can observe magnetic domains without being affected by a magnetic field even in a strong magnetic field, for example, a magnetic field of 1 T or more. Further, since the Hall element can accurately measure the intensity of the external magnetic field applied to the magnetic body, the magnetic flux density distribution on the surface of the magnetic body can be accurately known. Therefore, according to the present invention, it is possible to examine the structure of the minute magnetic domains on the surface of the magnetic body in a strong magnetic field, and to dynamically know the change of the magnetic domains due to the fluctuation of the magnetic field.
Also, if you observe the magnetic domains while controlling the temperature of the magnetic material,
It is possible to dynamically know the change of the magnetic domain due to the temperature change.
The strength of the applied magnetic field may be appropriately determined according to the type of the magnetic substance to be observed, but is usually 0.1 T or more. The upper limit of the applied magnetic field strength is not particularly limited, but is usually about 10T.

【0007】磁性体表面の磁束密度分布を正確に測定す
るためには、ホール素子の磁場検出部を磁性体表面から
一定距離に保つ必要がある。このための手段としては、
例えば走査型トンネル顕微鏡(STM)や原子間力顕微
鏡(AFM)などの走査型探針顕微鏡が利用できる。磁
場検出部近傍に走査型探針顕微鏡の探針を設けたホール
素子を用いれば、磁性体の磁区像を得る際に同時に表面
像を得ることができる。
In order to accurately measure the magnetic flux density distribution on the surface of the magnetic material, it is necessary to keep the magnetic field detector of the Hall element at a fixed distance from the surface of the magnetic material. As a means for this,
For example, a scanning probe microscope such as a scanning tunnel microscope (STM) and an atomic force microscope (AFM) can be used. If a Hall element provided with a probe of a scanning probe microscope near the magnetic field detecting unit is used, a surface image can be obtained at the same time as obtaining a magnetic domain image of a magnetic body.

【0008】図1は、本発明で用いるホール素子の構成
例の主要部を示す走査型電子顕微鏡写真のトレース図で
ある。このホール素子は、基板上にGaAs/AlGa
Asヘテロ接合からなる半導体パターンを形成したもの
である。この半導体パターンは、電流線2と、これと直
交する電圧検出線3とを含み、両者が交差する領域が磁
場検出部となっている。磁場検出部近傍の基板表面に
は、STMの探針4を形成してある。この探針は、ヘテ
ロ接合上に蒸着によりAu膜を形成し、このAu膜に電
子線を照射して、不純物として含まれるカーボンを析出
させることにより形成したものである。この構造のホー
ル素子については、第43回応用物理学関係連合講演会
講演予稿集 p.441に記載されている。
FIG. 1 is a trace diagram of a scanning electron microscope photograph showing a main part of a configuration example of a Hall element used in the present invention. This Hall element has GaAs / AlGa on a substrate.
A semiconductor pattern composed of an As hetero junction is formed. This semiconductor pattern includes a current line 2 and a voltage detection line 3 orthogonal to the current line 2, and a region where the two intersect is a magnetic field detection unit. An STM probe 4 is formed on the surface of the substrate near the magnetic field detecting section. This probe is formed by forming an Au film on the heterojunction by vapor deposition, irradiating the Au film with an electron beam to precipitate carbon contained as an impurity. The Hall element with this structure is described in the 43rd Annual Meeting of the Japan Society of Applied Physics, p.441.

【0009】本発明では、ホール素子の磁場検出部を、
2μm×2μmの範囲に収まる寸法とする。ホール素子の
分解能は、磁場検出部の寸法と同程度となる。
According to the present invention, the magnetic field detector of the Hall element
The dimensions should be within the range of 2 μm × 2 μm. The resolution of the Hall element is about the same as the size of the magnetic field detection unit.

【0010】磁区観察の際に同時にSTMによる表面観
察を行う場合には、磁性体表面が導電性である必要があ
る。磁性体表面が十分な導電性をもたない場合には、磁
性体表面にAu等からなる導電性薄膜を形成しておけば
よい。
When the surface observation by the STM is performed at the same time as the magnetic domain observation, the surface of the magnetic material needs to be conductive. If the magnetic material surface does not have sufficient conductivity, a conductive thin film made of Au or the like may be formed on the magnetic material surface.

【0011】本発明の磁区観察装置は、上記分解能を有
するホール素子と、磁場印加手段とを有し、さらに、必
要に応じ温度制御手段を有する。磁場印加手段の構成は
特に限定されず、永久磁石や電磁石等を用いて、好まし
くは印加磁場強度が変更可能なように構成する。また、
ヒータおよび/またはクーラーを有する温度制御手段を
設ければ、温度変化に伴う磁区変化をリアルタイムで観
察することが可能となる。
The magnetic domain observation device of the present invention has a Hall element having the above resolution, a magnetic field applying means, and further has a temperature control means as required. The configuration of the magnetic field applying means is not particularly limited, and is preferably configured using a permanent magnet, an electromagnet, or the like so that the intensity of the applied magnetic field can be changed. Also,
If a temperature control unit having a heater and / or a cooler is provided, it becomes possible to observe a magnetic domain change accompanying a temperature change in real time.

【0012】本発明は、各種磁性体の磁区構造の観察に
利用することができる。観察対象として好ましい磁性体
としては、例えば、フェライト焼結磁石やフェライト軟
磁性材料等の酸化物磁性材料、金属磁性材料、有機磁性
材料などが挙げられる。
The present invention can be used for observing the magnetic domain structure of various magnetic materials. Preferred examples of the magnetic substance to be observed include an oxide magnetic material such as a ferrite sintered magnet and a ferrite soft magnetic material, a metal magnetic material, and an organic magnetic material.

【0013】[0013]

【実施例】図1に示す構造のホール素子を作製した。こ
のホール素子は、前述したようにGaAs/AlGaA
sヘテロ接合からなる半導体パターンを有し、磁場検出
部近傍にSTM探針を設けたものである。磁場検出部の
寸法は、0.5μm×0.5μmとした。
EXAMPLE A Hall element having the structure shown in FIG. 1 was manufactured. This Hall element is made of GaAs / AlGaAs as described above.
It has a semiconductor pattern composed of an s heterojunction and has an STM probe provided near a magnetic field detection unit. The dimensions of the magnetic field detector were 0.5 μm × 0.5 μm.

【0014】このホール素子を用いて、フェライト焼結
磁石表面の磁区像を観察した。なお、この観察に先だっ
て、フェライト焼結磁石表面には厚さ100nmのAu薄
膜を形成した。図2および図3に、磁場を印加しないと
き、および紙面に垂直な方向に0.2Tの磁場を印加し
たときのホール素子による磁区像をそれぞれ示す。な
お、図2および図3は、一辺が50μmの領域を示して
いる。また、このフェライト焼結磁石は、平均結晶粒径
が約10μmのものである。
Using this Hall element, a magnetic domain image on the surface of the sintered ferrite magnet was observed. Prior to this observation, an Au thin film having a thickness of 100 nm was formed on the surface of the sintered ferrite magnet. FIGS. 2 and 3 show magnetic domain images by the Hall element when no magnetic field is applied and when a magnetic field of 0.2 T is applied in a direction perpendicular to the plane of the paper, respectively. FIGS. 2 and 3 show a region having a side of 50 μm. This ferrite sintered magnet has an average crystal grain size of about 10 μm.

【0015】図2と図3とを比較すると、磁区の様子が
大きく異なることがわかる。すなわち、本発明により、
磁場印加時の磁性体の磁区構造変化が明瞭にとらえられ
ることがわかる。
A comparison between FIG. 2 and FIG. 3 shows that the state of the magnetic domains is significantly different. That is, according to the present invention,
It can be seen that a change in the magnetic domain structure of the magnetic material when a magnetic field is applied is clearly captured.

【0016】[0016]

【発明の効果】本発明によれば、印加されている磁場の
変動に伴う磁性体表面の磁区構造の変化を、リアルタイ
ムで知ることが可能となる。
According to the present invention, it is possible to know in real time a change in the magnetic domain structure on the surface of the magnetic material due to a change in the applied magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いるホール素子の主要部を示す走査
型電子顕微鏡写真のトレース図である。
FIG. 1 is a trace diagram of a scanning electron micrograph showing a main part of a Hall element used in the present invention.

【図2】粒子構造を表す図面代用写真であって、図1に
示す構造のホール素子により得られた、磁場を印加しな
いときのフェライト焼結磁石表面の磁区像である。
FIG. 2 is a drawing substitute photograph showing a particle structure, and is a magnetic domain image of a surface of a sintered ferrite magnet when a magnetic field is not applied, obtained by a Hall element having a structure shown in FIG.

【図3】粒子構造を表す図面代用写真であって、図1に
示す構造のホール素子により得られた、磁場印加時のフ
ェライト焼結磁石表面の磁区像である。
FIG. 3 is a drawing substitute photograph showing a particle structure, and is a magnetic domain image of a ferrite sintered magnet surface when a magnetic field is applied, obtained by a Hall element having the structure shown in FIG.

【符号の説明】[Explanation of symbols]

2 電流線 3 電圧検出線 4 探針 2 Current line 3 Voltage detection line 4 Probe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 準 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Jun Nakagawa 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁性体に磁場を印加しながら、分解能が
2μm×2μm以下であるホール素子で前記磁性体表面を
走査することにより、前記磁性体表面の磁区の構造を観
察する磁区観察方法。
1. A magnetic domain observation method for observing the structure of magnetic domains on the surface of a magnetic body by scanning the surface of the magnetic body with a Hall element having a resolution of 2 μm × 2 μm or less while applying a magnetic field to the magnetic body.
【請求項2】 前記磁場の強度が0.1T以上である請
求項1の磁区観察方法。
2. The magnetic domain observation method according to claim 1, wherein the intensity of the magnetic field is 0.1 T or more.
【請求項3】 前記磁性体の温度を制御しながら磁区を
観察する請求項1または2の磁区観察方法。
3. The magnetic domain observation method according to claim 1, wherein the magnetic domains are observed while controlling the temperature of the magnetic body.
【請求項4】 前記磁性体の表面と前記ホール素子の磁
場検出部との距離を一定に保ちながら磁区を観察する請
求項1〜3のいずれかの磁区観察方法。
4. The magnetic domain observation method according to claim 1, wherein the magnetic domain is observed while keeping a constant distance between the surface of the magnetic body and the magnetic field detection unit of the Hall element.
【請求項5】 前記ホール素子の磁場検出部の近傍に、
走査型探針顕微鏡の探針を形成し、磁区観察と同時に前
記磁性体の表面形状の観察を行う請求項1〜4のいずれ
かの磁区観察方法。
5. In the vicinity of a magnetic field detecting section of the Hall element,
The magnetic domain observation method according to any one of claims 1 to 4, wherein a probe of a scanning probe microscope is formed, and the surface shape of the magnetic body is observed simultaneously with the magnetic domain observation.
【請求項6】 分解能が2μm×2μm以下であるホール
素子と、磁場印加手段とを有する磁区観察装置。
6. A magnetic domain observation device comprising a Hall element having a resolution of 2 μm × 2 μm or less and a magnetic field applying means.
【請求項7】 温度制御手段を有する請求項6の磁区観
察装置。
7. The magnetic domain observation device according to claim 6, further comprising temperature control means.
JP10048979A 1998-02-13 1998-02-13 Magnetic domain observing method and magnetic domain observation device Withdrawn JPH11231031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10048979A JPH11231031A (en) 1998-02-13 1998-02-13 Magnetic domain observing method and magnetic domain observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10048979A JPH11231031A (en) 1998-02-13 1998-02-13 Magnetic domain observing method and magnetic domain observation device

Publications (1)

Publication Number Publication Date
JPH11231031A true JPH11231031A (en) 1999-08-27

Family

ID=12818379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10048979A Withdrawn JPH11231031A (en) 1998-02-13 1998-02-13 Magnetic domain observing method and magnetic domain observation device

Country Status (1)

Country Link
JP (1) JPH11231031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242701A (en) * 2005-03-02 2006-09-14 Mie Univ Inspection method and device of material containing magnetic substance
JP2008128664A (en) * 2006-11-16 2008-06-05 Fujitsu Ltd Magnetic domain observation method, magnetic domain observation device, and magnetic domain observation program
JP2008216045A (en) * 2007-03-05 2008-09-18 Nippon Steel Corp Method and apparatus for observing surface properties of magnetic band
JP2013089805A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Method for inspecting permanent magnet
CN105300859A (en) * 2015-12-03 2016-02-03 武汉钢铁(集团)公司 Device for rapidly measuring grain size and magnetic domain wall width of oriented silicon steel sheet
CN109187125A (en) * 2018-09-03 2019-01-11 广东工业大学 The preparation and ferrite closeness quantitative analysis method of SUS304 weld seam metallographic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242701A (en) * 2005-03-02 2006-09-14 Mie Univ Inspection method and device of material containing magnetic substance
JP4660751B2 (en) * 2005-03-02 2011-03-30 国立大学法人三重大学 Method and apparatus for inspecting material containing magnetic material
JP2008128664A (en) * 2006-11-16 2008-06-05 Fujitsu Ltd Magnetic domain observation method, magnetic domain observation device, and magnetic domain observation program
JP2008216045A (en) * 2007-03-05 2008-09-18 Nippon Steel Corp Method and apparatus for observing surface properties of magnetic band
JP2013089805A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Method for inspecting permanent magnet
CN105300859A (en) * 2015-12-03 2016-02-03 武汉钢铁(集团)公司 Device for rapidly measuring grain size and magnetic domain wall width of oriented silicon steel sheet
CN109187125A (en) * 2018-09-03 2019-01-11 广东工业大学 The preparation and ferrite closeness quantitative analysis method of SUS304 weld seam metallographic

Similar Documents

Publication Publication Date Title
US5331589A (en) Magnetic STM with a non-magnetic tip
Kazakova et al. Frontiers of magnetic force microscopy
Sandhu et al. 50 nm Hall sensors for room temperature scanning Hall probe microscopy
Oral et al. Real-time scanning Hall probe microscopy
EP0355241A1 (en) Spin-polarized scanning tunneling microscope
Wyss et al. Magnetic, thermal, and topographic imaging with a nanometer-scale SQUID-on-lever scanning probe
Sandhu et al. Room temperature scanning Hall probe microscopy using GaAs/AlGaAs and Bi micro-hall probes
JPH11231031A (en) Magnetic domain observing method and magnetic domain observation device
Oral et al. Room-temperature scanning Hall probe microscope (RT-SHPM) imaging of garnet films using new high-performance InSb sensors
JP3210961B2 (en) Measuring device for exchange interaction force
Sandhu et al. Bismuth nano-Hall probes fabricated by focused ion beam milling for direct magnetic imaging by room temperature scanning Hall probe microscopy
Sandhu et al. Room temperature sub-micron magnetic imaging by scanning Hall probe microscopy
Primadani et al. High temperature scanning Hall probe microscopy using AlGaN∕ GaN two dimensional electron gas micro-Hall probes
Sandhu et al. Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning Hall probe microscopy using a bismuth micro-Hall probe
Unguris 6. Scanning electron microscopy with polarization analysis (SEMPA) and its applications
Pross et al. Second-generation quantum-well sensors for room-temperature scanning Hall probe microscopy
Konings et al. Magnetic domain pinning in an anisotropy-engineered GdTbFe thin film
Sandhu et al. Room temperature magnetic imaging of magnetic storage media and garnet epilayers in the presence of external magnetic fields using a sub-micron GaAs SHPM
Rastei et al. Field-dependent behavior of a magnetic force microscopy tip probed by means of high coercive nanomagnets
Corte-León et al. Magnetic scanning gate microscopy of CoFeB lateral spin valve
US6476386B1 (en) Method and device for tunnel microscopy
Stickler et al. Integrated setup for the fabrication and measurement of magnetoresistive nanoconstrictions in ultrahigh vacuum
Sandhu et al. Room temperature scanning Hall probe microscopy of localized magnetic field fluctuations on the surfaces of magnetic recording media, permanent magnets and crystalline garnet films in external bias fields
Schoenmaker et al. Magnetic characterization of microscopic particles by MO‐SNOM
JPH1040676A (en) Magnetic recording medium and its using method and magnetic recording device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040526

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510