JP2013089805A - Method for inspecting permanent magnet - Google Patents

Method for inspecting permanent magnet Download PDF

Info

Publication number
JP2013089805A
JP2013089805A JP2011229745A JP2011229745A JP2013089805A JP 2013089805 A JP2013089805 A JP 2013089805A JP 2011229745 A JP2011229745 A JP 2011229745A JP 2011229745 A JP2011229745 A JP 2011229745A JP 2013089805 A JP2013089805 A JP 2013089805A
Authority
JP
Japan
Prior art keywords
magnetic domain
magnetic
permanent magnet
coercive force
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229745A
Other languages
Japanese (ja)
Inventor
信明 ▲高▼澤
Nobuaki Takazawa
Takeshi Nogiwa
剛 野際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011229745A priority Critical patent/JP2013089805A/en
Publication of JP2013089805A publication Critical patent/JP2013089805A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting a permanent magnet, capable of detecting the presence or absence of a low coercive force portion in a crystal grain unit in order to evaluate coercive force stability of the permanent magnet.SOLUTION: A method for inspecting a permanent magnet includes simultaneously observing a crystal grain boundary in an AFM image and a magnetic domain in an MFM image for the same visual field by using a magnetic force microscope to determine the presence or absence of a low coercive force portion in a crystal grain unit on the basis of a magnetic domain shielding rate=[A/(A+B)]×100 (%), as a rate of the grain boundary shielding the magnetic domain, measured from a length A of the grain boundary shielding the magnetic domain, and a length B of the grain boundary not shielding the magnetic domain.

Description

本発明は、永久磁石の保磁力安定性を評価するための検査方法に関する。   The present invention relates to an inspection method for evaluating the coercive force stability of a permanent magnet.

永久磁石は大きな磁束密度と保磁力を有することが必要である。特に、ネオジム磁石(NdFe14B)で代表される希土類磁石は、磁束密度が高く極めて強力な永久磁石として種々の用途に用いられている。その保磁力を高めるために、ジスプロシウム(Dy)が添加される。Dyは結晶粒界近傍のNdの一部と置換して、保磁力を高める。しかしDyは希少な希土類元素であり高価なため、できるだけその使用量を少なくすることが必要である。そこで、微量のジスプロシウム(Dy)を添加し、拡散処理により結晶粒界にDyを濃化させたDy拡散磁石が知られている。 The permanent magnet needs to have a large magnetic flux density and a coercive force. In particular, rare earth magnets typified by neodymium magnets (Nd 2 Fe 14 B) are used for various applications as extremely strong permanent magnets with high magnetic flux density. In order to increase the coercive force, dysprosium (Dy) is added. Dy replaces part of Nd in the vicinity of the crystal grain boundary to increase the coercive force. However, since Dy is a rare rare earth element and expensive, it is necessary to reduce the amount of use as much as possible. Therefore, a Dy diffusion magnet is known in which a small amount of dysprosium (Dy) is added and Dy is concentrated at the grain boundaries by diffusion treatment.

このDy拡散磁石は、全体として保磁力が高くても、局所的に低保磁力の部位があれば、長期に亘る使用中に、低保磁力部位から磁化が変化して、全体としての保磁力が低下するという問題があった。   Even if this Dy diffusion magnet has a high coercive force as a whole, if there is a portion having a low coercive force locally, the magnetization changes from the low coercive force portion during long-term use, and the coercive force as a whole. There was a problem that decreased.

磁石全体を仮に1mm角程度の小さくな分割片として磁気測定し、全ての分割片について所定の保磁力を有したからといっても、分割片内で長期使用中に磁化の変化を生じる低保磁力部位が存在する可能性がある。   Even if the entire magnet is magnetically measured as small pieces of about 1 mm square, and all the pieces have a predetermined coercive force, the low-maintenance that causes a change in magnetization during long-term use in the pieces. There may be a magnetic site.

1mm角程度の分割片は多数の結晶粒(数μm程度)で構成される。添加されたDyは結晶粒界近傍の結晶粒内に分布する。よって拡散磁石における保磁力発現単位は結晶粒である。そのため、長期使用中の保磁力低下の原因となる低保磁力部位の有無を、結晶粒単位でチェックする必要がある。   A divided piece of about 1 mm square is composed of a large number of crystal grains (about several μm). The added Dy is distributed in the crystal grains near the crystal grain boundary. Therefore, the coercive force expression unit in the diffusion magnet is a crystal grain. Therefore, it is necessary to check the presence or absence of a low coercive force site that causes a decrease in coercive force during long-term use on a crystal grain basis.

特許文献1には、永久磁石の着磁状態判定方法および装置として、マグネティックビュアに映し出された無着磁領域像を撮影し、撮影された画像を画像処理してボイスコイルモータ用永久磁石の着磁状態の良否を判定することが開示されている。この方法では、結晶粒単位で低保磁力部位の有無をチェックすることはできない。   In Patent Document 1, as a method and apparatus for determining the magnetization state of a permanent magnet, a non-magnetized region image projected on a magnetic viewer is photographed, and the photographed image is processed to image a permanent magnet for a voice coil motor. It is disclosed that the quality of the magnetic state is determined. With this method, it is not possible to check for the presence or absence of a low coercive force site on a crystal grain basis.

特許文献2、3には、磁気デバイス検査装置および検査方法として、磁性体探針または磁性体を塗布した探針を持つカンチレバーとレバー先端変位検出手段とにより、発生する磁気分布を測定する方法が開示されている。   In Patent Documents 2 and 3, as a magnetic device inspection apparatus and inspection method, there is a method of measuring a magnetic distribution generated by a cantilever having a magnetic probe or a probe coated with a magnetic substance and lever tip displacement detection means. It is disclosed.

特許文献4には、希土類焼結磁石およびその製造方法として、R2Fe14B型結晶構造を有する化合物からなる主相と主相の粒界部分に位置する粒界相とからなり、粒界相は非晶質層部分と非磁性結晶層部分とから構成された逆磁区の発生を抑制することが開示されている。   In Patent Document 4, as a rare earth sintered magnet and a method for producing the same, a main phase composed of a compound having an R2Fe14B type crystal structure and a grain boundary phase located at a grain boundary portion of the main phase are formed, and the grain boundary phase is amorphous. It is disclosed to suppress the occurrence of reverse magnetic domains composed of a magnetic layer portion and a nonmagnetic crystal layer portion.

しかし、特許文献2〜3に開示された技術では、結晶粒単位で低保磁力部位の有無をチェックすることはできない。   However, the techniques disclosed in Patent Documents 2 and 3 cannot check the presence or absence of a low coercive force site in units of crystal grains.

そこで、結晶粒単位で低保磁力部位の有無を検出する方法が求められていた。   Therefore, there has been a demand for a method for detecting the presence or absence of a low coercive force site in units of crystal grains.

特開2008−058054号公報JP 2008-058054 A 特開2004−347435号公報JP 2004-347435 A 特開2010−175534号公報JP 2010-175534 A 特開2004−111481号公報JP 2004-111481 A

本発明は、結晶粒単位で低保磁力部位の有無を検出できる永久磁石の検査方法を提供することを目的とする。   An object of this invention is to provide the inspection method of the permanent magnet which can detect the presence or absence of a low coercive force site | part in a crystal grain unit.

上記の目的を達成するために、本発明によれば、磁気力顕微鏡により同一視野について同時に結晶粒界と磁区とを観察し、粒界が磁区を遮断する割合に基づき、結晶粒単位で低保磁力部位の有無を判断することを特徴とする永久磁石の検査方法が提供される。   In order to achieve the above object, according to the present invention, a crystal grain boundary and a magnetic domain are observed at the same time for the same field of view with a magnetic force microscope, and a low level is maintained for each crystal grain based on the ratio of the grain boundary blocking the magnetic domain. A method for inspecting a permanent magnet is provided, wherein the presence or absence of a magnetic part is determined.

本発明によれば、磁気力顕微鏡により同一視野について同時に結晶粒界と磁区とを観察し、粒界が磁区を遮断する割合に基づき、結晶粒単位で低保磁力部位の有無を判断するので、結晶粒単位で長期の使用中に磁化変化を生じるか否かを検査できる。   According to the present invention, the grain boundary and the magnetic domain are observed simultaneously for the same field of view by the magnetic force microscope, and based on the ratio of the grain boundary blocking the magnetic domain, it is determined whether or not there is a low coercive force site on a crystal grain basis. It is possible to inspect whether or not a magnetization change occurs during long-term use on a crystal grain basis.

図1は、磁気力顕微鏡(MFM)により同時観察される原子間力顕微鏡像(AFM像)と磁気力顕微鏡像(MFM像)およびこれらの観察像から求まる結晶粒界が磁区を遮断する領域を示す模式図である。FIG. 1 shows an atomic force microscope image (AFM image) and a magnetic force microscope image (MFM image) that are simultaneously observed by a magnetic force microscope (MFM), and regions where crystal grain boundaries obtained from these observed images block magnetic domains. It is a schematic diagram shown. 図2は、実施例において求めた保磁力と粒界磁区遮断率との相関を示すグラフである。FIG. 2 is a graph showing the correlation between the coercive force and the grain boundary magnetic domain cutoff rate obtained in the examples. 図3は、図2にプロットした保磁力の異なる種々の試料の磁気力顕微鏡による観察画像を示す。FIG. 3 shows observation images of various samples having different coercive forces plotted in FIG. 2 using a magnetic force microscope.

本発明は、磁気力顕微鏡(MFM)により、原子間力顕微鏡像(AFM像)と磁気力顕微鏡像(MFM像)とが同時観察できることを利用している。図1を参照して説明する。   The present invention utilizes the fact that an atomic force microscope image (AFM image) and a magnetic force microscope image (MFM image) can be simultaneously observed by a magnetic force microscope (MFM). A description will be given with reference to FIG.

磁気力顕微鏡(MFM)を用いることで、同一観察視野について、図1(1)に示すAFM像と図1(2)に示すMFM像とを同時に観察できる。AFM像とMFM像との重ね合わせから、図1(3)に示すように結晶粒界が磁区を遮断する領域が求まる。複数個(N個:N=5〜10程度)の観察領域について下式で粒界磁区遮断率(あるいは磁区遮断率)を算出する。   By using a magnetic force microscope (MFM), the AFM image shown in FIG. 1 (1) and the MFM image shown in FIG. 1 (2) can be observed simultaneously for the same observation field. From the superposition of the AFM image and the MFM image, a region where the crystal grain boundary blocks the magnetic domain is obtained as shown in FIG. The grain boundary magnetic domain cutoff rate (or magnetic domain cutoff rate) is calculated by the following equation for a plurality (N: N = about 5 to 10) of observation regions.

磁区遮断率(%)=〔磁区遮断する粒界長さ(A)/全粒界長さ(A+B)〕×100
実施例で詳述するように、検査対象とする製造ロットについて予め保磁力と磁区遮断率との関係を求めておき、複数個の観察領域全てについて所定の保磁力が得られる磁区遮断率の下限値以上であれば良品とし、下限値未満であれば不良品とする。
Magnetic domain cutoff rate (%) = [grain boundary length for magnetic domain cutoff (A) / total grain boundary length (A + B)] × 100
As described in detail in the examples, the relationship between the coercive force and the magnetic domain cutoff rate is obtained in advance for the production lot to be inspected, and the lower limit of the magnetic domain cutoff rate at which a predetermined coercive force is obtained for all of the plurality of observation regions. If the value is equal to or greater than the value, it is regarded as a non-defective product.

Nd−Fe−Bベース組成にDy4.5%を添加し、拡散処理した希土類磁石(結晶粒径:2〜10μm)について、下記の手順および条件で保磁力および磁区遮断率を測定した。   For a rare earth magnet (crystal grain size: 2 to 10 μm) subjected to diffusion treatment by adding Dy 4.5% to the Nd—Fe—B base composition, the coercive force and magnetic domain cutoff rate were measured according to the following procedure and conditions.

同一ロットで種々の保磁力および磁区遮断率を得るために、磁化後に250℃にて1000Hまでの耐久処理を行なった。   In order to obtain various coercive forces and magnetic domain block rates in the same lot, durability treatment up to 1000H was performed at 250 ° C. after magnetization.

<保磁力測定>
種々の時間に亘り耐久処理した試料について、VSMにて保磁力測定した。
<Coercivity measurement>
The coercive force was measured with a VSM for samples that had been endured for various times.

<磁気力顕微鏡(MFM)観察>
保磁力測定後に、試料の観察対象表面について、機械研磨および必要に応じてナイタルエッチングにより、結晶粒界を現出させた後、磁気力顕微鏡(MFM)観察を行なった。観察視野は10μm角であった。
<Magnetic force microscope (MFM) observation>
After the coercive force measurement, the surface of the sample to be observed was exposed to a magnetic force microscope (MFM) after revealing crystal grain boundaries by mechanical polishing and, if necessary, by night etching. The observation visual field was 10 μm square.

AFM像で粒界を確認し、MFM像で磁区を確認しながら磁区を遮断する粒界の長さ(A)と、遮断しない粒界の長さ(B)を測定する。対象とした磁区は、アスペクト比の大きい線状の磁区とした。粒界長さの測定は、撮影画像(写真)上で手作業で行なった。ただし、機械的に画像解析することもできる。   The grain boundary is confirmed by the AFM image, and the length (A) of the grain boundary that blocks the magnetic domain and the length (B) of the grain boundary that is not blocked are measured while confirming the magnetic domain by the MFM image. The target magnetic domain was a linear magnetic domain having a large aspect ratio. The grain boundary length was measured manually on the photographed image (photograph). However, image analysis can also be performed mechanically.

測定したA、Bの値から、磁区遮断率〔A/(A+B)〕×100(%)を算出した。   From the measured values of A and B, the magnetic domain cutoff rate [A / (A + B)] × 100 (%) was calculated.

結果を図2および表1に示す。各耐久時間についてそれぞれ2試料を測定した。   The results are shown in FIG. Two samples were measured for each durability time.

耐久時間ゼロ(耐久処理なし)の初期状態から耐久時間1000Hまでの範囲で、保磁力26.0kOeから23.0kOe、磁区遮断率97%および98%から81%および84%までの範囲の変化が得られた。図2に示すように、保磁力と磁区遮断率との間には明瞭な相関関係が認められる。   In the range from the endurance time zero (no endurance treatment) to the endurance time 1000H, the coercive force 26.0 kOe to 23.0 kOe, the magnetic domain cutoff rate 97% and 98% to 81% and 84% range change Obtained. As shown in FIG. 2, a clear correlation is recognized between the coercive force and the magnetic domain cutoff rate.

図3に、(1)初期状態(磁区遮断率:97%)、(2)耐久250℃×214H後(磁区遮断率:82%)、(3)耐久250℃×1000H後(磁区遮断率:81%)のAFM−MAM像を示す。各図において、粒界が磁区を遮断している領域を○で囲んで示した。   FIG. 3 shows (1) initial state (magnetic domain cutoff rate: 97%), (2) after durability 250 ° C. × 214H (magnetic domain cutoff rate: 82%), and (3) after durability 250 ° C. × 1000 H (magnetic domain cutoff rate: 81%) AFM-MAM image. In each figure, the region where the grain boundary blocks the magnetic domain is surrounded by a circle.

本発明の方法によれば、図2の相関関係を利用して、例えば磁区遮断率の合格ラインを95%と設定して管理すれば、26.9kOe以上の保磁力が確保できると推定できる。   According to the method of the present invention, it can be estimated that a coercive force of 26.9 kOe or more can be secured by using the correlation shown in FIG.

なお、Nd−Fe−B系のDy拡散磁石について実施例を説明したが、本発明の適用対象はこれに限定する必要はない。磁気力顕微鏡(MFM)により結晶粒界と磁区が観察可能な磁石材料であれば本発明を適用することができる。   In addition, although the Example was described about the Nd-Fe-B type Dy diffusion magnet, the application object of this invention does not need to be limited to this. The present invention can be applied to any magnetic material capable of observing crystal grain boundaries and magnetic domains with a magnetic force microscope (MFM).

本発明によれば、結晶粒単位で低保磁力部位の有無を検出できる永久磁石の検査方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the inspection method of the permanent magnet which can detect the presence or absence of a low coercive force site | part per crystal grain is provided.

Claims (5)

磁気力顕微鏡により同一視野について同時に結晶粒界と磁区とを観察し、粒界が磁区を遮断する割合である磁区遮断率に基づき、結晶粒単位で低保磁力部位の有無を判断することを特徴とする永久磁石の検査方法。   It is characterized by observing crystal grain boundaries and magnetic domains simultaneously for the same field of view with a magnetic force microscope, and determining the presence or absence of a low coercive force site for each crystal grain based on the magnetic domain blocking rate, which is the rate at which the grain boundaries block magnetic domains. Inspection method for permanent magnets. 請求項1において、磁気力顕微鏡によるAFM像で粒界を確認し、MFM像で磁区を確認し、磁区を遮断する粒界の長さAと、遮断しない長さBとを測定し、測定したA、Bの値から、下記の式:
磁区遮断率=〔A/(A+B)〕×100(%)
により磁区遮断率を求めることを特徴とする永久磁石の検査方法。
In claim 1, the grain boundary is confirmed by an AFM image by a magnetic force microscope, the magnetic domain is confirmed by an MFM image, and the length A of the grain boundary that blocks the magnetic domain and the length B that does not block the magnetic domain are measured and measured. From the values of A and B, the following formula:
Magnetic domain cutoff rate = [A / (A + B)] × 100 (%)
A method for inspecting a permanent magnet, characterized in that a magnetic domain cutoff rate is obtained by:
請求項1または2において、アスペクト比の大きい線状の磁区を対象として磁区遮断率を求めることを特徴とする永久磁石の検査方法。   3. The method for inspecting a permanent magnet according to claim 1, wherein a magnetic domain cutoff rate is obtained for a linear magnetic domain having a large aspect ratio. 請求項1〜3のいずれか1項に記載した方法により、検査対象とする製造ロットについて予め保磁力と磁区遮断率との関係を求めておき、複数個の観察領域全てについて所定の保磁力が得られる磁区遮断率の下限値以上であれば良品とし、下限値未満であれば不良品とする良否判定の工程を含むことを特徴とする永久磁石の製造方法。   By the method described in any one of Claims 1-3, the relationship between a coercive force and a magnetic domain interruption | blocking rate is previously calculated | required about the manufacturing lot made into a test object, and predetermined coercive force is given about all the several observation area | regions. A method for producing a permanent magnet, comprising a step of determining whether the product is a non-defective product if it is equal to or higher than the lower limit value of the magnetic domain cutoff rate and is a defective product if it is less than the lower limit value. 請求項4において、前記複数個は5〜10個であることを特徴とする永久磁石の製造方法。   5. The method of manufacturing a permanent magnet according to claim 4, wherein the plurality is 5 to 10.
JP2011229745A 2011-10-19 2011-10-19 Method for inspecting permanent magnet Pending JP2013089805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229745A JP2013089805A (en) 2011-10-19 2011-10-19 Method for inspecting permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229745A JP2013089805A (en) 2011-10-19 2011-10-19 Method for inspecting permanent magnet

Publications (1)

Publication Number Publication Date
JP2013089805A true JP2013089805A (en) 2013-05-13

Family

ID=48533415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229745A Pending JP2013089805A (en) 2011-10-19 2011-10-19 Method for inspecting permanent magnet

Country Status (1)

Country Link
JP (1) JP2013089805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526173A (en) * 2020-12-09 2021-03-19 湘潭大学 Method for detecting crystal structure of material grain boundary

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231031A (en) * 1998-02-13 1999-08-27 Tdk Corp Magnetic domain observing method and magnetic domain observation device
JP2006017557A (en) * 2004-06-30 2006-01-19 Japan Science & Technology Agency Method for analyzing coercive force distribution in vertical magnetic recording medium using magnetic force microscope and analyzer therefor
JP2010010665A (en) * 2008-05-29 2010-01-14 Toyota Motor Corp HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231031A (en) * 1998-02-13 1999-08-27 Tdk Corp Magnetic domain observing method and magnetic domain observation device
JP2006017557A (en) * 2004-06-30 2006-01-19 Japan Science & Technology Agency Method for analyzing coercive force distribution in vertical magnetic recording medium using magnetic force microscope and analyzer therefor
JP2010010665A (en) * 2008-05-29 2010-01-14 Toyota Motor Corp HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526173A (en) * 2020-12-09 2021-03-19 湘潭大学 Method for detecting crystal structure of material grain boundary
CN112526173B (en) * 2020-12-09 2023-05-16 湘潭大学 Method for detecting crystal structure of material grain boundary

Similar Documents

Publication Publication Date Title
Löewe et al. Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets
CN108886559B (en) Reducing changes in magnetic sensor components caused by magnetic materials by applying magnetic fields
Helbig et al. Experimental and computational analysis of magnetization reversal in (Nd, Dy)-Fe-B core shell sintered magnets
CN102419425B (en) Magnetoresistance automatic measuring device and measuring method for the same
Matsuura et al. Recoil curve properties and coercive force decrease ratio in NdFeB sintered magnets
JP6053644B2 (en) Permanent magnet inspection method and inspection apparatus
Pierobon et al. Temperature dependence of magnetization processes in Sm (Co, Fe, Cu, Zr) z magnets with different nanoscale microstructures
JP2013089805A (en) Method for inspecting permanent magnet
JP5988967B2 (en) Method for manufacturing magnetic material and method for manufacturing magnetoelectric device
JP2008039736A (en) Method for evaluating magnetic characteristics of permanent magnet
US10088453B2 (en) Apparatus and method of detecting defect of steel plate
JP6091312B2 (en) Permanent magnet characteristic inspection method and permanent magnet characteristic inspection apparatus
Gao et al. Determining the maximum operating temperature of permanent magnets via in-situ measurement of the magnetic flux
Sugawara et al. In-situ lorentz and electron-holography imaging of domain-wall propagation and grain-boundary pinning within anisotropic Nd-Fe-B sintered-magnet thin films
Liu Discussion on several principal problems aroused from measuring high performance permanent magnetic materials
Klein et al. Interaction of domain walls and magnetic nanoparticles in giant magnetoresistive nanostrips for biological applications
Luzar et al. Zero‐Magnetostriction Magnetically Soft High‐Entropy Alloys in the AlCoFeNiCux (x= 0.6–3.0) System for Supersilent Applications
Sugawara et al. Measuring magnetisation reversal in micron-sized Nd2Fe14B single crystals by microbeam x-ray magnetic circular dichroism
CN113030238A (en) Image acquisition system and image acquisition method
Steierl et al. Surface domain imaging in external magnetic fields
JP2012184931A (en) Method of measuring fraction of structure in steel plate
Ionita et al. Correction of measured magnetization curves using finite element method
KR20100006969A (en) Composite of conife ternary series alloy thin film for magnetic induction type nondestructive sensor
JP2005098804A (en) Magnetic probe for magnetic force microscope and its manufacturing method
Chen et al. Demagnetizing effects in electromagnet measurements of Nd-Fe-B specimens with end gaps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104