JPH11230670A - Continuous powder particle temperature controller - Google Patents

Continuous powder particle temperature controller

Info

Publication number
JPH11230670A
JPH11230670A JP3581098A JP3581098A JPH11230670A JP H11230670 A JPH11230670 A JP H11230670A JP 3581098 A JP3581098 A JP 3581098A JP 3581098 A JP3581098 A JP 3581098A JP H11230670 A JPH11230670 A JP H11230670A
Authority
JP
Japan
Prior art keywords
temperature
temperature control
gas
continuous
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3581098A
Other languages
Japanese (ja)
Other versions
JP3936792B2 (en
Inventor
Masaaki Nosaka
雅昭 野坂
Hikoichi Katsumura
彦一 勝村
Kenjiro Matsushita
健二郎 松下
Nobuyoshi Kanazawa
伸好 金沢
Tsutomu Ono
勉 大野
Osamu Matsui
治 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Mfg Co Ltd
Original Assignee
Matsui Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Mfg Co Ltd filed Critical Matsui Mfg Co Ltd
Priority to JP3581098A priority Critical patent/JP3936792B2/en
Publication of JPH11230670A publication Critical patent/JPH11230670A/en
Application granted granted Critical
Publication of JP3936792B2 publication Critical patent/JP3936792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To heat and cool powder particles to a desired temperature in a short time by measuring a real temperature of the particles to be discharged from a temperature control tank and automatically controlling a gas temperature of a gas blown to a temperature control tank from the relationship between the real temperature and a target temperature, thereby setting the particle to the target temperature. SOLUTION: The continuous powder particle temperature controller measures a real temperature of powder particles (m) to be discharged from a temperature control tank 3 by a real temperature sensor 5, sets a control output to a gas temperature regulator 8 to 50% when the measured real temperature coincides with a powder particle target temperature 150 deg.C set to a powder particle temperature regulator 6, and sets the gas temperature at this time to 200 deg.C. And, when the real temperature does not coincide with a set value, the controller sets a control output to the regulator 8 to 70% and sets the gas temperature to 220 deg.C. Thus, the controller automatically controls the real temperature to approach to the target temperature. Thus, an accurate high temperature required for the particles, short time, continuous heating or cooling can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、プラスチ
ックなどの射出成形機に供給するプラスチックペレット
等の粉粒体を、短時間で連続的に必要な温度に加熱ある
いは冷却する連続式粉粒体温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous type of granular material for heating or cooling a granular material such as plastic pellets supplied to an injection molding machine for plastic or the like to a required temperature in a short time. It relates to a temperature control device.

【0002】[0002]

【従来の技術】プラスチックなどの射出成形機では、供
給される原材料のプラスチックペレットなどの粉粒体
は、射出直前に一定の温度で一定の乾燥度であることが
要求される。この温度と乾燥度は、具体的には、プラス
チックについては、含水率は数百〜数拾ppm、温度は
100℃〜160℃程度であるが、粉粒体の種類、成形
方法や形状に応じて定められ、さらに、定められた温度
及び乾燥度に対するバラ付きの許容度はかなり厳しいも
のである。
2. Description of the Related Art In an injection molding machine for plastics or the like, a granular material such as plastic pellets as a raw material to be supplied is required to have a certain temperature and a certain degree of dryness immediately before injection. The temperature and the degree of drying are, specifically, for plastics, the moisture content is several hundred to several ppm, and the temperature is about 100 ° C. to 160 ° C., but it depends on the type of the granular material, the molding method and the shape. In addition, the tolerances on variation for the defined temperature and dryness are quite stringent.

【0003】また、プラスチックなど、例えば、飲料ボ
トルの原料であるPET(ポリエチレンテレフタレー
ト)等を上記したような射出直前に要求される高温で長
時間乾燥すると加水分解反応が起こり、分子量の低下に
よる製品強度の低下の問題、アセトアルデヒドの生成に
よる製品への臭気の残留の問題等が発生する。さらに、
高温状態が継続されると、材料としての性質が劣化する
問題もある。したがって、高温状態はできるだけ短いこ
とが要求されている。また、乾燥と加熱など、2種類の
目標値を同時に達成するように制御するのは一般的に困
難を伴うものである。
Further, when plastics, for example, PET (polyethylene terephthalate), which is a raw material for beverage bottles, is dried for a long time at the high temperature required immediately before injection as described above, a hydrolysis reaction occurs, and a product due to a decrease in molecular weight is produced. Problems such as a decrease in strength and a problem of odor remaining in a product due to generation of acetaldehyde occur. further,
If the high temperature state is continued, there is also a problem that the properties as a material deteriorate. Therefore, the high temperature state is required to be as short as possible. Further, it is generally difficult to control so as to simultaneously achieve two kinds of target values such as drying and heating.

【0004】このため、一般には、まず低温状態、つま
り80℃〜140℃程度の温度で粉粒体を所定の乾燥度
に乾燥し、射出成形機上の加熱機に搬送した後、所定温
度の気体を加熱機に送りこんで加熱するという方法が取
られている。従来、この場合、加熱機としては充填層式
のものがほとんどであった。図6は、このような従来の
連続式粉粒体加熱機を有した射出成形機の全体構成の概
略説明図である。
[0004] For this reason, generally, first, the powder is dried at a low temperature state, that is, at a temperature of about 80 ° C to 140 ° C to a predetermined degree of drying, and is conveyed to a heating machine on an injection molding machine. A method is employed in which gas is sent to a heater and heated. Conventionally, in this case, most of the heaters were of a packed bed type. FIG. 6 is a schematic explanatory view of the overall configuration of an injection molding machine having such a conventional continuous powder heating machine.

【0005】このシステムは、乾燥機120、加熱機
G、射出成形機130で構成され、射出成形の原材料で
ある粉粒体mを乾燥機120で所定の乾燥度と予備温度
に加熱し、加熱機Gで所定温度の気体を加熱機Gに吹き
込んで加熱して、射出成形機130に供給する。101
は粉粒体加熱用の空気を送風する送風ブロア、102は
その空気を加熱するヒータ、103は粉粒体mを滞留さ
せ加熱するための昇温槽、104は加熱用済み後の還流
気体から粉粒体の浮遊粒子などを回収する排気フィル
タ、105は、加熱気体で加熱され排出され、射出成形
機130に供給される粉粒体mの温度を測る粉粒体温度
測定センサである。
This system comprises a dryer 120, a heater G, and an injection molding machine 130, and heats the powder m, which is a raw material for injection molding, to a predetermined degree of dryness and a preliminary temperature by the dryer 120. The gas at a predetermined temperature is blown into the heater G by the machine G, heated, and supplied to the injection molding machine 130. 101
Is a blower for blowing air for heating the granular material, 102 is a heater for heating the air, 103 is a heating tank for retaining and heating the granular material m, and 104 is from a reflux gas after heating. An exhaust filter 105 that collects suspended particles of the powder and the like is a powder and particle temperature measurement sensor that measures the temperature of the powder and the particle m heated and discharged by the heating gas and supplied to the injection molding machine 130.

【0006】ヒータ102には、そのヒータ102で加
熱された空気の温度を測る加熱気体温度センサ107
と、ヒータ102によって加熱気体の温度を一定温度に
制御する加熱気体温度調節器108が設けられている。
フィーダ111は、乾燥機120から乾燥された粉粒体
mを供給する。このような加熱機Gの場合、予め設定さ
れた値に制御された一定温度の加熱気体を充填層形式の
昇温槽103に吹き込む構成であるため、加熱後の粉粒
体の温度を常に希望の温度に保つことは困難であった。
The heater 102 has a heated gas temperature sensor 107 for measuring the temperature of the air heated by the heater 102.
And a heating gas temperature controller 108 for controlling the temperature of the heating gas to a constant temperature by the heater 102.
The feeder 111 supplies the dried granular material m from the dryer 120. In the case of such a heating machine G, since the heating gas at a constant temperature controlled to a preset value is blown into the heating tank 103 of the packed bed type, the temperature of the heated granular material is always desired. Temperature was difficult to maintain.

【0007】つまり、加熱後の粉粒体の温度は、加熱気
体の温度と量、粉粒体の入口温度、昇温槽103を貫流
する粉粒体の量、言い換えれば、粉粒体の昇温槽103
内での滞留時間の4つの条件の平衡の結果に左右される
ものであるが、その制御が困難であった。これは、粉粒
体の入口温度と貫流量は、加熱機G側では、制御できな
いもので、それに対応して、加熱気体の温度と量を制御
しなかればならないが、粉粒体の貫流量が相当量あるな
どの条件のため、制御の時間遅れがあり、その時間遅れ
が、粉粒体の入口温度と貫流量の変化に追いつかないた
めであった。
[0007] That is, the temperature of the granular material after heating includes the temperature and amount of the heated gas, the inlet temperature of the granular material, the amount of the granular material flowing through the temperature raising tank 103, in other words, the rise of the granular material. Hot water bath 103
It depends on the result of the equilibrium of the four conditions of the residence time within the chamber, but its control is difficult. This is because the inlet temperature and flow rate of the granular material cannot be controlled on the side of the heater G, and the temperature and amount of the heated gas must be controlled accordingly. There is a time delay in the control due to such a condition that there is a considerable amount of, and the time delay cannot keep up with changes in the inlet temperature and the through flow rate of the granular material.

【0008】この問題は、特に、加熱用に供給された粉
粒体の入口温度に変化があった場合に、その変化に追随
することができないという形で現れていた。また、充填
層形式の場合、過剰に加熱気体を吹き込むと粉粒体が加
熱気体に同伴され吹き飛んでしまうので、吹き込む加熱
気体の量をあまり多くできず、その分、粉粒体の滞留時
間を長く設計しなければならない。このため、装置が大
型化するばかりでなく、前述の加水分解反応等に起因す
る問題を引き起こしていた。
[0008] This problem has been manifested in that, in particular, when the inlet temperature of the granular material supplied for heating changes, the change cannot be followed. In addition, in the case of the packed bed type, if the heating gas is blown in excessively, the granular material is blown away with the heating gas, so that the amount of the heated gas to be blown cannot be increased so much, and the residence time of the granular material is accordingly reduced. Must be designed long. For this reason, not only the size of the apparatus is increased, but also a problem caused by the above-described hydrolysis reaction or the like is caused.

【0009】この滞留時間の問題は、昇温槽として、主
に乾燥用として知られている連続式流動槽を用いると、
加熱時間が短くなり、解決することができる。しかし、
従来の連続式流動槽では、乾燥を主としているので、排
出される粉粒体温度を一定に制御することはあまり考慮
されていなかった。また、加熱対象とする粉粒体の量単
位が小さいので、その温度制御も時間的に追随性の良い
ものが要求されていた。
[0009] The problem of the residence time is that when a continuous fluidized tank known mainly for drying is used as a temperature raising tank,
The heating time is shorter and can be solved. But,
In the conventional continuous fluidized tank, since drying is mainly performed, controlling the temperature of the discharged granular material to a constant level has not been considered much. In addition, since the unit of mass of the granular material to be heated is small, it is required that the temperature of the granular material be well controlled in terms of time.

【0010】さらに、排気フィルタの目詰まりによるフ
ィルタの掃除、交換というメンテナンスの問題もあっ
た。また、1台で、加熱だけでなく、冷却もすることが
できれば、用途別に別の装置を設置する必要もなく、コ
ストダウンを図ることができる。
Further, there is a problem of maintenance such as cleaning and replacement of the filter due to clogging of the exhaust filter. In addition, if one unit can perform not only heating but also cooling, there is no need to install another device for each application, and cost can be reduced.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の問題点
に鑑みて提案されたもので、プラスチックなどの射出成
形機に供給する粉粒体を、短時間で正確に希望温度に加
熱のみならず冷却もすることができ、保守性のよい連続
式粉粒体温度制御装置を提供することを目的としてい
る。
DISCLOSURE OF THE INVENTION The present invention has been proposed in view of the above problems, and it is only necessary to heat a granular material supplied to an injection molding machine such as a plastic to a desired temperature in a short time and accurately. It is an object of the present invention to provide a continuous granular material temperature control device which can be cooled without difficulty and has good maintainability.

【0012】[0012]

【課題を解決するための手段】本発明は従来、専ら乾燥
用として認識されていた連続式流動槽の、制御対象を少
量単位で捉え局部加熱がないという特性に注目し、その
温度制御性を改善することによって、その特性を有効利
用し、プラスチックなどの射出成形機に供給する粉粒体
に要求される正確、高温度、短時間、連続の加熱あるい
は冷却を可能とするという、全く新規な発想の下に発明
されたものである。
SUMMARY OF THE INVENTION The present invention focuses on the characteristic of a continuous fluidized tank, which has been conventionally recognized exclusively for drying, in that the control object is captured in small units and there is no local heating, and its temperature controllability is improved. By improving the properties, it is possible to make the most of its characteristics to enable accurate, high-temperature, short-time, continuous heating or cooling required for powders supplied to injection molding machines such as plastics. It was invented under the idea.

【0013】即ち、請求項1に記載の連続式粉粒体温度
制御装置は、粉粒体が連続的に供給され排出される温度
制御槽に、所定温度の気体を吹き込むことによって、成
形機などに排出供給される粉粒体の温度を制御するもの
で、温度制御槽から排出される粉粒体の実温度を測定
し、その実温度と目標温度との関係から、前記温度制御
槽に吹き込む気体の気体温度を自動的に制御して、粉粒
体を前記目標温度にするようにしている。
That is, in the continuous powder temperature control apparatus according to the first aspect, a gas at a predetermined temperature is blown into a temperature control tank into which the powder is continuously supplied and discharged, thereby forming a molding machine or the like. To control the temperature of the granules discharged and supplied to the tank, measure the actual temperature of the granules discharged from the temperature control tank, and, based on the relationship between the actual temperature and the target temperature, the gas blown into the temperature control tank. Is automatically controlled to bring the powder to the target temperature.

【0014】ここで、連続式粉粒体温度制御装置とは、
温度制御槽に粉粒体の供給を連続的に受け、その供給を
受けた粉粒体の流れを、少量単位で捉え、途切れ無く所
定温度の気体を吹き込み、粉粒体を所定温度にしてか
ら、後工程に供給するものをいい、粉粒体を加熱する場
合だけでなく、冷却する場合も含むものである。この発
明では、温度制御後の粉粒体の実温度を測定し、その実
温度をフィードバックして、自動的に気体温度を制御す
ることによって、目標温度を実現するようにしている点
を特徴とする。粉粒体の流れを、少量単位で捉え、途切
れ無く温度制御するため、制御効果の伝達が早く、その
点を利用して、自動制御することによって、追随性の良
い温度制御を実現したものである。
Here, the continuous type powder temperature control device is as follows.
After receiving the supply of the granular material continuously to the temperature control tank, catch the flow of the supplied granular material in small units, blow the gas at the predetermined temperature without interruption, and bring the granular material to the predetermined temperature. , Which is supplied to the post-process, and includes not only the case where the granular material is heated but also the case where it is cooled. The present invention is characterized in that the target temperature is realized by measuring the actual temperature of the granular material after the temperature control, feeding back the actual temperature, and automatically controlling the gas temperature. . The effect of the control effect is transmitted quickly because the flow of the granular material is captured in small quantities and the temperature is controlled without interruption. By using this point, automatic control is used to achieve temperature control with good tracking. is there.

【0015】請求項2に記載の連続式粉粒体温度制御装
置は、請求項1に比べ、温度制御の基礎データとして、
温度制御槽に吹き込む気体の気体温度も用いている点が
相違している。このように制御対象の入口側のデータも
含めて制御判断すると、所定の気体温度にされる前の気
体に温度変動があった場合にも、対応することができ、
制御性がさらによくなる。
According to a second aspect of the present invention, there is provided a continuous-type granular material temperature control device, wherein the basic data for temperature control is
The difference is that the gas temperature of the gas blown into the temperature control tank is also used. In this way, when the control determination is performed including the data on the inlet side of the control target, it is possible to cope with a case where the gas fluctuates before the predetermined gas temperature is reached,
Controllability is further improved.

【0016】請求項3に記載の連続式粉粒体温度制御装
置は、請求項1または2において、前記温度制御槽は、
連続式流動槽である。流動槽を用いているので、粉粒体
が流れとして、少量単位で捉えられ、途切れ無く処理さ
れ、制御空気が、粉粒体に均一に行き渡り、局所加熱あ
るいは冷却が発生せず、短時間で、正確に目標温度を達
成することができ、ムラがない。
According to a third aspect of the present invention, there is provided a continuous type granular material temperature control apparatus according to the first or second aspect, wherein:
It is a continuous fluidized tank. Since the fluidized tank is used, the granular material is caught as a flow in small units and is processed without interruption. The control air is uniformly distributed to the granular material, and local heating or cooling does not occur. The target temperature can be accurately achieved, and there is no unevenness.

【0017】請求項4に記載の連続式粉粒体温度制御装
置は、請求項3において、前記連続式流動槽は、多段式
床傾斜型の連続式流動槽である。制御対象の粉粒体は、
傾斜床にそって、順に多段式のより高い温度用の槽に移
動して行き、粉粒体の移動が滑らかで、温度制御効果が
高く、また、最終段のものだけが排出されるので、温度
制御の不完全な粉粒体が、次工程に排出供給されること
がない。
According to a fourth aspect of the present invention, in the continuous granular material temperature control apparatus according to the third aspect, the continuous fluidized bed is a continuous fluidized bed of a multi-stage inclined floor type. The granules to be controlled are
Along the sloping floor, move sequentially to the multi-stage type higher temperature bath, the movement of the granular material is smooth, the temperature control effect is high, and only the last stage is discharged, Incompletely controlled powder and granules are not discharged and supplied to the next step.

【0018】請求項5に記載の連続式粉粒体温度制御装
置は、請求項1〜4において、前記温度制御槽内に、温
度制御に用いられた気体から非気体成分を捕集する排気
バッフルを設けている。ここで、排気バッフルとは、用
済みの気体に含まれている粉粒体の浮遊粒子のうち、比
較的大きい粒子は槽内に戻し、最終製品に悪影響する微
粒子は排気とともに槽外へ出し、排気フィルタで捕集で
きるようにしたものである。
According to a fifth aspect of the present invention, there is provided the continuous-type granular material temperature control apparatus according to any one of the first to fourth aspects, wherein the exhaust baffle for collecting non-gas components from the gas used for temperature control in the temperature control tank. Is provided. Here, the exhaust baffle means that among the suspended particles of the granular material contained in the used gas, relatively large particles are returned to the tank, and fine particles that have an adverse effect on the final product are discharged out of the tank together with the exhaust gas. It can be collected by an exhaust filter.

【0019】したがって、一般の排気フィルタだけで
は、用済み気体に含まれる比較的大きい浮遊粒子なども
区別なく収集するため、目詰まりを起こしやすく、その
清掃、交換が頻繁で、保守性に問題があったが、このよ
うな排気バッフルを合わせ用いることによって、排気フ
ィルタが目詰まりすることが少なくなり、保守性が向上
する。
Therefore, with a general exhaust filter alone, relatively large suspended particles contained in the used gas are collected without distinction, so that clogging is liable to occur, cleaning and replacement are frequent, and there is a problem in maintainability. However, by using such an exhaust baffle together, clogging of the exhaust filter is reduced, and maintainability is improved.

【0020】請求項6に記載の連続式粉粒体温度制御装
置は、請求項1〜5において、前記温度制御槽の外側に
熱媒体を流すジャケットを設け、または/かつ、前記温
度制御槽の内部に熱媒体を流す管を設けている。温度制
御槽に、所定温度の気体を吹き込むだけでなく、外側に
は熱媒体を流すジャケット、内部には熱媒体を流す管を
設けているので、温度制御槽の熱容量が大きくなり、制
御対象の粉粒体の量に対して、温度制御槽を小型化する
ことができ、装置全体を小型化することができる。
According to a sixth aspect of the present invention, there is provided a continuous type granular material temperature control apparatus according to the first to fifth aspects, wherein a jacket for flowing a heat medium is provided outside the temperature control tank, and / or the temperature control tank is provided with a jacket. A tube through which a heat medium flows is provided. In addition to blowing gas at a predetermined temperature into the temperature control tank, a jacket for flowing the heat medium is provided on the outside, and a tube for flowing the heat medium is provided inside, so that the heat capacity of the temperature control tank increases, and The temperature control tank can be reduced in size with respect to the amount of the granular material, and the entire apparatus can be reduced in size.

【0021】このジャケットや管に流す熱媒体も、適当
な温度測定手段、温度調節手段を設けることによって、
温度制御をすることができるものであり、また、加熱用
にも、冷却用にも用いることができるものである。請求
項7に記載の連続式粉粒体温度制御装置は、請求項1〜
6において、前記温度制御槽に吹き込む気体を加熱する
加熱手段を有し、または/かつ、前記温度制御槽に吹き
込む気体を冷却する冷却手段を有し、粉粒体を加熱また
は/かつ冷却するようにしたものである。
The heating medium flowing through the jacket or the pipe can also be provided with appropriate temperature measuring means and temperature adjusting means.
It can control the temperature and can be used for both heating and cooling. The continuous powder and granular material temperature control device according to claim 7,
6. In 6, the apparatus has heating means for heating the gas blown into the temperature control tank, and / or has cooling means for cooling the gas blown into the temperature control tank, and heats and / or cools the granular material. It was made.

【0022】もともと、本発明の温度制御の概念には、
加熱の場合、冷却の場合も含まれるものであるが、特
に、加熱手段、冷却手段を明記して、そのいずれか一
方、あるいは双方ができるようにしたことを明確にした
ものである。請求項8に記載の連続式粉粒体温度制御装
置は、請求項1〜7において、プラスチックなどの射出
成形機の原料供給口に設置され、前記射出成形機に必要
な所定温度の粉粒体を連続的に供給するようにしたもの
である。
Originally, the concept of temperature control of the present invention is as follows:
In the case of heating, the case of cooling is also included, but in particular, the heating means and the cooling means are clearly specified to clarify that one or both of them can be performed. The continuous granular material temperature control device according to claim 8 is provided at a raw material supply port of an injection molding machine such as a plastic material according to claim 1, and has a predetermined temperature required for the injection molding machine. Is supplied continuously.

【0023】本発明の連続式粉粒体温度制御装置は、短
時間で、連続的に、希望温度の粉粒体を供給できる点を
特徴とするが、そのような性質が特に要求されるプラス
チックなどの射出成形機用として、その連続式粉粒体温
度制御装置を構成したものである。
The continuous particle temperature control device of the present invention is characterized in that it can supply powder particles at a desired temperature in a short time and continuously. And the like, which constitutes the continuous powder temperature controller for injection molding machines.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明の連続式粉
粒体温度制御装置の一例の全体構成を示す概略説明図で
ある。連続式粉粒体温度制御装置Aにおいて、1は粉粒
体mの温度制御用気体を送風する送風ブロア、2は温度
制御用気体を所定温度にするヒータ、3は粉粒体mを連
続流動的に温度制御するための連続式流動槽を用いた温
度制御槽、4は用済み気体の微小浮遊粒子を収集する排
気フィルタ、5は温度制御槽3から排出され次工程に供
給される粉粒体mの実温度を測る実温度センサ、6は実
温度センサで測定した実温度に基づき粉粒体の温度調節
信号を発生する粉粒体温度調節器、7は粉粒体mの温度
制御用気体の気体温度を測る気体温度センサ、8は気体
温度センサ7で測定した気体温度と粉粒体温度調節器6
からの信号に基づき、ヒータ2への制御信号を出力する
気体温度調節器である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view showing the entire configuration of an example of the continuous powder temperature control apparatus of the present invention. In the continuous granular material temperature control device A, 1 is a blower for blowing the temperature controlling gas of the granular material m, 2 is a heater for setting the temperature controlling gas to a predetermined temperature, and 3 is a continuous flow of the granular material m. Control tank using a continuous fluidized tank for temperature control, 4 is an exhaust filter for collecting fine suspended particles of spent gas, 5 is powder particles discharged from the temperature control tank 3 and supplied to the next step An actual temperature sensor for measuring the actual temperature of the body m, 6 is a powder temperature controller for generating a temperature control signal of the powder based on the actual temperature measured by the actual temperature sensor, and 7 is for controlling the temperature of the powder m. A gas temperature sensor 8 for measuring the gas temperature of the gas, 8 is a gas temperature measured by the gas temperature sensor 7 and a powder temperature controller 6
Is a gas temperature controller that outputs a control signal to the heater 2 based on a signal from the heater 2.

【0025】9は温度制御槽3から排出され次工程に供
給される粉粒体mが、その排出部付近に滞留する量を検
知するためのレベル計、10はレベル計9からの信号に
応じて、フィーダの運転を高速、あるいは低速に切換制
御するインバータ、11は温度制御槽3に粉粒体mを供
給するフィーダ、12は、用済み空気を還流させる排気
ダクトである。
Reference numeral 9 denotes a level meter for detecting the amount of the granular material m discharged from the temperature control tank 3 and supplied to the next process in the vicinity of the discharge portion. An inverter for switching the operation of the feeder between high and low speeds, a feeder 11 for supplying the granular material m to the temperature control tank 3, and an exhaust duct 12 for recirculating used air.

【0026】ここでは、温度制御用気体として空気を用
いる場合を説明するが、これに限るものではない。これ
より、連続式流動槽を用いた温度制御槽3について、詳
しく説明する。この温度制御槽3は、多段式であって、
その槽は、仕切板34及び排出セキ35によって仕切ら
れて4つの槽、第1制御槽3a、第2制御槽3b、第3
制御槽3c、排出槽3dに分かれている。温度制御用空
気を通過させて粉粒体に吹き込ませるようにする流動床
33は、第1制御槽3aから第3制御槽3cの方向に、
また、重力の方向に傾斜している。
Here, the case where air is used as the temperature control gas will be described, but the present invention is not limited to this. Hereinafter, the temperature control tank 3 using the continuous fluidized tank will be described in detail. This temperature control tank 3 is a multi-stage type,
The tanks are partitioned by a partition plate 34 and a discharge block 35 to form four tanks, a first control tank 3a, a second control tank 3b, and a third tank.
It is divided into a control tank 3c and a discharge tank 3d. The fluidized bed 33 through which air for temperature control is passed and blown into the granular material is provided in a direction from the first control tank 3a to the third control tank 3c.
It is inclined in the direction of gravity.

【0027】仕切板34は、この流動床33との間に間
隙を設けて設置され、一方、排出セキ35の下部は、開
閉可能な排出ダンパ36となっており、これを閉じたと
きには、流動床33との間隙はなくなり、開いたときに
は、流動床33との間に大きな開口部を生じるようにな
っている。また、仕切板34の上部は、温度制御槽の高
さの半分程度の位置まで達しているが、排出セキ35の
上部は、それに比べ、低い位置となっている。
The partition plate 34 is provided with a gap between the partition plate 34 and the fluidized bed 33. On the other hand, the lower part of the discharge bar 35 is a discharge damper 36 which can be opened and closed. The gap with the bed 33 is eliminated, and when opened, a large opening is formed between the bed and the fluidized bed 33. In addition, the upper part of the partition plate 34 has reached a position that is about half the height of the temperature control tank, but the upper part of the discharge bar 35 is at a lower position than that.

【0028】この傾斜流動床33には、それぞれの制御
槽3a〜3cに合わせて区分され、それぞれに風量調整
弁32を設けた送風口31を介して、ヒータ2で所定の
温度にされた空気が送り込まれ、それぞれの制御槽3a
〜3c内の粉粒体mに温度制御用空気が吹き込まれるよ
うになっている。ついで、この連続式粉粒体温度制御装
置Aを用いた粉粒体の温度制御、つまり、加熱あるいは
冷却の方法について説明する。ここでは、前工程で、粉
粒体は、すでに適度の乾燥度に乾燥されており、また次
工程が、この連続式粉粒体温度制御装置Aに直結されて
いるとして説明するが、これに限るものではない。
The inclined fluidized bed 33 is divided into air corresponding to the respective control tanks 3a to 3c, and is heated to a predetermined temperature by the heater 2 through an air outlet 31 provided with an air volume adjusting valve 32. Is sent to each control tank 3a.
The air for temperature control is blown into the granular material m in 3c. Next, a description will be given of a method of controlling the temperature of the powder using the continuous powder temperature controller A, that is, a method of heating or cooling. Here, the description will be made assuming that the granules have already been dried to an appropriate degree of drying in the previous step, and that the next step is directly connected to the continuous granule temperature controller A. It is not limited.

【0029】次工程の運転信号がOFFの場合、つま
り、次工程と制御装置Aが連続運転中に、次工程がなん
らかの理由で停止したような場合、レベル計9が粉粒体
なしの信号を送り出している時にはフィーダ11は運転
し、粉粒体mを供給する。一方、レベル計9が粉粒体あ
りの信号を送り出せば、フィーダ11は停止し、粉粒体
mの供給を止める。こうして、次工程への粉粒体の過剰
滞留が阻止される。
When the operation signal of the next step is OFF, that is, when the next step is stopped for some reason during the continuous operation of the next step and the control device A, the level meter 9 outputs a signal indicating that there is no particulate material. During feeding, the feeder 11 operates and supplies the powder m. On the other hand, if the level meter 9 sends out a signal indicating the presence of the granular material, the feeder 11 stops, and the supply of the granular material m is stopped. In this way, the excessive retention of the granules in the next step is prevented.

【0030】また、このとき、気体温度調節器8の設定
値は、手動で適切な値に設定され、一定の気体温度の温
度制御用空気が供給される。これは、このような異常状
態では、温度制御の機能が完全には発揮されないため、
温度制御用空気の温度を、長時間加熱しても粉粒体に悪
影響を及ぼさない温度に切り替えて、次工程の運転再開
を待つためである。
At this time, the set value of the gas temperature controller 8 is manually set to an appropriate value, and air for temperature control at a constant gas temperature is supplied. This is because in such an abnormal state, the function of temperature control is not fully exhibited,
This is because the temperature of the temperature control air is switched to a temperature that does not adversely affect the granules even if the air is heated for a long time, and the operation of the next process is to be restarted.

【0031】次工程の運転がONの場合、フィーダ11
は運転し、粉粒体mは、温度制御槽3に連続供給され、
温度制御槽3からは、温度制御された粉粒体mが次工程
に連続的に排出供給される。この場合、レベル計9が粉
粒体なしの信号を送り出している時にはフィーダ11は
インバータ10の作用により高速運転し、一方、レベル
計9が粉粒体ありの信号を送り出せば、フィーダ11は
インバータ10の作用により低速運転して、粉粒体mの
供給量を加減して、温度制御槽3内の粉粒体mの滞留量
を一定範囲内に保つ。
When the operation of the next step is ON, the feeder 11
Is operated, and the granular material m is continuously supplied to the temperature control tank 3,
From the temperature control tank 3, the powder m whose temperature is controlled is continuously discharged and supplied to the next step. In this case, when the level meter 9 is sending out a signal without particulates, the feeder 11 operates at a high speed by the action of the inverter 10, while if the level meter 9 sends out a signal with particulates, the feeder 11 is driven by the inverter. By operating at a low speed by the operation of 10, the supply amount of the granular material m is adjusted to maintain the amount of the granular material m retained in the temperature control tank 3 within a certain range.

【0032】フィーダ11によって温度制御槽3内に供
給された粉粒体mは、温度制御用空気と激しく接触し、
流動層となって温度制御用空気と熱交換しながら、制御
槽3a〜3c内を浮遊しつつ、順に第1制御槽3a、第
2制御槽3b、第3制御槽3cと移動して行き、排出槽
3dから排出される。粉粒体mは、第1制御槽3aと第
2制御槽3bとの間、第2制御槽3bと第3制御槽3c
との間では、仕切板34の下の間隙を通り、流動床33
の傾きの作用もあって、順にとなりの制御槽へと移動し
ていく。
The granular material m supplied into the temperature control tank 3 by the feeder 11 violently comes into contact with air for temperature control,
While forming a fluidized bed and exchanging heat with the air for temperature control, it floats in the control tanks 3a to 3c and sequentially moves with the first control tank 3a, the second control tank 3b, and the third control tank 3c. It is discharged from the discharge tank 3d. The granular material m is provided between the first control tank 3a and the second control tank 3b, the second control tank 3b and the third control tank 3c.
Between the fluidized bed 33 through the gap under the partition plate 34
Due to the action of the inclination, the control tank moves sequentially to the next control tank.

【0033】この場合、粉粒体mは、それぞれの制御槽
3a〜3c内で、それぞれ風量調節された温度制御用空
気を送風口31から受けて浮遊するが、第1制御槽3
a、第2制御槽3bへの風量は低い目に設定されてお
り、また仕切板34の上部も高いものとなっているの
で、粉粒体mが、仕切板34の上部を越えて、となりの
制御槽、あるいは排出槽3dへ移動することはない。
In this case, the granular material m floats in each of the control tanks 3a to 3c by receiving the air for temperature control whose air volume has been adjusted from the air outlet 31.
a, the air volume to the second control tank 3b is set to a low value, and the upper part of the partition plate 34 is also high, so that the granular material m passes over the upper part of the partition plate 34 and Does not move to the control tank or the discharge tank 3d.

【0034】一方、第3制御槽3cへの風量は多い目に
設定されており、また、排出セキ35の上部は、仕切板
34の上部より低く設定されており、通常は、すべての
粉粒体mは、第3制御槽3cから排出槽3dへ移動する
際には、排出セキ35を越えて移動するようになってい
る。こうして、全ての粉粒体mは、所定の温度制御を各
制御槽3a〜3cで順に万遍なく受けてから排出される
ようになっている。また、温度制御を多段に分けている
ので、制御効率がよい。加えて、制御対象の粉粒体が流
動層となり、小さい量単位となるので、制御時間が短く
なり、連続的に供給され排出されるので、高温維持時間
が短くなる。また、いわゆる、ショートカットや、異常
滞留もさける事ができ、さらに、局部加熱や局部冷却も
避けることができる。
On the other hand, the air flow to the third control tank 3c is set to a large value, and the upper part of the discharge bar 35 is set lower than the upper part of the partition plate 34. When the body m moves from the third control tank 3c to the discharge tank 3d, it moves over the discharge hole 35. In this manner, all the powders m are discharged after receiving predetermined temperature control uniformly in each of the control tanks 3a to 3c. Further, since the temperature control is divided into multiple stages, the control efficiency is high. In addition, since the granular material to be controlled becomes a fluidized bed and has a small volume unit, the control time is shortened, and the supply and discharge are continuously performed, so that the high temperature maintaining time is shortened. In addition, it is possible to avoid so-called shortcuts and abnormal stagnation, and it is also possible to avoid local heating and local cooling.

【0035】また、排出セキ35の高さを変えること
で、温度制御槽3内の粉粒体の滞留量を調整することが
できる。次に、本発明の特徴とする温度の自動制御につ
いて説明する。この連続式粉粒体温度制御装置Aにおい
ては、温度制御槽3から排出される粉粒体mの実温度と
温度制御用空気の気体温度を測定して、その実温度と気
体温度と粉粒体の目標温度との関係から、その気体温度
を自動的に制御して、粉粒体をその目標温度にするよう
にしている。この場合、気体温度を用いずに、実温度だ
けで制御してもよい。
Further, by changing the height of the discharge bar 35, the amount of the powder particles retained in the temperature control tank 3 can be adjusted. Next, automatic temperature control which is a feature of the present invention will be described. In the continuous granular material temperature control device A, the actual temperature of the granular material m discharged from the temperature control tank 3 and the gas temperature of the temperature control air are measured, and the actual temperature, the gas temperature, and the granular material are measured. From the relationship with the target temperature, the gas temperature is automatically controlled to bring the powder to the target temperature. In this case, the control may be performed only at the actual temperature without using the gas temperature.

【0036】気体温度調節器8の気体温度の設定値は、
基本的には比例制御を用いて、粉粒体温度調節器6に設
定されている粉粒体目標温度と実温度センサ5の測定値
との偏差によって決定される。図2は、そのような温度
制御の一例を示すグラフである。図2は、目標温度15
0℃、比例帯幅100℃で、粉粒体温度調節器6の出力
100%の時の温度制御用空気の温度設定値を250
℃、粉粒体温度調節器6の出力0%の時の温度設定値を
150℃に設定した場合を示すものである。
The set value of the gas temperature of the gas temperature controller 8 is:
Basically, it is determined by the deviation between the target temperature of the granular material set in the granular material temperature controller 6 and the measured value of the actual temperature sensor 5 using proportional control. FIG. 2 is a graph showing an example of such a temperature control. FIG. 2 shows that the target temperature 15
When the temperature of the air for temperature control is 0 ° C., the proportional band width is 100 ° C., and the output of the powder temperature controller 6 is 100%, the temperature set value of the air for temperature control is 250
This shows a case where the temperature set value at 150 ° C. and the output of the powder temperature controller 6 at 0% is set to 150 ° C.

【0037】図2に示すように、実温度が目標温度15
0℃に一致した時、気体温度調節器8への制御出力は5
0%になり、この時の気体湿度は200℃に設定され
る.実温度が設定値に一致していない時には、例えば実
温度が目標温度以下の130℃の時には気体温度調節器
8への制御出力は70%になり、気体温度は220℃に
設定される。実温度が目標温度以上の170℃の時には
気体温度調節器8への制御出力は30%になり、気体温
度は180℃に設定され、実温度が目標温度に近づく様
に制御される。
As shown in FIG.
When the temperature matches 0 ° C., the control output to the gas temperature controller 8 is 5
The gas humidity at this time is set to 200 ° C. When the actual temperature does not match the set value, for example, when the actual temperature is 130 ° C. or lower than the target temperature, the control output to the gas temperature controller 8 becomes 70%, and the gas temperature is set to 220 ° C. When the actual temperature is 170 ° C. which is higher than the target temperature, the control output to the gas temperature controller 8 becomes 30%, the gas temperature is set to 180 ° C., and control is performed so that the actual temperature approaches the target temperature.

【0038】しかし、気体温度が200℃で、粉粒体温
度が150℃になるとは限らず、この様な比例制御だけ
では通常は残留偏差が発生するので、積分動作を加えて
残留偏差を解消する。積分動作が加わると、偏差が発生
している間、偏差を解消する方向に偏差に応じた速度で
制御出力が除々に変化し、つまり気体設定温度が徐々に
変化し、偏差が解消された時点で積分動作による制御出
力の変化はなくなる。実際には比例制御と積分動作は同
時進行で行われ、両方の制御出力が加算されたものが制
御出力となる。
However, when the gas temperature is 200 ° C. and the temperature of the powder is not always 150 ° C., such a proportional control alone usually causes a residual deviation. I do. When the integral operation is added, the control output gradually changes at a speed corresponding to the deviation in the direction to eliminate the deviation while the deviation is occurring, that is, when the gas set temperature gradually changes and the deviation is eliminated Thus, there is no change in the control output due to the integration operation. Actually, the proportional control and the integration operation are performed simultaneously, and the sum of both control outputs is the control output.

【0039】このようにして、粉粒体実温度が扮粒体目
標温度に−致するよう温度制御用空気の気体温度の設定
が自動的に行われる。この自動設定は0.5秒毎に繰り
返し更新される。一方、気体温度調節器8は気体温度を
気体設定温度に一致させるように、同様の制御を行う。
ただし、この場合は制御出力によりヒータを直接駆動す
る。
In this manner, the setting of the gas temperature of the temperature control air is automatically performed so that the actual temperature of the granular material is equal to the target temperature of the artificial granular material. This automatic setting is repeatedly updated every 0.5 seconds. On the other hand, the gas temperature controller 8 performs the same control so that the gas temperature matches the gas set temperature.
However, in this case, the heater is directly driven by the control output.

【0040】本発明の場合、上述したように制御対象が
小量単位に捉えられる流動層なので、このような設定変
更の効果がすぐに実温度に反映される。したがって、こ
れを上記のように、自動的にくり返し設定するようにし
ておくと、短い時間で、実温度が目標温度になるように
自動制御され、その後は、目標温度の粉粒体mが次工程
に連続的に排出供給される。
In the case of the present invention, as described above, since the control object is a fluidized bed that can be captured in small units, the effect of such a setting change is immediately reflected on the actual temperature. Therefore, if this is set automatically and repeatedly as described above, the actual temperature is automatically controlled so as to reach the target temperature in a short time, and thereafter, the powder m at the target temperature is changed to the next temperature. It is continuously discharged and supplied to the process.

【0041】このようにしておくと、運転中に、温度制
御槽3内を貫流する粉粒体mの量が変化したり、温度制
御槽3に供給される乾燥された粉粒体mの温度が変化し
ても、気体温度調節器8の設定気体温度が自動修正さ
れ、温度制御槽3から次工程に排出供給される粉粒体m
の実温度は、短時間で目標温度に維持され、環境変化に
左右されずに、安定的に信頼性の高い温度制御をするこ
とができる。
In this manner, during operation, the amount of the granular material m flowing through the temperature control tank 3 changes, or the temperature of the dried granular material m supplied to the temperature control tank 3 changes. Is changed, the set gas temperature of the gas temperature controller 8 is automatically corrected, and the granular material m discharged and supplied from the temperature control tank 3 to the next process is changed.
Is maintained at the target temperature in a short time, and stable and reliable temperature control can be performed without being affected by environmental changes.

【0042】次に、本発明の他の特徴とする排気バッフ
ルについて説明する。温度制御槽3の上部には、温度制
御に使用された用済み空気を排気し、粉粒体の浮遊粒子
を捕集するための排気部37が設けられ、排気部37に
は、排気バッフル38と排気口39が有る。排気バッフ
ル38は、用済みの空気に含まれている非気体成分、例
えば、粉粒体の浮遊粒子などを、トラップなどを用いて
分級して捕集し、大きい粒子などは、再利用することが
できるようにしたものである。
Next, an exhaust baffle according to another feature of the present invention will be described. An exhaust unit 37 for exhausting used air used for temperature control and collecting suspended particles of the granular material is provided at an upper portion of the temperature control tank 3. The exhaust unit 37 has an exhaust baffle 38. And an exhaust port 39. The exhaust baffle 38 classifies and collects non-gaseous components contained in the used air, for example, suspended particles of a granular material using a trap or the like, and recycles large particles. Is made possible.

【0043】したがって、排気口39から排気ダクト1
2を通って送風ブロア1に貫流する排気から浮遊粒子な
どを除去するための排気フィルタ4は、すぐに目詰まり
することがなく、清掃、交換の回数が減り、保守性が向
上する。また、大きい粒子は再利用されるので、資源活
用の点でも優れている。次に、本発明の連続式粉粒体温
度制御装置の他の実施態様について説明する。図3は、
そのような本発明の連続式粉粒体温度制御装置の他例の
全体構成を示す概略説明図である。
Therefore, the exhaust duct 1
The exhaust filter 4 for removing suspended particles and the like from the exhaust gas flowing through the blower 1 through the blower 2 does not immediately become clogged, and the number of times of cleaning and replacement is reduced, and maintainability is improved. In addition, since large particles are reused, they are also excellent in resource utilization. Next, another embodiment of the continuous granular material temperature control device of the present invention will be described. FIG.
It is a schematic explanatory view showing the whole composition of other examples of such a continuous type granular material temperature control device of the present invention.

【0044】この連続式粉粒体温度制御装置Bは、図1
の連続式粉粒体温度制御装置Aに比べて、温度制御用気
体を加熱する加熱手段のヒータだけでなく、温度制御用
気体を冷却する冷却手段を設けている点が相違するだけ
なので、他の共通する部分については、同じ符号を付し
て重複する説明を省略する。この連続式粉粒体温度制御
装置Bには、温度制御用気体を冷却する冷却手段とし
て、冷却コイル13とその熱源である冷凍機14が更に
備えられている点を特徴とする。冷却手段としては、冷
凍機等を熱源とした冷却コイルを例示しているが、これ
に限るものではない。また、連続式粉粒体温度制御装置
Bにおいて、加熱手段であるヒータ2を用いず、冷却手
段だけを用いることもできるし、連続式粉粒体温度制御
装置Aのように加熱手段だけを用いるものとすることも
できる。
The continuous granular material temperature control device B is shown in FIG.
Compared to the continuous powder temperature control device A, the only difference is that not only the heater of the heating means for heating the temperature control gas but also the cooling means for cooling the temperature control gas is provided. The same reference numerals are given to the common parts, and the overlapping description will be omitted. This continuous powder temperature control apparatus B is characterized in that a cooling coil 13 and a refrigerator 14 as a heat source thereof are further provided as cooling means for cooling the temperature control gas. The cooling means is exemplified by a cooling coil using a refrigerator or the like as a heat source, but is not limited to this. Further, in the continuous powder temperature control apparatus B, only the cooling means can be used without using the heater 2 as the heating means, or only the heating means is used like the continuous powder temperature control apparatus A. It can also be.

【0045】冷却手段を用いた場合、加熱手段と同様
に、温度制御槽3から排出される粉粒体mの実温度と温
度制御用空気の気体温度と目標温度との関係から、気体
温度調節器8を用いて、乾燥機から供給される粉粒体m
の温度が、目標温度に比べて高い場合でも、実温度を下
げて目標温度にすることができる。また、加熱手段と冷
却手段とを併用すれば、必要に応じて、粉粒体を加熱す
ることも、また、冷却することも、一台の連続式粉粒体
温度制御装置ですることができ、別々の専用装置を設け
る必要がなく、設置場所の節約、コストダウンを図るこ
とができる。
In the case where the cooling means is used, the gas temperature control is performed based on the relationship between the actual temperature of the granular material m discharged from the temperature control tank 3, the gas temperature of the temperature control air, and the target temperature, similarly to the heating means. And granular material m supplied from the drier using the oven 8
Is higher than the target temperature, the actual temperature can be lowered to the target temperature. Further, if the heating means and the cooling means are used in combination, it is possible to heat and cool the powder and granules as necessary by using a single continuous powder and grain temperature control device. In addition, there is no need to provide separate dedicated devices, so that installation space can be saved and costs can be reduced.

【0046】次に、本発明の連続式粉粒体温度制御装置
のさらに他の実施態様について説明する。図4は、その
ような本発明の連続式粉粒体温度制御装置の他例の要部
構成を示す概略説明図である。この連続式粉粒体温度制
御装置Cは、図1の連続式粉粒体温度制御装置Aに比べ
て、温度制御槽3に所定温度の温度制御用気体を吹き込
むだけでなく、更に、外側には熱媒体を流すジャケッ
ト、内部には熱媒体を流す管を設けている点が、相違す
るだけなので、他の共通する部分については、同じ符号
を付して重複する説明を省略する。
Next, still another embodiment of the continuous granular material temperature control device of the present invention will be described. FIG. 4 is a schematic explanatory view showing a main part configuration of another example of such a continuous powder temperature control apparatus of the present invention. Compared to the continuous powder temperature control apparatus A of FIG. 1, the continuous powder temperature control apparatus C not only blows a temperature control gas at a predetermined temperature into the temperature control tank 3 but also further outwards. Are different only in that a jacket for flowing the heat medium is provided therein, and a tube for flowing the heat medium therein is provided. Therefore, the same reference numerals are given to the other common parts, and redundant description will be omitted.

【0047】ジャケット15は、温度制御槽3の外周を
囲むように設けられた中空円柱状の形状をしており、そ
の円柱の内周と外周の間は中空となっており、水や空気
などの熱媒体が流れるようになっている。管16は、温
度制御槽3の内部の第1〜3制御槽3a〜3cの内部に
伸びているパイプ状のもので、水や空気などの熱媒体が
流れるようになっている。ジャケット15と管16に
は、熱媒体が流れ、温度制御用空気による温度制御を補
助する。
The jacket 15 has a hollow cylindrical shape provided so as to surround the outer circumference of the temperature control tank 3, and is hollow between the inner circumference and the outer circumference of the cylinder, such as water or air. Heat medium flows. The pipe 16 has a pipe shape extending inside the first to third control tanks 3 a to 3 c inside the temperature control tank 3, and allows a heat medium such as water or air to flow. A heat medium flows through the jacket 15 and the pipe 16 to assist temperature control by the temperature control air.

【0048】このジャケット15と管16は、両方設け
てもよいし、それぞれ一方だけを設けてもよい。また、
このジャケット15や管16に流す熱媒体も、適当な温
度測定手段、温度調節手段を設けることによって、温度
制御をすることができるものであり、また、加熱用に
も、冷却用にも用いることができるものである。このよ
うにすると、温度制御槽の熱容量が大きくなり、制御対
象の粉粒体の量単位に対して、温度制御槽を小型化する
ことができ、装置全体を小型化することができる。最後
に、本発明の特徴が最も良く発揮されるプラスチックな
どの射出成形機に用いられる本発明の連続式粉粒体温度
制御装置の例について説明する。図5は、このような連
続式粉粒体温度制御装置を有した射出成形機の一例の全
体構成を示す概略説明図である。ここでは、プラスチッ
ク成形に用いられる場合について説明する。
Both the jacket 15 and the pipe 16 may be provided, or only one of them may be provided. Also,
The temperature of the heat medium flowing through the jacket 15 and the pipe 16 can be controlled by providing appropriate temperature measuring means and temperature adjusting means, and can be used for both heating and cooling. Can be done. By doing so, the heat capacity of the temperature control tank increases, and the temperature control tank can be reduced in size with respect to the amount of the granular material to be controlled, and the entire apparatus can be reduced in size. Finally, an example of the continuous powder temperature control apparatus of the present invention used in an injection molding machine for plastics or the like in which the features of the present invention are best exhibited will be described. FIG. 5 is a schematic explanatory view showing the entire configuration of an example of an injection molding machine having such a continuous powder temperature control apparatus. Here, the case where it is used for plastic molding will be described.

【0049】図において、Aは本発明の連続式粉粒体温
度制御装置、120は乾燥機、130は射出成形機であ
り、乾燥機120と射出成形機130は、図6を用いて
従来例として説明したものと同じものである。このシス
テムでは、連続式粉粒体温度制御装置Aは、射出成形機
130の原料投入口に設けられ、乾燥機120よりプラ
スチック成形品の原料であるプラスチックペレットの供
給を受けて、連続的に短時間で必要な温度に加熱して、
プラスチック射出成形機130に排出供給する。
In the figure, A is a continuous powder temperature controller of the present invention, 120 is a dryer, 130 is an injection molding machine, and the drying machine 120 and the injection molding machine 130 are shown in FIG. Is the same as described above. In this system, the continuous granular material temperature control device A is provided at a raw material input port of an injection molding machine 130, receives plastic pellets, which are raw materials of a plastic molded product, from a dryer 120, and continuously controls the temperature. Heat to the required temperature in time,
Discharge and supply to the plastic injection molding machine 130.

【0050】プラスチックペレットは、乾燥機120で
は、80℃〜150℃の温度で2〜4時間程度をかけて
数百〜数十ppmの含水率に乾燥され、連続式粉粒体温
度制御装置Aで目標温度に加熱されて、プラスチック射
出成形機130に供給される。乾燥の段階では、プラス
チックの性質の低下を防止するために、できるだけ低温
で行うことが望ましい。一方、プラスチック射出成形機
130では、プラスチックペレットを加熱溶融させ、金
型内へ射出するが、この時間は同様の理由で、なるべく
短くすることが望ましい。そのため、できるだけ高温度
で安定したプラスチックペレットが成形機130に供給
されることが望ましい。本発明の連続式粉粒体温度制御
装置Aは、そのような要求に十分に応えるものである。
The plastic pellets are dried in a dryer 120 at a temperature of 80 ° C. to 150 ° C. over a period of about 2 to 4 hours to a moisture content of several hundreds to several tens ppm. And is supplied to the plastic injection molding machine 130. In the drying stage, it is desirable to perform the drying at as low a temperature as possible in order to prevent deterioration of the properties of the plastic. On the other hand, in the plastic injection molding machine 130, the plastic pellets are heated and melted and injected into the mold. For the same reason, it is desirable that the time be as short as possible. Therefore, it is desirable that plastic pellets that are stable at as high a temperature as possible are supplied to the molding machine 130. The continuous granular material temperature control device A of the present invention sufficiently satisfies such a demand.

【0051】[0051]

【発明の効果】以上の説明から理解されるように、請求
項1〜8に記載の本発明の連続式粉粒体温度制御装置に
よれば、専ら乾燥用として認識されていた連続式流動槽
の特性に注目し、その温度制御性を改善することによっ
て、その特性を利用し、プラスチックなどの射出成形機
に供給する粉粒体に要求される正確、高温度、短時間、
連続の加熱あるいは冷却を可能にする。
As can be understood from the above description, according to the continuous powder temperature control apparatus of the present invention as set forth in claims 1 to 8, the continuous fluidized tank recognized exclusively for drying. By focusing on the characteristics of the powder and improving its temperature controllability, utilizing the characteristics, the accuracy, high temperature, short time,
Enables continuous heating or cooling.

【0052】特に、請求項1に記載の連続式粉粒体温度
制御装置によれば、粉粒体が連続的に供給され排出され
る温度制御槽に、所定温度の気体を吹き込むことによっ
て、成形機などに排出供給される粉粒体の温度を制御す
るもので、温度制御槽から排出される粉粒体の実温度を
測定し、その実温度と目標温度との関係から、温度制御
槽に吹き込む気体の気体温度を自動的に制御して、粉粒
体を目標温度にするようにしているので、制御単位が小
さく供給単位毎に温度制御するため、制御効果の伝達が
早く、その点を利用して自動制御することによって、短
時間で追随性のよい温度制御を実現することができる。
また、高温時間が短いので、前述の加水分解反応等に起
因する問題を引き起こす事もない。
In particular, according to the continuous powder temperature control apparatus of the first aspect, a gas at a predetermined temperature is blown into a temperature control tank into which the powder is continuously supplied and discharged. It controls the temperature of the granules discharged and supplied to the machine, etc. It measures the actual temperature of the granules discharged from the temperature control tank and blows it into the temperature control tank based on the relationship between the actual temperature and the target temperature. Since the gas temperature of the gas is automatically controlled to keep the powder at the target temperature, the control unit is small and the temperature is controlled for each supply unit, so the control effect is transmitted quickly and that point is used. By performing automatic control, temperature control with good followability can be realized in a short time.
Further, since the high-temperature time is short, there is no problem caused by the above-mentioned hydrolysis reaction.

【0053】請求項2に記載の連続式粉粒体温度制御装
置によれば、請求項1の効果に加え、温度制御の基礎デ
ータとして、温度制御槽に吹き込む気体の気体温度も用
いているので、制御対象の入口側のデータも含めて制御
判断することになり、所定の気体温度にされる前の気体
に温度変動があった場合にも対応することができ、環境
変化への追随性が向上し、制御性がさらによくなる。
According to the continuous powder temperature control apparatus of the second aspect, in addition to the effect of the first aspect, the gas temperature of the gas blown into the temperature control tank is used as the basic data of the temperature control. Therefore, the control judgment is performed including the data on the inlet side of the controlled object, and it is possible to cope with a case where the gas fluctuates before the predetermined gas temperature is obtained. And controllability is further improved.

【0054】請求項3に記載の連続式粉粒体温度制御装
置によれば、請求項1または2の効果に加え、前記温度
制御槽として連続式流動槽を用いているので、粉粒体が
適切な制御単位で処理され、制御空気が、粉粒体に均一
に行き渡り、局所加熱あるいは冷却が発生せず、短時間
で、正確に目標温度を達成することができムラがない。
According to the continuous powder temperature control apparatus of the third aspect, in addition to the effect of the first or second aspect, since the continuous fluidized tank is used as the temperature control tank, the granular material is The processing is performed in an appropriate control unit, the control air is uniformly distributed to the granules, no local heating or cooling occurs, the target temperature can be accurately achieved in a short time, and there is no unevenness.

【0055】請求項4に記載の連続式粉粒体温度制御装
置によれば、請求項3の効果に加え、連続式流動槽とし
て多段式床傾斜型の連続式流動槽を用いているので、制
御対象の粉粒体は、傾斜床にそって、順に多段式のより
高い温度の部分に移動して行き、粉粒体の移動が滑らか
で、温度制御効果がたかく、また、最終段のものだけが
排出されるので、温度制御が不完全なものが、次工程に
排出供給されることがない。
According to the continuous granular material temperature control device of the fourth aspect, in addition to the effect of the third aspect, the continuous fluidized tank is a multi-stage inclined-bed continuous fluidized vessel. The granular material to be controlled moves along the inclined floor to the multi-stage higher temperature part in order, and the movement of the granular material is smooth, the temperature control effect is high, and the final stage Is discharged, so that the incompletely controlled temperature is not discharged and supplied to the next step.

【0056】請求項5に記載の連続式粉粒体温度制御装
置によれば、請求項1〜4の効果に加え、前記温度制御
槽内に、温度制御に用いられた気体から非気体成分を捕
集し再利用する排気バッフルを設けているので、資源の
有効利用が図れ、排気フィルタが目詰まりすることが少
なくなり、保守性が向上する。請求項6に記載の連続式
粉粒体温度制御装置によれば、請求項1〜5の効果に加
え、前記温度制御槽の外側に熱媒体を流すジャケットを
設け、または/かつ、前記温度制御槽の内部に熱媒体を
流す管を設けているので、温度制御槽の熱容量が大きく
なり、制御対象の粉粒体の量に対して、温度制御槽を小
型化することができ、装置全体を小型化することができ
る。
According to the fifth aspect of the present invention, in addition to the effects of the first to fourth aspects, in addition to the effects of the first to fourth aspects, non-gaseous components are removed from the gas used for temperature control in the temperature control tank. Since the exhaust baffle for collecting and reusing the exhaust gas is provided, the resources can be effectively used, the clogging of the exhaust filter is reduced, and the maintainability is improved. According to the continuous powder temperature control apparatus of the sixth aspect, in addition to the effects of the first to fifth aspects, a jacket for flowing a heat medium is provided outside the temperature control tank, and / or the temperature control is performed. Since the pipe through which the heat medium flows is provided inside the tank, the heat capacity of the temperature control tank is increased, and the temperature control tank can be reduced in size with respect to the amount of the granular material to be controlled. The size can be reduced.

【0057】請求項7に記載の連続式粉粒体温度制御装
置によれば、請求項1〜6の効果に加え、温度制御槽に
吹き込む気体を加熱する加熱手段を有し、または/か
つ、温度制御槽に吹き込む気体を冷却する冷却手段を有
し、粉粒体を加熱または/かつ冷却するようにしている
ので、粉粒体の加熱、冷却、あるいはその双方とも、一
台の装置ですることができるので、設置場所の節約、コ
ストダウンを図ることができる。
According to the seventh aspect of the present invention, in addition to the effects of the first to sixth aspects, in addition to the effects of the first to sixth aspects, there is provided a heating means for heating the gas blown into the temperature control tank, and / or Since it has a cooling means for cooling the gas blown into the temperature control tank and heats and / or cools the granular material, the heating and / or cooling of the granular material is performed by one apparatus. As a result, the installation space can be saved and the cost can be reduced.

【0058】請求項8に記載の連続式粉粒体温度制御装
置によれば、請求項1〜7の効果に加え、プラスチック
などの射出成形機の原料供給口に設置され、射出成形機
に必要な所定温度の粉粒体を連続的に供給するようにし
ているので、短時間、連続的、安定した高温度の供給を
要求するプラスチックなどの射出成形機に相応しい。
According to the continuous type powder temperature control apparatus of the eighth aspect, in addition to the effects of the first to seventh aspects, the apparatus is installed at a material supply port of an injection molding machine such as a plastic, and is required for the injection molding machine. Since the powdery material at a predetermined temperature is continuously supplied, it is suitable for an injection molding machine for plastics or the like which requires a continuous, stable and high temperature supply for a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続式粉粒体温度制御装置の一例の全
体構成を示す概略説明図
FIG. 1 is a schematic explanatory view showing an entire configuration of an example of a continuous powder temperature control apparatus of the present invention.

【図2】本発明の連続式粉粒体温度制御装置における温
度制御の一例を示すグラフ
FIG. 2 is a graph showing an example of temperature control in the continuous powder temperature control apparatus of the present invention.

【図3】本発明の連続式粉粒体温度制御装置の他例の全
体構成を示す概略説明図
FIG. 3 is a schematic explanatory view showing the overall configuration of another example of the continuous powder temperature control apparatus of the present invention.

【図4】本発明の連続式粉粒体温度制御装置の他例の要
部構成を示す概略説明図
FIG. 4 is a schematic explanatory view showing a main part configuration of another example of the continuous powder temperature control apparatus of the present invention.

【図5】本発明の連続式粉粒体温度制御装置を有した射
出成形機の一例の全体構成を示す概略説明図
FIG. 5 is a schematic explanatory view showing an entire configuration of an example of an injection molding machine having a continuous powder temperature control apparatus of the present invention.

【図6】従来の連続式粉粒体加熱機を有した射出成形機
の全体構成を示す概略説明図
FIG. 6 is a schematic explanatory view showing the entire configuration of an injection molding machine having a conventional continuous powder heating machine.

【符号の説明】[Explanation of symbols]

A、B、C 連続式粉粒体温度制御装置 m 粉粒体 1 送風ブロア 2 ヒータ 3 温度制御槽 4 排気フィルタ 5 実温度センサ 6 粉粒体温度調節器 7 気体温度センサ 8 気体温度調節器 13 冷却コイル 14 冷凍機 15 ジャケット 16 管 31 送風口 32 風量調整弁 33 流動床 38 排気バッフル 120 乾燥機 130 射出成形機 A, B, C Continuous particle temperature controller m Powder 1 Blower 2 Heater 3 Temperature control tank 4 Exhaust filter 5 Actual temperature sensor 6 Powder temperature controller 7 Gas temperature sensor 8 Gas temperature controller 13 Cooling coil 14 Refrigerator 15 Jacket 16 Pipe 31 Blow port 32 Air volume control valve 33 Fluidized bed 38 Exhaust baffle 120 Dryer 130 Injection molding machine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29C 45/78 B29C 45/78 F26B 17/14 F26B 17/14 Z (72)発明者 金沢 伸好 埼玉県川越市芳野台2丁目8番68号 株式 会社松井製作所東京工場内 (72)発明者 大野 勉 大阪府枚方市長尾家具町1丁目10番4号 株式会社松井製作所技術開発センター内 (72)発明者 松井 治 大阪府大阪市中央区谷町6丁目5番26号 株式会社松井製作所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B29C 45/78 B29C 45/78 F26B 17/14 F26B 17/14 Z (72) Inventor Nobuyoshi Kanazawa 2 Yoshinodai, Kawagoe-shi, Saitama No. 8-68 Matsui Manufacturing Co., Ltd. Tokyo factory (72) Inventor Tsutomu Ohno 1-10-4 Nagao Furniture Town, Hirakata City, Osaka Prefecture Matsui Manufacturing Co., Ltd.Technical Development Center (72) Inventor Osamu Matsui Osaka Osaka 6-5-26 Tanimachi, Chuo-ku, Yokohama-shi Matsui Manufacturing Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】粉粒体が連続的に供給され排出される温度
制御槽に、所定温度の気体を吹き込むことによって、成
形機などに排出供給される粉粒体の温度を制御する連続
式粉粒体温度制御装置であって、 温度制御槽から排出される粉粒体の実温度を測定し、そ
の実温度と目標温度との関係から、前記温度制御槽に吹
き込む気体の気体温度を自動的に制御して、粉粒体を前
記目標温度にするようにした連続式粉粒体温度制御装
置。
1. A continuous powder for controlling the temperature of a granular material discharged and supplied to a molding machine or the like by blowing a gas at a predetermined temperature into a temperature control tank into which the granular material is continuously supplied and discharged. A granule temperature control device, which measures the actual temperature of the powder and granules discharged from the temperature control tank, and automatically determines the gas temperature of the gas blown into the temperature control tank from the relationship between the actual temperature and the target temperature. A continuous granular material temperature control device that controls the granular material to reach the target temperature.
【請求項2】粉粒体が連続的に供給され排出される温度
制御槽内の粉粒体に、所定温度の気体を吹き込むことに
よって、成形機などに排出供給される粉粒体の温度を制
御する連続式粉粒体温度制御装置であって、 温度制御槽から排出される粉粒体の実温度と温度制御槽
に吹き込む気体の気体温度とを測定し、これらの温度と
目標温度との関係から、前記気体温度を自動的に制御し
て、粉粒体を前記目標温度にするようにした連続式粉粒
体温度制御装置。
2. A method of blowing a gas at a predetermined temperature into a temperature control tank in which a powder is continuously supplied and discharged to reduce the temperature of the powder discharged and supplied to a molding machine or the like. This is a continuous powder temperature controller for controlling the temperature of the powder, which measures the actual temperature of the powder discharged from the temperature control tank and the gas temperature of the gas blown into the temperature control tank. In view of the above, a continuous granular material temperature control device that automatically controls the gas temperature to bring the granular material to the target temperature.
【請求項3】請求項1または2において、前記温度制御
槽は、連続式流動槽である連続式粉粒体温度制御装置。
3. The temperature control device according to claim 1, wherein the temperature control tank is a continuous fluidized tank.
【請求項4】請求項3において、前記連続式流動槽は、
多段式床傾斜型の連続式流動槽である連続式粉粒体温度
制御装置。
4. The method according to claim 3, wherein the continuous fluidized bed comprises:
A continuous powder temperature controller that is a multi-stage inclined-bed continuous fluidized tank.
【請求項5】請求項1〜4において、前記温度制御槽内
に、温度制御に用いられた気体から非気体成分を捕集す
る排気バッフルを設けた連続式粉粒体温度制御装置。
5. The continuous granular material temperature control apparatus according to claim 1, wherein an exhaust baffle for collecting non-gas components from gas used for temperature control is provided in said temperature control tank.
【請求項6】請求項1〜5において、前記温度制御槽の
外側に熱媒体を流すジャケットを設け、または/かつ、
前記温度制御槽の内部に熱媒体を流す管を設けた連続式
粉粒体温度制御装置。
6. The method according to claim 1, wherein a jacket for flowing a heat medium is provided outside the temperature control tank, and / or
A continuous granular material temperature control device provided with a pipe for flowing a heat medium inside the temperature control tank.
【請求項7】請求項1〜6において、前記温度制御槽に
吹き込む気体を加熱する加熱手段を有し、または/か
つ、前記温度制御槽に吹き込む気体を冷却する冷却手段
を有し、粉粒体を加熱または/かつ冷却する連続式粉粒
体温度制御装置。
7. The method according to claim 1, further comprising heating means for heating the gas blown into said temperature control tank, and / or cooling means for cooling the gas blown into said temperature control tank. A continuous powder temperature controller for heating and / or cooling the body.
【請求項8】請求項1〜7において、前記連続式粉粒体
温度制御装置は、プラスチックなどの射出成形機の原料
供給口に設置され、前記射出成形機に必要な所定温度の
粉粒体を連続的に供給する連続式粉粒体温度制御装置。
8. The method according to claim 1, wherein the continuous powder temperature control device is installed at a raw material supply port of an injection molding machine made of plastic or the like and has a predetermined temperature required for the injection molding machine. Continuous granule temperature control device that continuously supplies water.
JP3581098A 1998-02-18 1998-02-18 Continuous powder temperature controller Expired - Lifetime JP3936792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3581098A JP3936792B2 (en) 1998-02-18 1998-02-18 Continuous powder temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3581098A JP3936792B2 (en) 1998-02-18 1998-02-18 Continuous powder temperature controller

Publications (2)

Publication Number Publication Date
JPH11230670A true JPH11230670A (en) 1999-08-27
JP3936792B2 JP3936792B2 (en) 2007-06-27

Family

ID=12452296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3581098A Expired - Lifetime JP3936792B2 (en) 1998-02-18 1998-02-18 Continuous powder temperature controller

Country Status (1)

Country Link
JP (1) JP3936792B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089243A (en) * 2006-10-02 2008-04-17 Tsukishima Kikai Co Ltd Fluidized drier, and drying method for object to be dried
JP2012251669A (en) * 2011-05-31 2012-12-20 Mitsubishi Heavy Ind Ltd Fluid bed drying apparatus
JP2016026919A (en) * 2014-07-01 2016-02-18 株式会社カワタ Pretreatment method of molding material, pretreatment device, injection molding machine, and injection molding method
CN108607488A (en) * 2018-05-08 2018-10-02 广西有色金属集团汇元锰业有限公司 Manganese dioxide chemical combination stone slurry system and its control method
DE112022001716T5 (en) 2021-03-25 2024-01-11 Sumitomo Heavy Industries, Ltd. MATERIAL PREHEATING DEVICE AND INJECTION DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089243A (en) * 2006-10-02 2008-04-17 Tsukishima Kikai Co Ltd Fluidized drier, and drying method for object to be dried
JP2012251669A (en) * 2011-05-31 2012-12-20 Mitsubishi Heavy Ind Ltd Fluid bed drying apparatus
JP2016026919A (en) * 2014-07-01 2016-02-18 株式会社カワタ Pretreatment method of molding material, pretreatment device, injection molding machine, and injection molding method
CN108607488A (en) * 2018-05-08 2018-10-02 广西有色金属集团汇元锰业有限公司 Manganese dioxide chemical combination stone slurry system and its control method
DE112022001716T5 (en) 2021-03-25 2024-01-11 Sumitomo Heavy Industries, Ltd. MATERIAL PREHEATING DEVICE AND INJECTION DEVICE

Also Published As

Publication number Publication date
JP3936792B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
EP2186613B1 (en) High-efficiency system for dehumidifying and/or drying plastic materials
US6449875B1 (en) Method of heating bulk material, especially granular plastic material
JP3502212B2 (en) Apparatus and method for drying plastic pellets in a controlled manner
US4509272A (en) Method and apparatus for drying moist exhaust air from one or more bulk material drying hoppers
US6951065B2 (en) Method and apparatus for controlling gas flow through granulate in drying hoppers
EP2447027B1 (en) A dehumidification process for granular plastic material and a dehumidification plant operating according to the process
CN113454412B (en) Treatment method and treatment apparatus for treating polymer particulate material
JPH11230670A (en) Continuous powder particle temperature controller
JP5737928B2 (en) Method for producing dry granule
US5182871A (en) Apparatus for drying bulk materials
CN111671121A (en) Material moisture content control system, drum-type cut tobacco dryer and material moisture content control method
JP2019038258A (en) Method and system for injection molding of plastic material in granular form
AU2017410333A1 (en) Method and device for producing an expanded granulate
CN110962256B (en) Powder supply device
WO2021074847A1 (en) Plant for drying granular polymeric material and related drying process
US4487577A (en) Adaptive control for thermal dryer
JPWO2019163059A1 (en) Continuous production system, method and inspection sorting device
CN101726160A (en) Airflow drying method and device for dispersed material
CN212279854U (en) Material moisture content control system and drum-type cut tobacco dryer
EP3978853A1 (en) A vertical dryer silo
JP4142832B2 (en) Continuous powder temperature controller
CN205929129U (en) Cable material manufacturing system
CN113518901A (en) Powder processing method and powder processing device
JP3059879B2 (en) Granulation control device using fluidized bed
US20220134601A1 (en) Method and apparatus for processing plastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term