JPH11228496A - Production of polyene derivative - Google Patents

Production of polyene derivative

Info

Publication number
JPH11228496A
JPH11228496A JP10026077A JP2607798A JPH11228496A JP H11228496 A JPH11228496 A JP H11228496A JP 10026077 A JP10026077 A JP 10026077A JP 2607798 A JP2607798 A JP 2607798A JP H11228496 A JPH11228496 A JP H11228496A
Authority
JP
Japan
Prior art keywords
reaction
acid
polyene
derivative
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10026077A
Other languages
Japanese (ja)
Inventor
Toshiya Takahashi
寿也 高橋
Shinzo Seko
信三 世古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10026077A priority Critical patent/JPH11228496A/en
Publication of JPH11228496A publication Critical patent/JPH11228496A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/06Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms
    • C07C403/12Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms by esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for selectively, and industrially advantageously producing a polyene derivative important as a medicine intermediate from a cheap raw material without passing β-ionone by subjecting a specific alcohol derivative of a polyene to a dehydration reaction. SOLUTION: An alcohol derivative of a polyene of formula I (R is a protective group of hydroxy group, such as acetyl group) is subjected to a dehydration reaction such as an acid-catalyzed reaction, a Chugaev reaction and a Burgess reaction to provide the objective polyene derivative of formula II. The alcohol derivative of the polyene is synthesized by several steps from geraniol, and either of E- and Z-geometrical isomers, a mixture thereof, and either of a racemic body and an optically active body can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医薬中間体として
重要なポリエン誘導体の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyene derivative which is important as a pharmaceutical intermediate.

【0002】[0002]

【従来の技術】従来、下記一般式(2)で示されるポリ
エン誘導体の製造法としてはC13のアルデヒド(β―
ヨノン)を鍵中間体として、側鎖を増炭する手法が用い
られてきた。しかし選択的にポリエン誘導体(2)を製
造する方法は知られていない。また、β―ヨノンの合成
には多段階のプロセスを経ており、市場では非常に高価
な原料である。
2. Description of the Related Art Conventionally, as a method for producing a polyene derivative represented by the following general formula (2), a C13 aldehyde (β-
Yonone) has been used as a key intermediate to increase the carbon content of the side chain. However, a method for selectively producing the polyene derivative (2) is not known. Further, the synthesis of β-yonone is a multi-step process, and is a very expensive raw material on the market.

【0003】[0003]

【発明が解決しようとする課題】本発明は、β―ヨノン
を経由せず安価な原料を用いてC10とC10のカップ
リングからなる中間体を経てポリエン誘導体(2)の選
択的かつ工業的有利な製造法を提供しようとするもので
ある。
DISCLOSURE OF THE INVENTION The present invention provides a selective and industrially advantageous polyene derivative (2) via an intermediate consisting of C10 to C10 coupling using an inexpensive raw material without passing through β-yonone. It is intended to provide a simple manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果本発明に至った。す
なわち、本発明は一般式(1) (式中、Rは水酸基の保護基を示す。)で示されるポリ
エンアルコール誘導体を脱水反応に供することを特徴と
する一般式(2) (式中、Rは水酸基の保護基を示す。)で示されるポリ
エン誘導体の工業的有利な製造法を提供するものであ
る。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention relates to general formula (1) Wherein R represents a hydroxyl-protecting group. The polyene alcohol derivative represented by the general formula (2) is subjected to a dehydration reaction. (Wherein, R represents a protecting group for a hydroxyl group).

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。一般式(1)または(2)で示される化合物にお
いて、水酸基の保護基としてはアセチル、ピバロイル、
ベンゾイル、p−ニトロベンゾイルなどのアシル基、ト
リメチルシリル、t―ブチルジメチルシリル、t−ブチ
ルジフェニルシリルなどのシリル基、テトラヒドロピラ
ニル、メトキシメチル、メトキシエトキシメチル、1−
エトキシエチルなどのアルコキシメチル基、ベンジル
基、p−メトキシベンジル基、t−ブチル基、トリチル
基、メチル基、トリクロロエトキシカルボニル基、アリ
ルオキシカルボニル基等が挙げられ、アセチル基が好ま
しく用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the compound represented by the general formula (1) or (2), acetyl, pivaloyl,
Acyl groups such as benzoyl and p-nitrobenzoyl; silyl groups such as trimethylsilyl, t-butyldimethylsilyl and t-butyldiphenylsilyl; tetrahydropyranyl, methoxymethyl, methoxyethoxymethyl, 1-
Examples thereof include an alkoxymethyl group such as ethoxyethyl, a benzyl group, a p-methoxybenzyl group, a t-butyl group, a trityl group, a methyl group, a trichloroethoxycarbonyl group, an allyloxycarbonyl group, and an acetyl group is preferably used.

【0006】上記脱水反応としては、酸触媒反応、チュ
ガエフ( Chugaev)反応、ブルゲス(Burgess)反応等
が挙げられる。
The dehydration reaction includes an acid catalyzed reaction, a Chugaev reaction, a Burgess reaction and the like.

【0007】まず、酸触媒反応について説明する。酸触
媒としては、イオン交換樹脂、ヘテロポリ酸、 ルイス
酸、プロトン酸、アルカリ金属の硫酸水素塩、酸塩化物
等が挙げられる。具体的にはイオン交換樹脂としては末
端にスルホン酸基を有する強酸性タイプのものが好まし
い。ルイス酸としては、四塩化チタン、塩化亜鉛、三弗
化ホウ素エーテル錯体、希土類のトリフレート等、プロ
トン酸としては、臭化水素酸、塩酸、硫酸、無水トリフ
ルオロメタンスルホン酸等のスルホン酸類、安息香酸
等、酸塩化物としては塩化チオニル、オキシ塩化燐等が
挙げられる。酸触媒の使用量はポリエンアルコール誘導
体(1)に対して、0.01〜2モル倍もしくは0.01〜2重
量倍が好ましく用いられる。
First, the acid catalyzed reaction will be described. Examples of the acid catalyst include an ion exchange resin, a heteropoly acid, a Lewis acid, a proton acid, an alkali metal hydrogen sulfate, and an acid chloride. Specifically, as the ion exchange resin, a strongly acidic type having a sulfonic acid group at a terminal is preferable. Examples of the Lewis acid include titanium tetrachloride, zinc chloride, boron trifluoride ether complex, and rare earth triflate. Examples of the protic acid include sulfonic acids such as hydrobromic acid, hydrochloric acid, sulfuric acid, and trifluoromethanesulfonic anhydride, and benzoic acid. Acids and acid chlorides include thionyl chloride, phosphorus oxychloride and the like. The amount of the acid catalyst to be used is preferably 0.01 to 2 times by mole or 0.01 to 2 times by weight based on the polyene alcohol derivative (1).

【0008】酸触媒反応には、通常、有機溶媒単一もし
くは水との混合溶媒が用いられ、かかる有機溶媒として
は、 n−ヘキサン、シクロヘキサン、n−ペンタン、ト
ルエン、キシレン等の炭化水素系溶媒、ジエチルエーテ
ル、テトラヒドロフラン、アニソール等のエーテル系溶
媒、 クロロホルム、ジクロロメタン、1,2-ジクロロエ
タン、モノクロロベンゼン、o−ジクロロベンゼン等の
ハロゲン系溶媒、またはN,N−ジメチルホルムアミ
ド、ジメチルスルホキシド、N、N−ジメチルアセトア
ミド、ヘキサメチルホスホリックトリアミド等の非プロ
トン性極性溶媒が挙げられる。
In the acid catalyzed reaction, a single organic solvent or a mixed solvent with water is usually used, and examples of such organic solvents include hydrocarbon solvents such as n-hexane, cyclohexane, n-pentane, toluene and xylene. , Diethyl ether, tetrahydrofuran, anisole and other ether solvents; chloroform, dichloromethane, 1,2-dichloroethane, monochlorobenzene, o-dichlorobenzene and other halogen solvents, or N, N-dimethylformamide, dimethyl sulfoxide, N, N -Aprotic polar solvents such as dimethylacetamide and hexamethylphosphoric triamide.

【0009】反応温度は、通常、−78℃から使用する溶
媒の沸点の範囲であり、好ましくは−30℃〜50℃の
範囲である。また、反応時間は、反応で用いる触媒の種
類ならびに反応温度によって異なるが、通常1時間から
24時間程度の範囲である。反応後、通常の後処理操作
をすることによりポリエン誘導体(2)を得ることがで
きる。
The reaction temperature is generally in the range of -78 ° C to the boiling point of the solvent used, preferably in the range of -30 ° C to 50 ° C. The reaction time varies depending on the type of catalyst used in the reaction and the reaction temperature, but is usually in the range of about 1 to 24 hours. After the reaction, the polyene derivative (2) can be obtained by performing ordinary post-treatment operations.

【0010】必要に応じて、シリカゲルクロマトグラフ
ィーなどにより精製することができる。また原料のポリ
エンアルコール誘導体(1)はEまたはZ幾何異性体の
いずれであっても、またその混合物であってもよい。ま
た、ラセミ体でも光学活性体であってもよい。なお、原
料のポリエン誘導体はゲラニオールより数ステップで合
成することができる。
[0010] If necessary, it can be purified by silica gel chromatography or the like. The raw material polyene alcohol derivative (1) may be either E or Z geometric isomer or a mixture thereof. Further, it may be a racemic body or an optically active body. The raw material polyene derivative can be synthesized from geraniol in several steps.

【0011】チュガエフ反応を用いる場合にはTetrahed
ron Letters ,28 , 2795,(1987)に記載の方法に準じて
脱水反応を実施すればよい。チュガエフ反応は、例え
ば、ポリエンアルコール誘導体(1)に水素化ナトリウ
ム等の塩基(約1〜2モル倍)、二硫化炭素(約1〜5
モル倍)を加え、さらにアルキルハライドを添加し、通
常、0〜50℃で加熱した後、得られたキサンテートを
通常、100〜250℃で1〜10時間加熱することに
より実施することができる。
When the Chugaev reaction is used, Tetrahed
The dehydration reaction may be performed according to the method described in Ron Letters, 28, 2795, (1987). The Chugaev reaction is carried out, for example, by adding a base such as sodium hydride (about 1 to 2 times by mole) to a polyene alcohol derivative (1) and carbon disulfide (about 1 to 5 times).
Mol times), further adding an alkyl halide, and generally heating at 0 to 50 ° C, and then heating the obtained xanthate at 100 to 250 ° C for 1 to 10 hours.

【0012】ブルゲス反応を用いる場合にはTetrahedro
n, 23 , 4677,(1992)に記載の方法に準じて脱水反応を
実施すればよい。ブルゲス反応は、例えば、ポリエンア
ルコール誘導体(1)に水素化ナトリウム等の塩基(約
1〜2モル倍)を加え、通常、10〜70℃で、ブルゲ
ス試薬(CH32CNSO2N(C25))を通常、1〜
2モル倍加え同温で3〜24時間反応させることにより
実施することができる。
When the Burgess reaction is used, Tetrahedro
The dehydration reaction may be carried out according to the method described in n, 23, 4677, (1992). In the Burgess reaction, for example, a base such as sodium hydride (about 1 to 2 times by mole) is added to the polyene alcohol derivative (1), and the Burgess reagent (CH 3 O 2 CNSO 2 N (C 2 H 5 )) is usually 1 to
The reaction can be carried out by adding 2 mole times and reacting at the same temperature for 3 to 24 hours.

【0013】[0013]

【発明の効果】本発明によれば、安価な原料を用いてポ
リエン誘導体(2)を工業的有利に製造することができ
る。
According to the present invention, the polyene derivative (2) can be produced industrially advantageously using inexpensive raw materials.

【0014】[0014]

【実施例】以下、実施例により、本発明をさらに詳細に
説明するが、本発明はこれらにより限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0015】(実施例1)乾燥したフラスコに窒素雰囲
気下、1−アセトキシ−5−ヒドロキシ−3,7ジメチ
ル−9−(2,6,6−トリメチルシクロヘキセン−1
−イル)−ノナ2,6,8−トリエン(以下、化合物
(a)) 70 mg(0.202mmol)とTHF3mlを仕込み、攪
拌下、無水トリフルオロメタンスルホン酸23mg(0.202mm
ol)を仕込み、室温で12時間攪拌した。TLCにて原料が
消失したのを確認して反応液を5%の炭酸水素ナトリウム
水溶液に注加し、エーテルにて抽出した。有機層は飽和
食塩水で洗浄し、無水硫酸マグネシウムにて脱水後、溶
媒を留去することにより粗製物を得た。得られた粗製物
は、シリカゲルカラムクロマトグラフィーで精製し、1
−アセトキシ−3,7−ジメチル−9−(2,6,6−
トリメチルシクロヘキセン−2−イル)−ノナ−2,
5,7,9−テトラエン(以下、化合物(b))を収率
85.1%で得た。
(Example 1) 1-acetoxy-5-hydroxy-3,7dimethyl-9- (2,6,6-trimethylcyclohexene-1) was placed in a dried flask under a nitrogen atmosphere.
-Yl) -nona 2,6,8-triene (hereinafter referred to as compound (a)) 70 mg (0.202 mmol) and THF 3 ml were charged, and trifluoromethanesulfonic anhydride 23 mg (0.202 mm
ol) and stirred at room temperature for 12 hours. After confirming the disappearance of the starting materials by TLC, the reaction solution was poured into a 5% aqueous sodium hydrogen carbonate solution, and extracted with ether. The organic layer was washed with saturated saline, dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a crude product. The obtained crude product was purified by silica gel column chromatography,
-Acetoxy-3,7-dimethyl-9- (2,6,6-
Trimethylcyclohexen-2-yl) -nona-2,
5,7,9-Tetraene (hereinafter, compound (b)) in yield
Obtained at 85.1%.

【0016】(実施例2)実施例1の無水トリフルオロ
メタンスルホン酸を三弗化ホウ素エーテル錯体に替え同
様に室温で3時間反応させ同様の後処理・精製をするこ
とにより、化合物(b)と1−アセトキシ−3,7−ジ
メチル−9−(2,6,6−トリメチルシクロヘキセン
−1−イル)−ノナ−2,4,6,8−テトラエン(以
下、化合物(c))との5:1の混合物を収率80.6%で
得た。
(Example 2) The compound (b) was reacted with the compound (b) by subjecting the trifluoromethanesulfonic anhydride of Example 1 to a boron trifluoride etherate complex and reacting at room temperature for 3 hours to carry out the same post-treatment and purification. 1-acetoxy-3,7-dimethyl-9- (2,6,6-trimethylcyclohexen-1-yl) -nona-2,4,6,8-tetraene (hereinafter referred to as compound (c)) 1 was obtained in a yield of 80.6%.

【0017】(実施例3)Chugaev反応 乾燥した4つ口フラスコに窒素雰囲気下、THF10ml
と60%水素化ナトリウム0.04g(0.96mmol)を仕込み、
0℃に冷却した。冷却後、化合物(a)0.3g(0.87mmol)
を二硫化炭素1.5mlに溶解した液をゆっくりと滴下し
た。滴下後還流下、30分間攪拌して室温に冷却する。
その後、よう化メチル0.15g(1.04mmol)を滴下し、滴下
後30分間還流下攪拌した。反応液は氷水にあけエーテ
ルで抽出し、飽和塩化アンモニウム水溶液で洗浄し、無
水硫酸マゲネシウムで乾燥後、溶媒を留去することによ
り粗製物を得た。得られた粗製物はシリカゲルカラムク
ロマトグラフィーにて精製し、Xanthateを得、さらにこ
の精製物をフラスコに仕込みDMF5mlに溶解し、15
0℃で6時間加熱した。原料の消失をTLCにて確認し、
冷却後炭酸水素ナトリウム水溶液に注加し、エーテルで
抽出した。さらに有機層は飽和食塩水にて洗浄し、無水
硫酸マグネシウムで脱水後、溶媒を留去することにより
粗製物を得た。得られた粗製物はシリカゲルカラムクロ
マトグラフィーにて精製し、化合物(b)を収率79.1%
で得た。
(Example 3) Chugaev reaction In a dry four-necked flask, 10 ml of THF was placed under a nitrogen atmosphere.
And 0.04 g (0.96 mmol) of 60% sodium hydride
Cooled to 0 ° C. After cooling, 0.3 g (0.87 mmol) of compound (a)
Was dissolved slowly in 1.5 ml of carbon disulfide. After the dropwise addition, the mixture is stirred for 30 minutes under reflux and cooled to room temperature.
Thereafter, 0.15 g (1.04 mmol) of methyl iodide was added dropwise, and the mixture was stirred under reflux for 30 minutes after the addition. The reaction solution was poured into ice water, extracted with ether, washed with a saturated aqueous solution of ammonium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain a crude product. The obtained crude product was purified by silica gel column chromatography to obtain Xanthate. This purified product was further charged in a flask and dissolved in 5 ml of DMF.
Heat at 0 ° C. for 6 hours. Confirm the disappearance of raw materials by TLC,
After cooling, the mixture was poured into an aqueous sodium hydrogen carbonate solution and extracted with ether. Further, the organic layer was washed with saturated saline, dehydrated with anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a crude product. The obtained crude product was purified by silica gel column chromatography to give compound (b) in a yield of 79.1%.
I got it.

【0018】(実施例4)Burgess反応 乾燥した4つ口フラスコに窒素雰囲気下、THF6mlと
60%水素化ナトリウム0.02g(0.38mmol)を仕込み、
その後化合物(a)0.13g(0.38mmol)を滴下した。室温
で1時間攪拌後Burgess試薬0.10g(0.42mmol)を仕込み、
室温で12時間攪拌後さらに50℃で1時間加熱した。
原料の消失はTLCにて確認して反応液は水に注加し、エ
ーテルで抽出した。さらに有機層は飽和食塩水にて洗浄
し、無水硫酸マグネシウムで脱水後、溶媒を留去するこ
とにより粗製物を得た。得られた粗製物はシリカゲルカ
ラムクロマトグラフィーにて精製し、化合物(b)を収
率30.5%で得た。
Example 4 Burgess Reaction A dry four-necked flask was charged with 6 ml of THF and 0.02 g (0.38 mmol) of 60% sodium hydride in a nitrogen atmosphere.
Thereafter, 0.13 g (0.38 mmol) of the compound (a) was added dropwise. After stirring at room temperature for 1 hour, 0.10 g (0.42 mmol) of Burgess reagent was charged,
After stirring at room temperature for 12 hours, the mixture was further heated at 50 ° C. for 1 hour.
The disappearance of the raw materials was confirmed by TLC, and the reaction solution was poured into water and extracted with ether. Further, the organic layer was washed with saturated saline, dehydrated with anhydrous magnesium sulfate, and then the solvent was distilled off to obtain a crude product. The obtained crude product was purified by silica gel column chromatography to obtain compound (b) at a yield of 30.5%.

【0019】その他の実施例を以下の表に示す。すべて
実施例1に記載の方法に準じた。
Other examples are shown in the following table. All methods were according to the method described in Example 1.

【表1】 [Table 1]

【0020】註) IER:強酸性イオン交換樹脂 Duolite CC-265H Nafion−H:イオン交換樹脂(市販品) PW6Mo6:ヘテロポリ酸(市販品) Tf:トリフルオロメチルスルホニルNote) IER: Strongly acidic ion exchange resin Duolite CC-265H Nafion-H: Ion exchange resin (commercially available) PW6Mo6: Heteropolyacid (commercially available) Tf: trifluoromethylsulfonyl

【0021】上記の化合物(b)および(c)は既知化
合物であるので文献値および標品のNMRデータとの比較
により構造決定した。以下に実施例で用いた化合物の構
造式を示す。
Since the above compounds (b) and (c) are known compounds, their structures were determined by comparison with literature values and NMR data of a standard. The structural formulas of the compounds used in the examples are shown below.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 31/22 B01J 31/22 X C07C 67/297 C07C 67/297 403/12 403/12 // C07B 61/00 300 C07B 61/00 300 Continuation of the front page (51) Int.Cl. 6 Identification code FI B01J 31/22 B01J 31/22 X C07C 67/297 C07C 67/297 403/12 403/12 // C07B 61/00 300 C07B 61/00 300

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式(1) (式中、Rは水酸基の保護基を示す。)で示されるポリ
エンアルコール誘導体を脱水反応に供することを特徴と
する一般式(2) (式中、Rは水酸基の保護基を示す。)で示されるポリ
エン誘導体の製造法。
1. The general formula (1) Wherein R represents a hydroxyl-protecting group. The polyene alcohol derivative represented by the general formula (2) is subjected to a dehydration reaction. (Wherein, R represents a hydroxyl-protecting group).
【請求項2】水酸基の保護基がアセチル基である請求項
1に記載の製造法。
2. The method according to claim 1, wherein the protecting group for the hydroxyl group is an acetyl group.
【請求項3】脱水反応が酸触媒反応、チュガエフ(Chug
aev)反応またはブルゲス(Burgess)反応である請求項
1に記載の製造法。
3. The dehydration reaction is an acid-catalyzed reaction, Chugaev
2. The process according to claim 1, wherein the process is aev) or Burgess reaction.
【請求項4】酸触媒反応の酸触媒がイオン交換樹脂、ヘ
テロポリ酸、 ルイス酸、プロトン酸、酸無水物、アル
カリ金属の硫酸水素塩または酸塩化物である請求項3に
記載の製造法。
4. The process according to claim 3, wherein the acid catalyst in the acid-catalyzed reaction is an ion exchange resin, a heteropoly acid, a Lewis acid, a protonic acid, an acid anhydride, an alkali metal hydrogen sulfate or an acid chloride.
JP10026077A 1998-02-06 1998-02-06 Production of polyene derivative Withdrawn JPH11228496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10026077A JPH11228496A (en) 1998-02-06 1998-02-06 Production of polyene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10026077A JPH11228496A (en) 1998-02-06 1998-02-06 Production of polyene derivative

Publications (1)

Publication Number Publication Date
JPH11228496A true JPH11228496A (en) 1999-08-24

Family

ID=12183591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10026077A Withdrawn JPH11228496A (en) 1998-02-06 1998-02-06 Production of polyene derivative

Country Status (1)

Country Link
JP (1) JPH11228496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184407A (en) * 2007-01-29 2008-08-14 Tsumura & Co Method for producing (z)-ligustilide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184407A (en) * 2007-01-29 2008-08-14 Tsumura & Co Method for producing (z)-ligustilide

Similar Documents

Publication Publication Date Title
JPH0358332B2 (en)
JPH11228496A (en) Production of polyene derivative
JPH075500B2 (en) Hydroquinone derivative and method for producing the same
US7049455B2 (en) Process for producing shogaols and intermediates for the synthesis thereof
JP4467890B2 (en) Chloromethylation of thiophene
JP3285391B2 (en) Method for producing 2-phenoxybenzoic acid
JP2002179622A (en) Method for producing 4-acetoxystyrene
CN112479941B (en) Preparation method of 2-substituted-3-aryl benzyl halide derivative
Juaristi et al. Stereochemistry of dithianyllithium addition to cyclohexanone
JPH02271A (en) Technique for forming phenolalkylthiol and application of this technique to synthesis of 4-acyl-2-alkylthiophenol
KR100570279B1 (en) Intermediates of coenzyme qn and process for the preparation thereof
KR100713029B1 (en) Process for the preparation of hydroquinone derivatives
JP4304758B2 (en) Method for producing para-acetoxystyrene
JP2620109B2 (en) Polyfunctional phenoxyarene compounds and their preparation
JP2640688B2 (en) Carbamate derivatives and methods for their production
KR910009234B1 (en) Process for the preparation of 2-(4-amino phenyl)-2-methyl propyl alcohol
JPH0692339B2 (en) Method for producing ortho-aliphatic oxyphenol derivative
CN117142996A (en) Monoamine inhibitor intermediate and synthetic method and application thereof
JP3777818B2 (en) Halogen compounds, triene derivatives and methods for producing them
JPH0332536B2 (en)
HU229518B1 (en) A process for the preparation of 13-cis-retinoic acid
JPH01117839A (en) Production of 2-halobenzaldehyde or/and 4-halobenzaldehyde
JPS60139637A (en) Production of 2-alkylresorcinol
EP0073447A1 (en) Process for producing 1-(p-prenylphenyl)ethanol
JPS5929065B2 (en) Phenoxypropylamine

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050202