JPH11227087A - Porous polytetrafluoroethylene membrane for gas dissolution - Google Patents

Porous polytetrafluoroethylene membrane for gas dissolution

Info

Publication number
JPH11227087A
JPH11227087A JP10051386A JP5138698A JPH11227087A JP H11227087 A JPH11227087 A JP H11227087A JP 10051386 A JP10051386 A JP 10051386A JP 5138698 A JP5138698 A JP 5138698A JP H11227087 A JPH11227087 A JP H11227087A
Authority
JP
Japan
Prior art keywords
gas
liquid
membrane
porous
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10051386A
Other languages
Japanese (ja)
Other versions
JP3873434B2 (en
Inventor
Toru Morita
徹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5138698A priority Critical patent/JP3873434B2/en
Publication of JPH11227087A publication Critical patent/JPH11227087A/en
Application granted granted Critical
Publication of JP3873434B2 publication Critical patent/JP3873434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Detergent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the liquid pressure resistance, the diffusion properties of gas into the interior of a membrane, the absorption properties of a gas into a liquid to be treated or the like by providing an asymmetric membrane consisting of a densely formed layer with small dia. pores arranged on the side coming into contact with the liquid to be treated and a support layer with larger dia. pores than the pores of the densely formed layer. SOLUTION: A densely formed layer 2 with small dia. pores are arranged on the side coming into contact with a liquid to be treated and a support layer 3 with larger dia. pores than the pores of the densely formed layer is arranged on the side coming into contact with a liquid to be treated to form a tubular asymmetric membrane 4 of a composite structure. Plural pieces of tubular asymmetric membrane 4 are stored, in a bundle form, inside a case 5, which is, in turn, sealed with a sealing part 6. Further, an integrally formed inner cylinder 5 as a support is introduced into an outer cylinder 7 and a cap 9 is attached to the outer cylinder 7 through a gasket 8. The liquid to be treated is made to flow into the inside of the tubular asymmetric membrane from a liquid inlet 10 and is drained from a liquid outlet 11. The gas such as an ozone gas is introduced through a gas inlet 12 and is made to circulate to the outside of the tubular asymmetric membrane to be discharged from a gas outlet 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体溶解用多孔質
ポリテトラフルオロエチレン膜に関し、さらに詳しく
は、小孔径で耐液圧性に優れ、気−液の接触面積を大き
くすることができる緻密層と、相対的に大孔径で、適度
の気孔率と肉厚を持たせることができ、気体の拡散性が
良好で、機械的強度に優れた支持層とを有する複合構造
の非対称膜からなる気体溶解用多孔質ポリテトラフルオ
ロエチレン膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous polytetrafluoroethylene membrane for dissolving a gas, and more particularly, to a dense layer having a small pore diameter, excellent hydraulic resistance, and a large gas-liquid contact area. And a gas comprising a composite structure asymmetric membrane having a relatively large pore diameter, a suitable porosity and thickness, a good gas diffusion property, and a support layer having excellent mechanical strength. The present invention relates to a porous polytetrafluoroethylene membrane for dissolution.

【0002】[0002]

【従来の技術】オゾンや炭酸ガスなどの各種気体を溶解
させた水などの液体は、洗浄液などとして利用されてい
る。例えば、半導体製造工程において、オゾン添加超純
水が湿式洗浄処理で用いられている。オゾン添加超純水
は、微量(ppmのオーダー)のオゾンを添加した超純
水である。超純水中に溶解したオゾンは、クリーンで強
力な酸化剤として働き、シリコンウェーハ上の界面活性
剤等の残留有機物を分解・除去し、均一で平坦な酸化膜
を形成する。また、液晶ディスプレイ製造工程において
も、ガラス基板の洗浄、エッチング処理後の洗浄、ラビ
ング処理後の洗浄などで、適度に加温した超純水が用い
られているが、オゾン添加超純水を用いることにより、
有機物やレジスト残渣の除去効率を高めることが提案さ
れ、一部実用化されている。
2. Description of the Related Art Liquids such as water in which various gases such as ozone and carbon dioxide are dissolved are used as cleaning liquids. For example, in a semiconductor manufacturing process, ozone-added ultrapure water is used in a wet cleaning process. Ozone-added ultrapure water is ultrapure water to which a very small amount (on the order of ppm) of ozone has been added. Ozone dissolved in ultrapure water acts as a clean and powerful oxidizing agent, decomposes and removes residual organic substances such as a surfactant on a silicon wafer, and forms a uniform and flat oxide film. Also, in the liquid crystal display manufacturing process, ultra-pure water that is appropriately heated is used for cleaning the glass substrate, cleaning after the etching process, cleaning after the rubbing process, etc., but uses ozone-added ultra-pure water. By doing
It has been proposed to improve the removal efficiency of organic substances and resist residues, and some of them have been put to practical use.

【0003】ところが、オゾンなどの気体を、超純水な
どの液体に効率的に、かつ、溶解量を制御して溶解させ
ることは、困難な課題であった。従来、気体を液体中に
溶解させる方法として、気体と液体を機械的に混合す
る方法、気体を液体中でバブリングする方法、ポリ
テトラフルオロエチレン(以下、PTFEと略記)から
なる多孔質PTFEチューブを使用する方法などが知ら
れている。これらの方法のなかで、の機械的混合法
は、液体中に一定量の気体を効率よく溶解させることが
難しく、しかも、混合装置や部品から流出する微量の金
属イオンの混入の問題がある。金属イオンが混入した液
体は、高純度が要求される半導体や液晶関連用途に用い
ることができない。のバブリング法は、気体の溶解効
率が悪く、気体の溶解量の制御も困難で、しかもバブリ
ング時に溶解しなかった気体が系外に放出されやすく、
オゾンなどの有害ガスの溶解に使用するのが不適当であ
る。また、バブリング法においても、使用する装置や部
品からの微量な金属イオンの混入の問題がある。
[0003] However, it has been difficult to efficiently dissolve a gas such as ozone in a liquid such as ultrapure water while controlling the amount of dissolution. Conventionally, as a method of dissolving a gas in a liquid, a method of mechanically mixing a gas and a liquid, a method of bubbling a gas in a liquid, and a porous PTFE tube made of polytetrafluoroethylene (hereinafter abbreviated as PTFE) are used. Methods of use are known. Among these methods, the mechanical mixing method has a problem that it is difficult to efficiently dissolve a certain amount of gas in a liquid, and there is a problem that a small amount of metal ions flowing out of the mixing device or parts are mixed. Liquids mixed with metal ions cannot be used for semiconductor and liquid crystal related applications that require high purity. In the bubbling method, gas dissolution efficiency is poor, it is difficult to control the amount of gas dissolved, and moreover, gas that has not been dissolved during bubbling is likely to be released out of the system.
Inappropriate for use in dissolving harmful gases such as ozone. Also in the bubbling method, there is a problem that a small amount of metal ions are mixed in from a device or a component to be used.

【0004】これに対して、の多孔質PTFEチュー
ブを使用する方法では、気体と被処理液体とをチューブ
状の多孔質PTFE膜を介して接触させ、多孔質PTF
E膜の疎水性と気体透過性を利用して、気体を被処理液
体中に溶解させるため、金属イオンの混入の問題を回避
することができる。しかも、多孔質PTFEチューブ
は、多数本を束ねてモジュール化することにより、単位
容量当りの膜面積を大きくすることができ、また、気体
の分圧を調整することにより、膜を介して透過する気体
の液体中へのバブリングを防止しつつ、ヘンリーの気体
溶解の法則に従って効率良く気体を溶解させることが可
能である。そこで、特開平3−188988号公報に
は、PTFEの押出成形チューブを延伸して得られる多
孔質PTFEチューブをオゾン溶解モジュールの膜とし
て用いることが提案されている。
On the other hand, in the method using a porous PTFE tube, a gas and a liquid to be treated are brought into contact with each other through a tubular porous PTFE membrane to form a porous PTFE tube.
Since the gas is dissolved in the liquid to be treated by utilizing the hydrophobicity and gas permeability of the E film, the problem of mixing of metal ions can be avoided. In addition, the porous PTFE tube can be made into a module by bundling a large number of the tubes, so that the membrane area per unit volume can be increased, and the permeation through the membrane can be achieved by adjusting the partial pressure of the gas. The gas can be efficiently dissolved according to Henry's law of gas dissolution while preventing bubbling of the gas into the liquid. Therefore, Japanese Patent Application Laid-Open No. Hei 3-188988 proposes using a porous PTFE tube obtained by stretching an extruded PTFE tube as a membrane of an ozone dissolving module.

【0005】しかしながら、前記の如き単層の多孔質P
TFEチューブは、耐液圧性と、気体の透過性や溶解効
率とのバランスをとることが困難である。一般に、気体
溶解用多孔質膜には、(1)膜内部が被処理液体に濡れ
ないだけの耐液圧性を有すること、(2)オゾンなどの
気体が膜内部で速やかに拡散すること、(3)被処理液
体に対する気体の吸収速度が大きいこと、などの諸特性
を有することが要求される。しかし、従来の多孔質PT
FEチューブは、これらの諸特性に劣るものであった。
However, the single-layer porous P
It is difficult for TFE tubes to balance liquid pressure resistance with gas permeability and dissolution efficiency. In general, a gas-dissolving porous membrane has (1) that the inside of the membrane has liquid pressure resistance enough not to be wet with the liquid to be treated, (2) that gas such as ozone diffuses quickly inside the membrane, 3) It is required to have various characteristics such as a high gas absorption rate for the liquid to be treated. However, conventional porous PT
The FE tube was inferior to these properties.

【0006】すなわち、多孔質PTFEチューブは、気
体溶解用多孔質膜として使用する場合、一般に、1〜3
kg/cm2程度の液圧に耐えるだけの耐液圧性を有す
ることが要求されるが、そのためには、延伸倍率を小さ
くして、孔径を小さくする必要がある。ところが、多孔
質PTFEチューブは、押出成形チューブを長手方向に
延伸加工することにより得ているため、延伸倍率を小さ
くして、孔径を小さくすると、気孔率が極端に小さくな
る。多孔質PTFEチューブは、気孔率が小さくなる
と、気体の拡散性・透過性が低下することに加えて、被
処理液体と接触して気体の吸収が行われる膜表面の開孔
面積も小さくなり、気体の吸収速度(溶解効率)が低下
する。一方、多孔質PTFEチューブは、延伸倍率を高
めて気孔率を大きくすると、孔径も大きくなり、その結
果、耐液圧性が低下し、低圧で被処理液体が膜内部(多
孔内)に侵入して、気体の溶解効率が低下するか、場合
によっては、被処理液体の漏れを生じるなどして使用不
可となることがある。また、多孔質PTFEチューブ
は、押出成形段階でのチューブサイズに限界があること
から、肉厚を小さくして、気体の透過性を高めることが
困難である。さらに、多孔質PTFEチューブは、孔径
にバラツキがあるため、気体の透過量を一定にすること
が困難で、気体中に含まれる不純物の除去も十分ではな
い。
That is, when a porous PTFE tube is used as a porous membrane for dissolving a gas, it is generally 1 to 3.
It is required to have a liquid pressure resistance enough to withstand a liquid pressure of about kg / cm 2 , but for that purpose, it is necessary to reduce the stretching ratio and the pore diameter. However, since the porous PTFE tube is obtained by stretching the extruded tube in the longitudinal direction, if the stretching ratio is reduced and the pore diameter is reduced, the porosity becomes extremely small. As the porosity of the porous PTFE tube decreases, in addition to the decrease in gas diffusivity and permeability, the pore area of the membrane surface where the gas is absorbed by contact with the liquid to be treated also decreases, The gas absorption rate (dissolution efficiency) decreases. On the other hand, in a porous PTFE tube, when the porosity is increased by increasing the stretching ratio, the pore diameter also increases, and as a result, the liquid pressure resistance decreases, and the liquid to be treated enters the inside of the membrane (into the pores) at a low pressure. In some cases, the dissolution efficiency of the gas is reduced, or in some cases, the liquid to be treated is leaked, and the liquid cannot be used. Further, the porous PTFE tube has a limitation in the tube size at the stage of extrusion molding, so that it is difficult to reduce the wall thickness and increase the gas permeability. Furthermore, since the porous PTFE tube has a variation in pore diameter, it is difficult to make the gas permeation amount constant, and the removal of impurities contained in the gas is not sufficient.

【0007】従来の多孔質PTFEチューブの問題点を
改良するために、特開平7−213880号公報には、
(a)多孔質PTFEチューブの外周にPTFEシート
を延伸して得られる多孔質PTFEフィルムを積層した
チューブ状膜、及び(b)多孔質PTFEフィルムを巻
き重ねて形成したチューブ状膜を、それぞれオゾン溶解
モジュールに使用することが提案されている。PTFE
シートを一軸または二軸延伸して得られる多孔質PTF
Eフィルムは、極めて薄いフィルムとすることが可能で
あるばかりではなく、孔径を均一にし、かつ、空隙率
(気孔率)を任意に制御することが可能である。そのた
め、同公報には、多孔質PTFEフィルム層によって、
オゾンの透過量を均一にすることができ、オゾン中の不
純物を濾過するフィルター性能に優れ、さらには、高強
度で、耐圧力性、耐圧縮性に優れたチューブ状膜を得る
ことができると説明されている。そして、同公報の実施
例1〜2には、多孔質PTFEチューブの外周に多孔質
PTFEフィルムをラッピングした後、焼成してチュー
ブ状膜を作成し、それをオゾン溶解モジュールに使用し
た例が示されている。また、同公報の実施例3には、多
孔質PTFEフィルムをステンレスパイプに5回ロール
状に巻き付け、焼成した後、ステンレスパイプを抜き取
り、チューブ状膜を得、それをオゾン溶解モジュールに
使用した例が示されている。これらのオゾン溶解モジュ
ールでは、チューブ状膜の内側に超純水を流し、外側に
オゾンガスを通気している。
In order to improve the problem of the conventional porous PTFE tube, Japanese Patent Application Laid-Open No. 7-21880 discloses
(A) a tubular film formed by laminating a porous PTFE film obtained by stretching a PTFE sheet around the outer periphery of a porous PTFE tube; and (b) a tubular film formed by winding a porous PTFE film on an ozone. It has been proposed for use in lysis modules. PTFE
Porous PTF obtained by uniaxially or biaxially stretching a sheet
The E film can not only be an extremely thin film, but also can make the pore diameter uniform and arbitrarily control the porosity (porosity). Therefore, the publication states that the porous PTFE film layer
It is possible to make the permeation amount of ozone uniform, to provide an excellent filter performance for filtering impurities in ozone, and to obtain a tubular membrane having high strength, excellent pressure resistance, and excellent compression resistance. Described. Examples 1 and 2 of the publication disclose examples in which a porous PTFE film is wrapped around the outer periphery of the porous PTFE tube and then fired to form a tubular film, which is used in an ozone dissolving module. Have been. Further, in Example 3 of the publication, a porous PTFE film was wound around a stainless steel pipe five times in a roll form, fired, then the stainless steel pipe was pulled out to obtain a tubular membrane, which was used for an ozone dissolving module. It is shown. In these ozone dissolving modules, ultrapure water is flowed inside the tubular membrane, and ozone gas is ventilated outside.

【0008】しかしながら、特開平7−213880号
公報に記載のチューブ状膜は、多孔質PTFEフィルム
の利点を十分に活かしているとは言えない。より具体的
に、前記(a)のチューブ状膜は、被処理液体が流れる
チューブの内側に孔径の大きな多孔質PTFEチューブ
層が配置されており、オゾンガスと接触する外側に配置
されている孔径の小さな多孔質PTFEフィルム層は、
気−液の接触に寄与しない。つまり、前記(a)のチュ
ーブ状膜では、気体が被処理液体と接触して、気体の吸
収(液体への溶解)が行われる側に、性能に劣る多孔質
PTFEチューブ層が配置されている。したがって、こ
のチューブ状膜は、被処理流体の使用圧力に対する信頼
性が不十分であり、部分的または全体的に被処理流体の
膜内部への侵入を許す。その場合、膜内部に侵入した被
処理液体は、流れにくく、よどんだ状態となるため、局
部的にオゾン濃度が上り、気−液の接触界面での被処理
液体へのオゾンガス溶解量が極端に落ちる。それによっ
て、オゾンガスが定常的に被処理液体に到達しないの
で、所定の流速でオゾン溶解モジュールから流れ出る被
処理液体へのオゾンガスの溶解性が極端に落ちる。さら
に、このチューブ状膜は、液圧によって内側の多孔質P
TFEチューブ層の一部に膨れが生じて、外側に巻き付
けた多孔質PTFEフィルム層の剥離が生じやすい。
However, it cannot be said that the tubular membrane described in Japanese Patent Application Laid-Open No. Hei 7-21880 fully utilizes the advantages of the porous PTFE film. More specifically, in the tubular membrane of (a), a porous PTFE tube layer having a large pore diameter is arranged inside a tube through which a liquid to be treated flows, and a porous membrane having a pore diameter arranged outside in contact with ozone gas. The small porous PTFE film layer
Does not contribute to gas-liquid contact. That is, in the tubular film of (a), the porous PTFE tube layer having poor performance is arranged on the side where the gas comes into contact with the liquid to be treated and the gas is absorbed (dissolved in the liquid). . Therefore, the tubular membrane has insufficient reliability with respect to the working pressure of the fluid to be treated, and partially or entirely allows the fluid to be treated to enter the inside of the membrane. In that case, the liquid to be treated that has entered the inside of the film is difficult to flow and becomes stagnant, so that the ozone concentration locally increases, and the amount of dissolved ozone gas in the liquid to be treated at the gas-liquid contact interface becomes extremely large. drop down. As a result, the ozone gas does not constantly reach the liquid to be treated, so that the solubility of the ozone gas in the liquid to be treated flowing out of the ozone dissolving module at a predetermined flow rate is extremely reduced. In addition, the tubular membrane has a porous P
A part of the TFE tube layer is swollen, and the porous PTFE film layer wound around the outside is likely to peel off.

【0009】また、前記(b)の多孔質PTFEフィル
ムを巻き重ねて形成したチューブ状膜は、機械的強度を
確保するため多数回(例えば、実施例3では5回)積層
しており、しかも層間接着性を確実にするために、各層
間にPFAやFEP等の接着剤を介入させるため、有効
な気孔数が減少し、フィルムの潰れも含めて、気体の透
過性が大きく低下してしまい、多孔質PTFEフィルム
本来の特性を活かすことができない。
The tubular film formed by winding the porous PTFE film of (b) is laminated many times (for example, five times in Example 3) in order to secure mechanical strength. In order to ensure interlayer adhesion, an adhesive such as PFA or FEP is interposed between the layers, so that the effective number of pores is reduced, and the gas permeability including the collapse of the film is greatly reduced. However, the original characteristics of the porous PTFE film cannot be utilized.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、耐液
圧性、膜内部への気体の拡散性、被処理液体中への気体
の吸収性、機械的強度などに優れた気体溶解用多孔質ポ
リテトラフルオロエチレン膜を提供することにある。本
発明者らは、前記従来技術の問題点を克服するために鋭
意研究した結果、被処理液体と接触する側に、小孔径で
耐液圧性に優れ、気−液の接触面積を大きくすることが
できる緻密層を配置し、気体と接触する側に、相対的に
大孔径で、適度の気孔率と肉厚を持たせることができ、
気体の透過性が良好で、機械的強度に優れた支持層を配
置した複合構造の非対称膜からなる気体溶解用多孔質P
TFE膜に想到するに至った。本発明の気体溶解用多孔
質PTFE膜は、前記目的を十分に達成することができ
る。本発明は、これらの知見に基づいて完成するに至っ
たものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas-dissolving porous material which is excellent in liquid pressure resistance, gas diffusion into a membrane, gas absorption into a liquid to be treated, and mechanical strength. To provide a porous polytetrafluoroethylene membrane. The present inventors have conducted intensive studies to overcome the problems of the prior art, and as a result, on the side that comes into contact with the liquid to be treated, a small hole diameter, excellent liquid pressure resistance, and a large gas-liquid contact area. It is possible to arrange a dense layer that can have a relatively large pore diameter, moderate porosity and thickness on the side that comes into contact with the gas,
Porous P for gas dissolution consisting of an asymmetric membrane having a composite structure in which a support layer having excellent gas permeability and excellent mechanical strength is disposed.
They came to the TFE film. The gas-dissolving porous PTFE membrane of the present invention can sufficiently achieve the above object. The present invention has been completed based on these findings.

【0011】[0011]

【課題を解決するための手段】かくして、本発明によれ
ば、気体と被処理液体とを多孔質ポリテトラフルオロエ
チレン膜を介して接触させ、気体を被処理液体中に溶解
させるのに使用する気体溶解用多孔質ポリテトラフルオ
ロエチレン膜において、被処理液体と接触する側には、
小孔径の緻密層(A)が配置され、かつ、気体と接触す
る側には、該緻密層の孔径よりも大きな孔径を有する支
持層(B)が配置された複合構造の非対称膜であること
を特徴とする気体溶解用多孔質ポリテトラフルオロエチ
レン膜が提供される。
Thus, according to the present invention, a gas and a liquid to be treated are brought into contact with each other through a porous polytetrafluoroethylene membrane, and the gas is used to dissolve the gas in the liquid to be treated. In the porous polytetrafluoroethylene membrane for gas dissolution, on the side in contact with the liquid to be treated,
An asymmetric membrane having a composite structure in which a dense layer (A) having a small pore diameter is disposed and a support layer (B) having a pore diameter larger than the pore diameter of the dense layer is disposed on a side that contacts the gas. There is provided a porous polytetrafluoroethylene membrane for gas dissolution characterized by the following.

【0012】また、本発明によれば、以下の各発明が提
供される。 1.気体溶解用多孔質ポリテトラフルオロエチレン膜が
チューブ状膜であって、被処理液体と接触する内面側に
は、緻密層(A)が配置され、かつ、気体と接触する外
面側には、支持層(B)が配置された複合構造のチュー
ブ状非対称膜である前記の気体溶解用多孔質ポリテトラ
フルオロエチレン膜。 2.チューブ状非対称膜が、少なくとも一軸方向に延伸
した多孔質ポリテトラフルオロエチレンシートにより形
成された緻密層(A)と、多孔質ポリテトラフルオロエ
チレンチューブからなる支持層(B)とが積層された複
合構造を有するものである前記の気体溶解用多孔質ポリ
テトラフルオロエチレン膜。 3.複数の気体溶解用多孔質テトラフルオロエチレン膜
を収納した気体溶解用多孔質膜モジュールにおいて、気
体溶解用多孔質テトラフルオロエチレン膜として、前記
の気体溶解用多孔質テトラフルオロエチレン膜を用いた
気体溶解用多孔質膜モジュール。
According to the present invention, the following inventions are provided. 1. The gas-dissolving porous polytetrafluoroethylene film is a tubular film, and a dense layer (A) is disposed on the inner surface side in contact with the liquid to be treated, and the support is provided on the outer surface side in contact with the gas. The above-mentioned porous polytetrafluoroethylene membrane for gas dissolution, which is a tubular asymmetric membrane having a composite structure in which the layer (B) is arranged. 2. A composite in which a dense layer (A) formed of a porous polytetrafluoroethylene sheet in which a tubular asymmetric membrane is stretched at least in a uniaxial direction and a support layer (B) formed of a porous polytetrafluoroethylene tube are laminated. The above-mentioned porous polytetrafluoroethylene membrane for dissolving gas, which has a structure. 3. In the gas-dissolving porous membrane module accommodating a plurality of gas-dissolving porous tetrafluoroethylene membranes, the gas dissolving using the gas-dissolving porous tetrafluoroethylene membrane as the gas dissolving porous tetrafluoroethylene membrane is performed. For porous membrane module.

【0013】[0013]

【発明の実施の形態】(複合構造の非対称膜)本発明の
気体溶解用多孔質PTFE膜は、機能が異なる実質的に
二層の複合構造により、多孔質膜の構造を非対称化した
ものであって、被処理液体と接触する側に緻密層を配置
し、気体と接触する側に孔径の大きな支持層を配置した
ものである。より詳細には、本発明の気体溶解用多孔質
PTFE膜は、気体溶解用多孔質膜モジュールに好適に
用いられる多孔質膜であって、その構造が表裏で実質的
に二層化した非対称複合構造をもち、被処理液体に接す
る側には、孔径が小さく耐液圧性に優れ、かつ、開孔面
積が大きく気−液の接触面積が大きくとれる緻密層を配
置し、気体に接触する側には、適度な肉厚、孔径、気孔
率をもち、適度な強度を保持する支持層を配置したもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION (Asymmetric Membrane of Composite Structure) The porous PTFE film for dissolving gas of the present invention is obtained by asymmetricalizing the porous membrane structure by a substantially two-layer composite structure having different functions. The dense layer is disposed on the side that comes into contact with the liquid to be treated, and the support layer having a large pore diameter is disposed on the side that comes into contact with the gas. More specifically, the gas-dissolving porous PTFE membrane of the present invention is a porous membrane suitably used for a gas-dissolving porous membrane module, the structure of which is substantially double-layered on both sides. On the side in contact with the liquid to be treated, a dense layer with a small pore size and excellent liquid pressure resistance, and a large open area with a large gas-liquid contact area is arranged on the side in contact with the liquid to be treated. Has a suitable thickness, a pore diameter, a porosity, and a support layer having a suitable strength.

【0014】本発明の気体溶解用多孔質PTFE膜は、
平膜でも、あるいはチューブ状膜であってもよい。緻密
層は、孔径が小さく、好ましくは気孔率の大きな多孔質
PTFEシート(フィルム)により形成することができ
る。気体溶解用多孔質PTFE膜がチューブ状膜である
場合、内側の緻密層を孔径の小さな多孔質PTFEチュ
ーブにより形成してもよいが、気孔率を大きくして、気
体の拡散性と気−液接触面積を大きくし、さらには、膜
厚を薄くするには、小孔径で気孔率の大きな多孔質PT
FEシートをチューブ状に形成したものを緻密層に配置
することが好ましい。支持体層は、孔径が大きく、好ま
しくは気孔率も大きな多孔質PTFEシートまたはチュ
ーブにより形成することができる。
The porous PTFE membrane for dissolving gas of the present invention comprises:
It may be a flat membrane or a tubular membrane. The dense layer can be formed of a porous PTFE sheet (film) having a small pore diameter and preferably a large porosity. When the gas-dissolving porous PTFE film is a tubular film, the inner dense layer may be formed by a porous PTFE tube having a small pore size, but the porosity is increased to increase gas diffusivity and gas-liquid. To increase the contact area and further reduce the film thickness, it is necessary to use a porous PT having a small pore size and a large porosity.
It is preferable to arrange the FE sheet formed in a tubular shape in a dense layer. The support layer can be formed from a porous PTFE sheet or tube having a large pore size, preferably a large porosity.

【0015】緻密層は、孔径が小さいので、耐液圧性に
優れ、被処理液体による濡れ(膜内部への侵入)がな
く、しかも緻密層に多孔質PTFEシートを用いると、
気孔率を高めて気−液の接触面積を大きくすることがで
きるので、被処理液体への気体の吸収速度(溶解効率)
を高めることができる。チューブ状膜の場合、緻密層が
内側にあるため、被処理液体の圧力により該被処理液体
の膜内部への侵入を防止するのに十分な耐液圧性を確保
することができ、部分的な膨れ等の問題もない。一方、
支持層(チューブ状膜の場合は、通常、多孔質PTFE
チューブ層)は、孔径が大きく、気孔率も大きくするこ
とができるので、膜内部での気体の拡散性に優れてお
り、さらに、被処理液体の圧力に耐える十分な機械的強
度を持たせることができる。
Since the dense layer has a small pore size, it is excellent in liquid pressure resistance, has no wetting (penetration into the inside of the membrane) by the liquid to be treated, and when a porous PTFE sheet is used for the dense layer,
Since the porosity can be increased to increase the gas-liquid contact area, the rate of gas absorption into the liquid to be treated (dissolution efficiency)
Can be increased. In the case of a tubular film, since the dense layer is inside, it is possible to secure sufficient liquid pressure resistance to prevent the liquid to be treated from entering the inside of the film due to the pressure of the liquid to be treated. There is no problem such as swelling. on the other hand,
Support layer (in the case of a tubular membrane, usually porous PTFE
The tube layer) has a large pore size and a large porosity, so it has excellent gas diffusivity inside the membrane and has sufficient mechanical strength to withstand the pressure of the liquid to be treated. Can be.

【0016】本発明の気体溶解用多孔質PTFE膜は、
一般に、モジュール化して使用される。本発明の気体溶
解用多孔質PTFE膜では、被処理液体にオゾン等の気
体を溶解させるに際し、耐液圧性、気体の吸収性(気−
液の接触面積)、気体の拡散性、機械的強度などの機能
を分けて、それぞれの機能にふさわしい多孔質膜を適切
に配置した複合構造の非対称膜とすることにより、従来
の多孔質PTFEチューブ状膜にはなかった、優れた諸
性能を発揮することができる。前記したとおり、本発明
の複合構造の非対称膜は、平膜(多くの場合、支持体と
ともにモジュール化される)でもよいし、チューブ状膜
でもよい。いずれの場合でも、孔径が小さく耐液圧の高
い緻密層と、孔径及び気孔率が大きく、気体の拡散が容
易な支持層との複合構造であり、被処理液体を緻密層側
に、気体を支持層側に流す。本発明の気体溶解用多孔質
PTFE膜は、膜を高密度に充填したモジュール化が容
易である等のメリットから、実用上は、特にチューブ状
膜であることが望ましい。
The porous PTFE membrane for dissolving gas of the present invention comprises:
Generally, it is used in a modular form. In the gas-dissolving porous PTFE membrane of the present invention, when dissolving a gas such as ozone in a liquid to be treated, it has a liquid pressure resistance and a gas absorption (gas-absorbing property).
A conventional porous PTFE tube by dividing the functions such as liquid contact area), gas diffusivity, and mechanical strength into a composite asymmetric membrane in which porous membranes suitable for each function are appropriately arranged. Excellent performances not found in the film-like film can be exhibited. As described above, the asymmetric membrane having a composite structure of the present invention may be a flat membrane (which is often modularized with a support) or a tubular membrane. In any case, the dense layer having a small pore size and high liquid pressure and a support layer having a large pore size and porosity and easy gas diffusion are provided. Flow to the support layer side. The porous PTFE film for gas dissolution of the present invention is particularly preferably a tubular film in practical use, from the viewpoint that it is easy to make a module in which the film is densely packed and is easily modularized.

【0017】(非対称膜の緻密層)緻密層の孔径(平均
孔径)は、通常、0.01μm以上0.5μm未満、好
ましくは0.01〜0.2μmである。緻密層の孔径が
大き過ぎると、耐液圧性に劣り、通常の使用条件下で、
被処理液体によって濡れやすくなる。緻密層の孔径が小
さ過ぎると、多孔質膜を製造することが困難で、また、
気孔率を大きくすることが困難となる。緻密層の気孔率
は、通常、25〜95%、好ましくは50〜90%であ
り、気孔率が高いほど、緻密層内部での気体の拡散性を
高め、かつ、膜表面での気−液の接触面積を大きくする
ことができる。
(Dense layer of asymmetric membrane) The pore size (average pore size) of the dense layer is usually 0.01 μm or more and less than 0.5 μm, preferably 0.01 to 0.2 μm. If the pore size of the dense layer is too large, the liquid pressure resistance is poor, and under normal use conditions,
It becomes easy to get wet by the liquid to be treated. If the pore size of the dense layer is too small, it is difficult to produce a porous membrane,
It becomes difficult to increase the porosity. The porosity of the dense layer is usually 25 to 95%, preferably 50 to 90%. The higher the porosity, the higher the gas diffusivity inside the dense layer and the more the gas-liquid on the film surface. Can increase the contact area.

【0018】本発明の液体溶解用多孔質PTFE膜は、
複合構造を有する非対称膜であり、耐圧力性や耐圧縮性
などの機械的強度を主として支持層により付与すること
ができること、また、耐液圧性(膜内部が被処理液体に
濡れない性能)は、緻密層の厚み方向のごく表層部分で
維持されることなどから、緻密層の厚みを可能な限り薄
くすることができる。緻密層を薄くすれば、気体の透過
性を高めることができる。ただし、緻密層の厚みは、長
期間の使用に耐えるだけの膜強度、汚れの付着なども勘
案する必要がある。これらを総合的に検討した結果、緻
密層の厚みは、好ましくは5〜300μm、より好まし
くは10〜150μmの範囲であることが分かった。
The porous PTFE membrane for liquid dissolution of the present invention comprises:
An asymmetric membrane with a composite structure that can provide mechanical strength such as pressure resistance and compression resistance mainly by the support layer, and has hydraulic resistance (the ability to prevent the inside of the film from getting wet with the liquid to be treated). The thickness of the dense layer can be reduced as much as possible because it is maintained at a very surface portion in the thickness direction of the dense layer. If the dense layer is made thin, gas permeability can be increased. However, the thickness of the dense layer needs to consider film strength enough to withstand long-term use, adhesion of dirt, and the like. As a result of comprehensive examination of these, it was found that the thickness of the dense layer was preferably in the range of 5 to 300 μm, more preferably 10 to 150 μm.

【0019】緻密層は、好ましくは多孔質PTFEシー
トにより形成する。多孔質PTFEシートは、例えば、
特公昭42−13560号公報、特公昭51−1899
1号公報、特公昭56−17216号公報などに開示さ
れている公知の方法により得ることができる。例えば、
未燒結のPTFE粉末に液状潤滑剤を混和し、押出や圧
延等によりシート状に成形する。得られたシート状成形
物から液状潤滑剤を乾燥除去し、あるいは除去すること
なく、少なくとも一軸方向(通常は、一軸方向または二
軸方向)に延伸する。この方法により、一般に、微細な
繊維(フィブリル)と該繊維によって互いに連結された
結節(ノード)とからなる微細繊維状組織を有する多孔
質PTFEシートが得られる。この方法によれば、所望
に応じて多種多様な孔径、気孔率、孔構造、膜厚を有す
る多孔質PTFEシートを得ることができる。
The dense layer is preferably formed of a porous PTFE sheet. The porous PTFE sheet is, for example,
JP-B-42-13560, JP-B-51-1899
No. 1, JP-B-56-17216, and the like. For example,
A liquid lubricant is mixed with the unsintered PTFE powder and formed into a sheet by extrusion or rolling. The liquid lubricant is dried and removed from the obtained sheet-like molded product, or is stretched at least in a uniaxial direction (normally, a uniaxial direction or a biaxial direction) without removing the liquid lubricant. By this method, a porous PTFE sheet having a fine fibrous structure composed of fine fibers (fibrils) and nodes connected to each other by the fibers is generally obtained. According to this method, a porous PTFE sheet having a variety of pore sizes, porosity, pore structure, and film thickness can be obtained as desired.

【0020】緻密層は、被処理液体の液圧で濡れないこ
とが必要であり、そのため孔径の小さい耐液圧性の高
い、しかも可能な限り開孔面積の大きい構造を有する膜
を配置する。緻密層を構成する多孔質膜としては、未燒
結PTFE粉末と液状潤滑剤との混和物を押出後、圧延
し、シート状に成型した後、少なくとも一軸に延伸した
ものがよい。一般に、この種のシート状成形物は、押出
後、圧延により、薄く、高度に分子配向が付与されるた
め、高い延伸倍率で延伸することができる。したがっ
て、圧延ができない多孔質PTFEチューブに比べて、
孔径が小さく、薄くかつ高い気孔率のシートが得られ
る。多孔質PTFEシートは、一軸延伸に比べて二軸延
伸シートの方が、気孔率が高く、膜厚が薄いにもかかわ
らず、繊維の絡み合いが大きいため、比表面積が大き
く、その結果、孔径が小さく、耐液圧性が大きくなる。
また、一般に、二軸延伸により得られる多孔質PTFE
シートは、二軸延伸の結果、高度に繊維化が進んでいる
ため、空隙率が高く、膜表面の開孔面積も大きくなる。
すなわち、二軸延伸多孔質PTFEシートは、気−液接
触の機会が大きくなり、気体の溶解に有利となる。緻密
層の表面(被処理液体の接触する側)の繊維部と非繊維
部(開孔部)の比率は、非繊維部の比率が高いほど好ま
まく、非繊維部の比率が通常50%以上、好ましくは7
0%以上であることが望ましい。加熱複合化処理の際、
多少の繊維収縮が起こり、非繊維部(開孔部)が小さく
なる傾向にあることから、加熱時に、より収縮の少ない
多孔質PTFEシートを用いることが望ましい。多孔質
シートは、延伸した構造を燒結固定することにより、強
度を向上させることができるが、未燒結のものを支持層
と積層した後、燒結してもよい。
It is necessary that the dense layer is not wetted by the liquid pressure of the liquid to be treated. Therefore, a film having a small hole diameter, high liquid pressure resistance, and a structure having as large an opening area as possible is arranged. As the porous film constituting the dense layer, a material obtained by extruding a mixture of an unsintered PTFE powder and a liquid lubricant, rolling, molding into a sheet, and then stretching at least uniaxially is preferable. In general, this type of sheet-like molded product is thin and highly molecularly oriented by rolling after extrusion, and can be stretched at a high stretching ratio. Therefore, compared to a porous PTFE tube that cannot be rolled,
A thin, high-porosity sheet having a small pore diameter can be obtained. The porous PTFE sheet has a higher specific surface area because the entanglement of the fibers is larger in the biaxially stretched sheet than in the uniaxially stretched sheet, despite the higher porosity and the smaller film thickness. It is small and has high hydraulic resistance.
Generally, porous PTFE obtained by biaxial stretching
Since the sheet is highly fiberized as a result of biaxial stretching, the porosity is high and the pore area on the membrane surface is large.
That is, the biaxially stretched porous PTFE sheet has a greater chance of gas-liquid contact, which is advantageous for gas dissolution. The ratio of the fiber portion and the non-fiber portion (opening portion) on the surface of the dense layer (the side in contact with the liquid to be treated) is better as the ratio of the non-fiber portion is higher, and the ratio of the non-fiber portion is usually 50%. Above, preferably 7
Desirably, it is 0% or more. At the time of heat compounding process,
Since some fiber shrinkage occurs and the non-fiber part (opening part) tends to be small, it is desirable to use a porous PTFE sheet that shrinks less during heating. Although the strength of the porous sheet can be improved by sintering and fixing the stretched structure, the unsintered porous sheet may be sintered after being laminated with the support layer.

【0021】(非対称膜の支持層)支持層は、緻密層の
孔径よりも孔径が大きく、かつ、被処理液体の液圧に対
して、形状を維持できるだけの強度を付与することがで
きるように、孔径、膜厚、気孔率などを設計する。支持
層の孔径は、通常、0.2μm超過10μm以下、好ま
しくは0.5〜2μmである。ただし、支持層の孔径
は、複合化する緻密層の孔径よりも相対的に小さいこと
が必要である。支持層の孔径が小さ過ぎると、気体の拡
散性が低下し、気体の膜透過性、被処理液体に対する気
体の吸収性(溶解効率)などが低下する。支持層の孔径
が大き過ぎると、耐圧強度、加工性などが低下する。支
持層の気孔率は、通常、25〜95%、好ましくは50
〜90%である。支持層の気孔率が低過ぎると、気体の
拡散性が低下する。支持層の気孔率は、耐圧強度や加工
性との兼ね合いを考慮しつつ、できるだけ大きい方が好
ましい。支持層の厚みは、通常、0.1〜5mm、好ま
しくは0.3〜2mmの範囲とすることが、耐圧強度と
気体の拡散性とのバランスから望ましい。
(Support Layer of Asymmetric Membrane) The support layer has a pore size larger than the pore size of the dense layer, and is given such a strength as to maintain the shape with respect to the liquid pressure of the liquid to be treated. , Pore size, film thickness, porosity, etc. are designed. The pore size of the support layer is usually more than 0.2 μm and 10 μm or less, preferably 0.5 to 2 μm. However, the pore size of the support layer needs to be relatively smaller than the pore size of the dense layer to be composited. If the pore size of the support layer is too small, the gas diffusivity decreases, and the gas permeability of the gas and the gas absorption (dissolution efficiency) of the liquid to be treated decrease. If the pore size of the support layer is too large, the pressure resistance, workability, and the like are reduced. The porosity of the support layer is usually 25 to 95%, preferably 50 to 95%.
~ 90%. If the porosity of the support layer is too low, the diffusivity of the gas decreases. The porosity of the support layer is preferably as large as possible in consideration of the balance between the pressure resistance and the workability. The thickness of the support layer is usually in the range of 0.1 to 5 mm, preferably 0.3 to 2 mm, from the viewpoint of the balance between pressure resistance and gas diffusivity.

【0022】支持層は、前記と同様、多孔質PTFEシ
ートから形成することができ、その場合には、二軸延伸
した気孔率の高いものが気体の拡散性の観点から好まし
い。しかしながら、チューブ状膜とする場合には、支持
層を多孔質PTFEチューブで形成することが好まし
い。すなわち、本発明の気体溶解用多孔質PTFE膜が
チューブ状膜の場合、被処理液体と接触する内面側に
は、緻密層が配置され、かつ、気体と接触する外面側に
は、支持層が配置された複合構造のチューブ状非対称膜
であることが好ましい。この場合、支持層としては、孔
径及び気孔率の大きい多孔質PTFEチューブを使用す
ることが、耐圧強度と加工性の観点から、好ましい。
The support layer can be formed from a porous PTFE sheet in the same manner as described above. In this case, a biaxially stretched one having a high porosity is preferable from the viewpoint of gas diffusivity. However, when a tubular membrane is used, the support layer is preferably formed of a porous PTFE tube. That is, when the gas-dissolving porous PTFE membrane of the present invention is a tubular membrane, a dense layer is disposed on the inner surface side in contact with the liquid to be treated, and a support layer is formed on the outer surface side in contact with the gas. It is preferably a tube-shaped asymmetric membrane of a composite structure arranged. In this case, it is preferable to use a porous PTFE tube having a large pore diameter and a high porosity as the support layer from the viewpoint of pressure resistance and workability.

【0023】多孔質PTFEチューブは、未燒結のPT
FE粉末に液状潤滑剤を混和し、押出等によりチューブ
状に成形し、次いで、液状潤滑剤を乾燥除去し、あるい
は除去せずに、成形物を少なくとも一軸方向に延伸する
ことにより調製することができる。多孔質PTFEチュ
ーブは、延伸した構造を燒結固定すると、強度を向上さ
せることができるが、未燒結のものを緻密層と積層した
後、燒結してもよい。多孔質PTFEチューブは、孔径
が0.2μm以下では、気孔率が非常に小さなものしか
得ることができないが、孔径を大きくすると、気孔率も
大きくすることができ、機械的強度も高くすることがで
きる。多孔質PTFEチューブは、長さ方向に延伸した
ものだけではなく、径方向にも膨張させたものが、径方
向の熱収縮性が大きくなり、加熱融着時の収縮力が大き
く働いて、緻密層とより強固に融着できるので好まし
い。この場合、膨張率としては、通常、10〜100
%、好ましくは20〜70%のものが好適に用いられ
る。本発明で使用するPTFEとしては、テトラフルオ
ロエチレンの単独重合体だけではなく、一般に変性PT
FEと呼ばれているような、少量の第2、第3成分を含
む共重合体であってもよい。変性PTFEを使用する
と、熱融着性が向上する。
The porous PTFE tube is made of unsintered PT
It can be prepared by mixing a liquid lubricant with the FE powder, molding the mixture into a tube by extrusion or the like, and then drying or removing the liquid lubricant without stretching, or stretching the molded product in at least one axial direction. it can. The strength of the porous PTFE tube can be improved by sintering and fixing the stretched structure, but the unsintered PTFE tube may be sintered after being laminated with the dense layer. With a porous PTFE tube, if the pore size is 0.2 μm or less, only a very small porosity can be obtained, but if the pore size is increased, the porosity can be increased, and the mechanical strength can be increased. it can. The porous PTFE tube expanded not only in the length direction but also in the radial direction has a large heat shrinkage in the radial direction, and a large shrinkage force at the time of heat fusion acts to achieve a dense structure. This is preferable because it can be more firmly fused with the layer. In this case, the expansion coefficient is usually 10 to 100.
%, Preferably 20 to 70%. As the PTFE used in the present invention, not only a homopolymer of tetrafluoroethylene but also a modified PT
It may be a copolymer containing a small amount of the second and third components, such as a so-called FE. When the modified PTFE is used, the heat fusion property is improved.

【0024】(チューブ状非対称膜)本発明の気体溶解
用多孔質PTFE膜は、チューブ状非対称膜であること
が、膜を高密度に充填したモジュール化が容易である点
で好ましい。このようなチューブ状非対称膜は、少なく
とも一軸方向に延伸した多孔質PTFEシートにより形
成された緻密層と、多孔質PTFEチューブからなる支
持層とが積層された複合構造を有するものが、耐圧強度
などの機械的強度と、気体の拡散性・吸収性とのバラン
ス上、特に好ましい。このような構造のチューブ状非対
称膜を製造するには、例えば、図1に示すように、棒状
支持体(例えば、ステンレス棒)1の外周面に、多孔質
PTFEシート2を一重または二重以上に巻き付けて、
その上に多孔質PTFEチューブを被せ、次いで、多孔
質PTFEチューブの管軸方向への熱収縮を防止した状
態にて、PTFEの融点(約327℃)以上の温度に加
熱融着させ、しかる後、棒状支持体を抜き取る方法があ
る。加熱融着の際に、多孔質PTFEシート同士、及び
多孔質PTFEシートと多孔質PTFEチューブ間が熱
融着される。これによって、図2に示すように、多孔質
PTFEシートにより形成されたチューブ状の緻密層2
と、多孔質PTFEチューブ3からなる支持層3とが積
層された複合構造のチューブ状非対称膜が得られる。な
お、加熱融着の際、多孔質PTFEシート及び多孔質P
TFEチューブが未燒結または半燒結の場合には、同時
に燒結される。
(Tube-like asymmetric membrane) The porous PTFE membrane for dissolving gas of the present invention is preferably a tubular asymmetric membrane in that the membrane is densely packed and modularization is easy. Such a tubular asymmetric membrane has a composite structure in which a dense layer formed of a porous PTFE sheet stretched at least in a uniaxial direction, and a support layer made of a porous PTFE tube are laminated. It is particularly preferable in terms of the balance between the mechanical strength and the diffusivity / absorption of gas. In order to produce a tubular asymmetric membrane having such a structure, for example, as shown in FIG. 1, a single or double or more porous PTFE sheet 2 is provided on the outer peripheral surface of a rod-shaped support (for example, a stainless steel rod) 1. Wrapped around
A porous PTFE tube is put on the PTFE tube, and then the porous PTFE tube is heat-fused to a temperature not lower than the melting point of PTFE (about 327 ° C.) in a state where heat shrinkage in the tube axis direction is prevented. And a method of extracting the rod-shaped support. At the time of heat fusion, the porous PTFE sheets are thermally fused together and between the porous PTFE sheet and the porous PTFE tube. As a result, as shown in FIG. 2, a tubular dense layer 2 formed of a porous PTFE sheet is formed.
And a support layer 3 composed of a porous PTFE tube 3 to form a tubular asymmetric membrane having a composite structure. In addition, at the time of heat fusion, the porous PTFE sheet and the porous P
If the TFE tube is unsintered or semi-sintered, it is sintered at the same time.

【0025】棒状支持体の外周面への多孔質PTFEシ
ートの巻き付け方としては、のり巻き状でもよいし、ス
パイラル状でもよい。この巻き付けによって、多孔質P
TFEシートからなる内表面を有する管状物が形成され
ればよい。ただし、スパイラル状に巻き付けた場合、多
孔質PTFEシート自体の厚みによる段差により、チュ
ーブ内面に凹凸を設けることができ、それによって、被
処理液体に乱流を起こして、気体の溶解効率をより向上
させることができる。多孔質PTFEシートの巻き付け
回数は、合計厚みが、好ましくは5〜300μm、より
好ましくは10〜150μmの範囲になるように調整
し、不必要に巻き付け回数を増やさないようにすること
が望ましい。多孔質PTFEシート同士、または多孔質
PTFEシートと多孔質PTFEチューブ間の接着性が
不足する場合には、接着性樹脂として、FEP(テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合
体)、PFA(テトラフルオロエチレン−パーフルオロ
アルキルビニルエーテル共重合体)等の熱溶融性フッ素
樹脂の粉末やシート等を、例えば、線状、点状に設けて
もよい。また、予め使用するPTFEにFEP、PFA
等を配合するか、分子鎖末端を一部変性したPTFE粉
末でシートもしくはチューブを成形し、これを用いて接
着性をあげてもよい。
The method for winding the porous PTFE sheet around the outer peripheral surface of the rod-shaped support may be a rolled shape or a spiral shape. By this winding, the porous P
It is sufficient that a tubular article having an inner surface made of a TFE sheet is formed. However, when spirally wound, unevenness can be provided on the inner surface of the tube due to the step due to the thickness of the porous PTFE sheet itself, thereby causing a turbulent flow in the liquid to be treated and further improving the gas dissolving efficiency. Can be done. The number of windings of the porous PTFE sheet is preferably adjusted so that the total thickness is in the range of preferably 5 to 300 μm, more preferably 10 to 150 μm, so that the number of windings is not unnecessarily increased. When the adhesion between the porous PTFE sheets or between the porous PTFE sheet and the porous PTFE tube is insufficient, FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene) may be used as the adhesive resin. For example, a powder or a sheet of a heat-fusible fluororesin such as an ethylene-perfluoroalkylvinylether copolymer) may be provided in a linear or dot shape. In addition, FEP, PFA are used for PTFE to be used in advance.
Alternatively, a sheet or tube may be formed from PTFE powder in which the molecular chain ends are partially modified, and the adhesiveness may be improved using this.

【0026】棒状支持体としては、耐熱性や取扱性の観
点から、ステンレスなどの金属の円柱や円筒を使用する
ことが好ましい。棒状支持体は、例えば、センタレス研
磨するなどして、表面を滑らかに仕上げておくことが、
形成したチューブ状非対称膜を破損することなく抜き出
す上で好ましい。また、前記の加熱融着工程で熱膨張し
ていた棒状支持体は、冷却により収縮し、もとのサイズ
にもどることから、一体化した複合化チューブ状膜を容
易に脱型することができる。本法において、多孔質PT
FEシート同士、多孔質PTFEチューブと多孔質PT
FEシート間の接着強度を上げるために、未燒結または
表面の燒結度が低いものを使用することが好ましい。
As the rod-shaped support, it is preferable to use a cylinder or a cylinder made of metal such as stainless steel from the viewpoint of heat resistance and handleability. For the rod-shaped support, for example, it is possible to finish the surface smoothly, such as by centerless polishing,
This is preferable for extracting the formed tubular asymmetric membrane without breaking. Further, the rod-shaped support that has been thermally expanded in the above-mentioned heat fusion step contracts by cooling and returns to its original size, so that the integrated composite tubular membrane can be easily removed from the mold. . In this method, the porous PT
FE sheets, porous PTFE tube and porous PT
In order to increase the adhesive strength between the FE sheets, it is preferable to use one that is not sintered or has a low degree of surface sintering.

【0027】本発明のチューブ状非対称膜は、使用に際
し、内側に液体が流れて内圧がかかっており、緻密層が
支持層を常時抑え、一体化しようとする方向に力がかか
る。したがって、このチューブ状非対称膜は、長期にわ
たり安定した形状維持が可能であり、長期使用が可能で
ある。本発明のチューブ状非対称膜は、一般に、その内
径が0.5〜20mm、孔径が0.01〜10μm、気
孔率が25〜95%の範囲であるが、耐液圧性と耐圧強
度、溶解性能、圧力損失等を考慮すると、内径が0.5
〜8mm、緻密層の孔径が0.01〜0.2μmが望ま
しく、気孔率は高いほどよい。
When the tubular asymmetric membrane of the present invention is used, a liquid flows inside and an internal pressure is applied, so that the dense layer constantly suppresses the support layer, and a force is applied in a direction to be integrated. Therefore, this tubular asymmetric membrane can maintain a stable shape for a long period of time and can be used for a long period of time. The tubular asymmetric membrane of the present invention generally has an inner diameter of 0.5 to 20 mm, a pore diameter of 0.01 to 10 μm, and a porosity of 25 to 95%. Considering the pressure loss, etc., the inner diameter is 0.5
88 mm, the pore diameter of the dense layer is preferably 0.01-0.2 μm, and the higher the porosity, the better.

【0028】(気体溶解用多孔質膜モジュール)本発明
の気体溶解用多孔質PTFE膜は、通常、モジュール化
して使用する。モジュール化は、複数の多孔質PTFE
膜を容器内に収納し、気体と被処理液体とが直接接触す
ることなく、多孔質膜を介して接触するようにし、か
つ、その場合、気体が支持層に、被処理液体が緻密層
に、それぞれ接触するように構成することにより行う。
図3に、チューブ状非対称膜を用いたモジュールの一例
の断面図を示す。多数本のチューブ状非対称膜4を束ね
てケース(内筒)5内に収納し、両端部において、チュ
ーブ状非対称膜相互間を封止用樹脂やエラストマーで封
止して封止部6を形成する。その後、2つ割でできた内
筒5を支持体として一体化したものを外筒7へ挿入し、
ガスケット8を介して、キャップ9を取り付ける。被処
理液体は、液体入口10からチューブ状非対称膜の内側
に流通させ、液体出口11から排出する。オゾンガス等
の気体は、気体入口12から導入して、チューブ状非対
称膜の外側に流通させ、気体出口13から排出する。こ
の間に、被処理液体中にチューブ状非対称膜を介して気
体が吸収・溶解される。チューブ状非対称膜の肉厚、直
径、長さ、本数などは、被処理液体の用途及び要求処理
量などに応じて適宜設計される。複合構造の非対称膜
が、平膜の場合、適当な支持体により非対称膜を保持し
て、モジュール化する。内筒、外筒、ガスケット、キャ
ップなどをすべてPTFEなどの樹脂製にすれば、装置
や部品からの微量の金属の混入を防ぐことができる。ま
た、必要に応じて、気体を密閉系で循環使用するように
構成することができる。
(Porous Membrane Module for Dissolving Gas) The porous PTFE membrane for dissolving gas of the present invention is usually used in the form of a module. Modularization consists of multiple porous PTFE
The membrane is housed in a container so that the gas and the liquid to be treated do not come into direct contact with each other but through the porous membrane, and in that case, the gas is in the support layer, and the liquid to be treated is in the dense layer. , So as to make contact with each other.
FIG. 3 shows a cross-sectional view of an example of a module using a tubular asymmetric membrane. A large number of tubular asymmetric membranes 4 are bundled and stored in a case (inner cylinder) 5, and at both ends, between the tubular asymmetric membranes is sealed with a sealing resin or elastomer to form a sealing portion 6. I do. After that, the one obtained by integrating the split inner cylinder 5 as a support is inserted into the outer cylinder 7,
The cap 9 is attached via the gasket 8. The liquid to be processed flows from the liquid inlet 10 to the inside of the tubular asymmetric membrane, and is discharged from the liquid outlet 11. A gas such as ozone gas is introduced from the gas inlet 12, flows outside the tubular asymmetric membrane, and is discharged from the gas outlet 13. During this time, gas is absorbed and dissolved in the liquid to be treated via the tubular asymmetric membrane. The thickness, diameter, length, number, etc. of the tubular asymmetric membrane are appropriately designed according to the use of the liquid to be treated, the required treatment amount, and the like. When the asymmetric membrane of the composite structure is a flat membrane, the asymmetric membrane is held by a suitable support to be modularized. If the inner cylinder, the outer cylinder, the gasket, the cap, and the like are all made of resin such as PTFE, it is possible to prevent a trace amount of metal from being mixed in the apparatus and parts. If necessary, the gas can be circulated in a closed system.

【0029】オゾンガスなどの気体を溶解させる被処理
液体は、通常、水や純水、超純水等の水系液体であり、
その場合、多孔質PTFE膜の疎水性と気体透過性を利
用して、気体を被処理液体中に溶解させることができ
る。被処理液体が、水系液体に界面活性剤が混入してい
るものである場合や、有機溶媒等である場合には、複合
化非対称多孔質PTFE膜の特に緻密層に、CF3 基等
を有する撥油剤をコーティングすれば、撥油性と気体透
過性により、これらの被処理液体中に気体を溶解させる
ことができる。気体としては、オゾンガス、酸素ガス、
炭酸ガス、アンモニアガスなどが挙げられる。
The liquid to be treated for dissolving a gas such as ozone gas is usually an aqueous liquid such as water, pure water or ultrapure water.
In that case, the gas can be dissolved in the liquid to be treated by utilizing the hydrophobicity and gas permeability of the porous PTFE membrane. When the liquid to be treated is one in which a surfactant is mixed in an aqueous liquid, or when it is an organic solvent or the like, the composite asymmetric porous PTFE membrane particularly has a CF 3 group in a dense layer. If an oil repellent is coated, gas can be dissolved in these liquids to be treated due to oil repellency and gas permeability. As gas, ozone gas, oxygen gas,
Examples include carbon dioxide gas and ammonia gas.

【0030】[0030]

【実施例】以下に実施例及び比較例を挙げて、本発明に
ついてより具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0031】[実施例1]緻密層用として、気孔率85
%、孔径0.2μm、厚み60μmの二軸延伸未焼成の
多孔質PTFEシートを作製し、図1に示すように、こ
の多孔質PTFEシート2を直径2.0mmのステンレ
ス棒1の外周面に2層にハーフラッピングした。この上
に、支持層用として、内径2.5mm、外径3.3m
m、孔径1μm、気孔率75%の、内面が完全には焼結
されていない多孔質PTFEチューブ3を被せ、両端を
針金で縛って、長手方向に収縮しないよう予め拘束し
た。これを360℃で15分間加熱処理した後、冷却
し、両端の針金を外して、多孔質PTFE層を抜き取
り、図2に示す如きチューブ状非対称膜を得た。得られ
たチューブ状非対称膜は、内径2.0mm、外径2.8
mm、耐水圧2.9kg/cm2であった。
Example 1 For a dense layer, a porosity of 85 was used.
%, A pore size of 0.2 μm and a thickness of 60 μm, a biaxially stretched unfired porous PTFE sheet was prepared, and as shown in FIG. 1, this porous PTFE sheet 2 was attached to the outer peripheral surface of a stainless steel rod 1 having a diameter of 2.0 mm. Half-wrapped into two layers. On this, an inner diameter of 2.5 mm and an outer diameter of 3.3 m are used for a support layer.
A porous PTFE tube 3 having an inner diameter of 1 μm, a pore diameter of 1 μm, and a porosity of 75%, whose inner surface was not completely sintered, was covered, and both ends were tied with wires to prevent the tube from shrinking in the longitudinal direction. This was heated at 360 ° C. for 15 minutes, then cooled, the wires at both ends were removed, and the porous PTFE layer was extracted to obtain a tubular asymmetric membrane as shown in FIG. The resulting tubular asymmetric membrane had an inner diameter of 2.0 mm and an outer diameter of 2.8.
mm, and the water pressure resistance was 2.9 kg / cm 2 .

【0032】このチューブ状非対称膜を用いて、図3に
示すように、チューブ状非対称膜が40本のモジュール
を作製した。40本のチューブ状非対称膜4は、PTF
E製内筒5内に収納され、PTFE製ガスケット8、P
TFE製キャップ9、被処理液体入口10、被処理液体
出口11、気体入口12、気体出口13などが設けら
れ、そして、これらが、直径50mm、長さ500mm
の円筒型のPTFE製ケース本体7に収納されている。
このモジュールを用い、被処理液体入口10から純水
(酸素濃度0ppm)を圧力1.1kg/cm2、流量
1L/分で流し、一方、気体入口12から、オゾン濃度
140g/Nm3のオゾンガスを0.5kg/cm2の圧
力で通気した。液温は25℃であった。純水出口11か
ら採取したオゾンが溶解した純水のオゾン濃度は、10
ppmを示した。
Using this tubular asymmetric membrane, a module having 40 tubular asymmetric membranes was prepared as shown in FIG. Forty tubular asymmetric membranes 4 are made of PTF
The PTFE gasket 8, P
A TFE cap 9, a liquid-to-be-processed 10, a liquid-to-be-processed 11, a gas inlet 12, a gas outlet 13 and the like are provided, and these have a diameter of 50 mm and a length of 500 mm.
Is housed in a cylindrical PTFE case body 7.
Using this module, pure water (oxygen concentration 0 ppm) flows at a pressure of 1.1 kg / cm 2 and a flow rate of 1 L / min from the liquid inlet 10 to be treated, while ozone gas having an ozone concentration of 140 g / Nm 3 is supplied from the gas inlet 12. Ventilation was performed at a pressure of 0.5 kg / cm 2 . The liquid temperature was 25 ° C. The ozone concentration of pure water in which ozone collected from the pure water outlet 11 is dissolved is 10
ppm.

【0033】[実施例2]多孔質PTFEシートとし
て、気孔率65%、孔径0.1μm、厚み40μmの二
軸延伸未焼成フィルムを作製して使用したこと以外は、
実施例1と同様にしてチューブ状非対称膜を作製した。
得られたチューブ状非対称膜は、内径2.0mm、外径
2.8mm、耐水圧4.1kg/cm2であった。この
チューブ状非対称膜を用いて、実施例1と同様にしてモ
ジュールを作製した。このモジュールを用いて、被処理
液体入口10から純水(酸素濃度0ppm)を圧力2.
5kg/cm2、流量1L/分で流し、一方、気体入口
12から、純酸素100%ガスを2kg/cm2の圧力
で通気した。液温は25℃であった。純水出口11から
採取した酸素が溶解した純水の溶存酸素濃度は、13p
pmを示した。
Example 2 A biaxially stretched unfired film having a porosity of 65%, a pore diameter of 0.1 μm, and a thickness of 40 μm was prepared and used as a porous PTFE sheet.
A tubular asymmetric membrane was produced in the same manner as in Example 1.
The resulting tubular asymmetric membrane had an inner diameter of 2.0 mm, an outer diameter of 2.8 mm, and a water pressure resistance of 4.1 kg / cm 2 . Using this tubular asymmetric membrane, a module was produced in the same manner as in Example 1. Using this module, pure water (oxygen concentration: 0 ppm) is supplied from the liquid inlet 10 to be treated at a pressure of 2.
A flow of 5 kg / cm 2 and a flow rate of 1 L / min was performed, while 100% pure oxygen gas was passed through the gas inlet 12 at a pressure of 2 kg / cm 2 . The liquid temperature was 25 ° C. The dissolved oxygen concentration of the pure water in which the oxygen collected from the pure water outlet 11 is dissolved is 13 p
pm.

【0034】[比較例1]押出・延伸法により、内径
2.0mm、気孔率40%、孔径0.2μm、厚み0.
5mmの多孔質PTFEチューブを作製した。この多孔
質PTFEチューブの耐水圧は、2.5kg/cm2
あった。この多孔質PTFEチューブを用いたこと遺骸
は、実施例1と同様にしてモジュールを作製した。この
モジュールを用いて、被処理液体入口10から純水(酸
素濃度0ppm)を圧力2.5kg/cm2、流量1L
/分で流し、一方、気体入口12から、純酸素100%
ガスを2kg/cm2の圧力で通気した。液温は25℃
であった。被処理液体出口11から採取した酸素が溶解
した純水の溶存酸素濃度は、初期8ppmを示した。し
かしながら、さらに運転を継続したところ、徐々に溶存
濃度は低下傾向を示した。原因究明のためにモジュール
を解体したところ、一部膜内部に水が侵入していること
が判った。
Comparative Example 1 An inner diameter of 2.0 mm, a porosity of 40%, a pore diameter of 0.2 μm, and a thickness of 0.1 mm were obtained by an extrusion / stretching method.
A 5 mm porous PTFE tube was prepared. The water resistant pressure of this porous PTFE tube was 2.5 kg / cm 2 . A module was produced from the body using the porous PTFE tube in the same manner as in Example 1. Using this module, pure water (oxygen concentration: 0 ppm) was supplied from the inlet of the liquid to be treated 10 at a pressure of 2.5 kg / cm 2 and a flow rate of 1 L.
/ Min, while 100% pure oxygen from gas inlet 12
Gas was vented at a pressure of 2 kg / cm 2 . Liquid temperature is 25 ℃
Met. The dissolved oxygen concentration of pure water in which oxygen collected from the liquid to be treated outlet 11 was dissolved showed an initial concentration of 8 ppm. However, when the operation was further continued, the dissolved concentration gradually decreased. When the module was disassembled for investigating the cause, it was found that water had partially entered the inside of the membrane.

【0035】[0035]

【発明の効果】本発明によれば、耐液圧性、膜内部への
気体の拡散性、被処理液体中への気体の吸収性、機械的
強度などに優れた気体溶解用多孔質PTFE膜が提供さ
れる。本発明の多孔質PTFE膜は、複合構造の非対称
膜であって、緻密層に被処理液体を接触させるように構
成しているため、前記諸特性が顕著に優れている。
According to the present invention, there is provided a porous PTFE film for gas dissolution which is excellent in liquid pressure resistance, gas diffusion into the inside of the film, gas absorption into the liquid to be treated, and mechanical strength. Provided. The porous PTFE membrane of the present invention is an asymmetric membrane having a composite structure, and is configured so that the liquid to be treated is brought into contact with the dense layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、多孔質PTFEシートを用いてチュー
ブ状の緻密層を形成する工程を示す略図である。
FIG. 1 is a schematic view showing a step of forming a tubular dense layer using a porous PTFE sheet.

【図2】図2は、多孔質PTFEシートを用いて形成し
たチューブ状の緻密層の上に、多孔質PTFEチューブ
を被せて、複合化した本発明のチューブ状非対称膜の一
例を示す略図である。
FIG. 2 is a schematic diagram showing an example of a tubular asymmetric membrane of the present invention in which a porous PTFE tube is put on a tubular dense layer formed by using a porous PTFE sheet, and is composited. is there.

【図3】図3は、本発明のチューブ状非対称膜を用いた
モジュールの断面図である。
FIG. 3 is a cross-sectional view of a module using the tubular asymmetric membrane of the present invention.

【符号の説明】[Explanation of symbols]

1:棒状支持体 2:多孔質PTFEシート 3:多孔質PTFEチューブ 4:チューブ状非対称膜 5:内筒 6:封止部 7:外筒 8:ガスケット 9:キャップ 10:被処理液体入口 11:被処理液体出口 12:気体入口 13:気体出口 1: rod-shaped support 2: porous PTFE sheet 3: porous PTFE tube 4: tubular asymmetric membrane 5: inner cylinder 6: sealing portion 7: outer cylinder 8: gasket 9: cap 10: inlet for liquid to be treated 11: Liquid to be treated outlet 12: Gas inlet 13: Gas outlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/78 C02F 1/78 C08J 9/00 CEW C08J 9/00 CEWA C11D 7/02 C11D 7/02 // C08L 27:18 ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI C02F 1/78 C02F 1/78 C08J 9/00 CEW C08J 9/00 CEWA C11D 7/02 C11D 7/02 // C08L 27:18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気体と被処理液体とを多孔質ポリテトラ
フルオロエチレン膜を介して接触させ、気体を被処理液
体中に溶解させるのに使用する気体溶解用多孔質ポリテ
トラフルオロエチレン膜において、被処理液体と接触す
る側には、小孔径の緻密層(A)が配置され、かつ、気
体と接触する側には、該緻密層の孔径よりも大きな孔径
を有する支持層(B)が配置された複合構造の非対称膜
であることを特徴とする気体溶解用多孔質ポリテトラフ
ルオロエチレン膜。
1. A gas-dissolving porous polytetrafluoroethylene membrane used for bringing a gas into contact with a liquid to be treated through a porous polytetrafluoroethylene membrane and dissolving the gas in the liquid to be treated. On the side that contacts the liquid to be treated, a dense layer (A) having a small pore diameter is disposed, and on the side that contacts the gas, a support layer (B) having a pore diameter larger than the pore diameter of the dense layer is disposed. A porous polytetrafluoroethylene membrane for dissolving gas, characterized in that it is an asymmetric membrane having a composite structure.
【請求項2】 気体溶解用多孔質ポリテトラフルオロエ
チレン膜がチューブ状膜であって、被処理液体と接触す
る内面側には、緻密層(A)が配置され、かつ、気体と
接触する外面側には、支持層(B)が配置された複合構
造のチューブ状非対称膜である請求項1記載の気体溶解
用多孔質ポリテトラフルオロエチレン膜。
2. A gas-dissolving porous polytetrafluoroethylene membrane is a tubular membrane, and a dense layer (A) is disposed on an inner surface side in contact with a liquid to be treated, and an outer surface in contact with a gas. The porous polytetrafluoroethylene membrane for gas dissolution according to claim 1, wherein the support is a tubular asymmetric membrane having a composite structure on which a support layer (B) is disposed.
【請求項3】 チューブ状非対称膜が、少なくとも一軸
方向に延伸した多孔質ポリテトラフルオロエチレンシー
トにより形成された緻密層(A)と、多孔質ポリテトラ
フルオロエチレンチューブからなる支持層(B)とが積
層された複合構造を有するものである請求項2記載の気
体溶解用多孔質ポリテトラフルオロエチレン膜。
3. A dense layer (A) in which a tubular asymmetric membrane is formed by a porous polytetrafluoroethylene sheet stretched at least in a uniaxial direction, and a support layer (B) made of a porous polytetrafluoroethylene tube. 3. The porous polytetrafluoroethylene film for gas dissolution according to claim 2, wherein the porous polytetrafluoroethylene film has a composite structure in which is laminated.
【請求項4】 複数の気体溶解用多孔質テトラフルオロ
エチレン膜を収納した気体溶解用多孔質膜モジュールに
おいて、気体溶解用多孔質テトラフルオロエチレン膜と
して、請求項1ないし3のいずれか1項に記載の気体溶
解用多孔質テトラフルオロエチレン膜を用いた気体溶解
用多孔質膜モジュール。
4. The gas-dissolving porous membrane module accommodating a plurality of gas-dissolving porous tetrafluoroethylene membranes according to claim 1, wherein the gas-dissolving porous tetrafluoroethylene membrane is used as the gas-dissolving porous tetrafluoroethylene membrane. A gas-dissolving porous membrane module using the gas-dissolving porous tetrafluoroethylene membrane described above.
JP5138698A 1998-02-17 1998-02-17 Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution Expired - Lifetime JP3873434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5138698A JP3873434B2 (en) 1998-02-17 1998-02-17 Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5138698A JP3873434B2 (en) 1998-02-17 1998-02-17 Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution

Publications (2)

Publication Number Publication Date
JPH11227087A true JPH11227087A (en) 1999-08-24
JP3873434B2 JP3873434B2 (en) 2007-01-24

Family

ID=12885517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5138698A Expired - Lifetime JP3873434B2 (en) 1998-02-17 1998-02-17 Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution

Country Status (1)

Country Link
JP (1) JP3873434B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051187A1 (en) * 2000-01-12 2001-07-19 Sekisui Chemical Co., Ltd. Ozone treating apparatus
JP2001321646A (en) * 2000-05-12 2001-11-20 Japan Gore Tex Inc Gas dissolving device
JP2001330969A (en) * 2000-05-23 2001-11-30 Sekisui Chem Co Ltd Apparatus for removing photoresist
EP2711517A1 (en) 2012-08-30 2014-03-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust emission purification apparatus for internal combustion engine
JP2020179383A (en) * 2019-04-26 2020-11-05 日星電気株式会社 Tube excellent in compression resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106037A (en) * 1992-09-25 1994-04-19 Sumitomo Electric Ind Ltd Tubular porous double layer film and its production
JPH07213880A (en) * 1994-01-31 1995-08-15 Japan Gore Tex Inc Tubular membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106037A (en) * 1992-09-25 1994-04-19 Sumitomo Electric Ind Ltd Tubular porous double layer film and its production
JPH07213880A (en) * 1994-01-31 1995-08-15 Japan Gore Tex Inc Tubular membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051187A1 (en) * 2000-01-12 2001-07-19 Sekisui Chemical Co., Ltd. Ozone treating apparatus
EP1254698A1 (en) * 2000-01-12 2002-11-06 Sekisui Chemical Co., Ltd. Ozone treating apparatus
US6955758B2 (en) 2000-01-12 2005-10-18 Sekisui Chemical Co., Ltd. Ozone treating apparatus
EP1254698A4 (en) * 2000-01-12 2005-10-26 Sekisui Chemical Co Ltd Ozone treating apparatus
JP2001321646A (en) * 2000-05-12 2001-11-20 Japan Gore Tex Inc Gas dissolving device
JP2001330969A (en) * 2000-05-23 2001-11-30 Sekisui Chem Co Ltd Apparatus for removing photoresist
EP2711517A1 (en) 2012-08-30 2014-03-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust emission purification apparatus for internal combustion engine
JP2014062543A (en) * 2012-08-30 2014-04-10 Toyota Central R&D Labs Inc Exhaust purification device of internal combustion engine
JP2020179383A (en) * 2019-04-26 2020-11-05 日星電気株式会社 Tube excellent in compression resistance

Also Published As

Publication number Publication date
JP3873434B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP2969075B2 (en) Degassing device
JP4498748B2 (en) Hollow fiber membrane contactor and process
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JP2004305812A (en) Asymmetric porous polytetrafluoroethylene film for filter
WO2002024315A1 (en) Porous membrane
KR20040036618A (en) Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber
JP2008161755A (en) Manufacturing method of hollow fiber membrane
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP2002253936A (en) Separation membrane tube and separation membrane module
JP2006007224A (en) Porous multilayered hollow fiber, and filtration module provided with the porous multilayered hollow fiber
JP3873434B2 (en) Gas dissolution module and gas dissolution method using porous polytetrafluoroethylene membrane for gas dissolution
JP3221095B2 (en) Tubular porous multilayer film and method for producing the same
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
JP2000246064A (en) Gas dissolution module
JP2000033245A (en) Fluororesin composite membrane and its production
JPH1099665A (en) Gas separation membrane and gas separation method
JPH0760082A (en) Method and apparatus for adjusting specific resistance of ultrapure water
JPH0751505A (en) Method and apparatus for removal of gal dissolved in aqueous solution
JP4803697B2 (en) Method for producing porous membrane
JPH07213880A (en) Tubular membrane
JP3214222B2 (en) Tubular porous composite and method for producing the same
JP3224409B2 (en) Hollow fiber membrane module for degassing
JP3734585B2 (en) Deaerator
JPH0788304A (en) Module for removing dissolved gas and supplying gas
JP4828673B2 (en) Nonporous resin membrane manufacturing method and degassing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term