JP2008161755A - Manufacturing method of hollow fiber membrane - Google Patents

Manufacturing method of hollow fiber membrane Download PDF

Info

Publication number
JP2008161755A
JP2008161755A JP2006351480A JP2006351480A JP2008161755A JP 2008161755 A JP2008161755 A JP 2008161755A JP 2006351480 A JP2006351480 A JP 2006351480A JP 2006351480 A JP2006351480 A JP 2006351480A JP 2008161755 A JP2008161755 A JP 2008161755A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
hydrophilic polymer
cleaning liquid
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006351480A
Other languages
Japanese (ja)
Other versions
JP4951332B2 (en
Inventor
Masaki Kurashina
正樹 倉科
Toshinori Sumi
敏則 隅
Yasuo Hiromoto
泰夫 広本
Hiroyuki Fujiki
浩之 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006351480A priority Critical patent/JP4951332B2/en
Publication of JP2008161755A publication Critical patent/JP2008161755A/en
Application granted granted Critical
Publication of JP4951332B2 publication Critical patent/JP4951332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sufficiently removing a hydrophilic polymer remaining in a hollow fiber membrane at a low cost and in a short time without enlarging equipment. <P>SOLUTION: In the manufacturing method of the hollow fiber membrane 10 comprising a step of coagulating a film forming stock solution containing the hydrophobic polymer and the hydrophilic polymer to form the hollow fiber membrane 10, and a hydrophilic polymer removing step of removing the hydrophilic polymer remaining in the hollow fiber membrane 10, at least the pressure-reduction to discharge the hydrophilic polymer to the outer peripheral side of the hollow fiber membrane 10 is conducted by reducing pressure of the outer peripheral side of the hollow fiber membrane 10 as the hydrophilic polymer removing step. In this occasion, it is preferable that the pressure-reduction is conducted to the hollow fiber membrane 10 immersed in a washing solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、濾過膜などに好適に使用される中空糸膜の製造方法に関する。   The present invention relates to a method for producing a hollow fiber membrane suitably used for a filtration membrane or the like.

食品工業分野、医療分野、電子工業分野等の分野における有用成分の濃縮、回収、不要成分の除去、造水等には、セルロースアセテート、ポリアクリロニトリル、ポリスルホン、フッ素系樹脂等からなり、例えば湿式または乾湿式紡糸により製造された多孔質の中空糸膜が、精密濾過膜、限外濾過膜、逆浸透濾過膜等に多用されている。   Concentrating and collecting useful components in the fields of food industry, medical field, electronics industry, etc., removal of unnecessary components, fresh water, etc. are composed of cellulose acetate, polyacrylonitrile, polysulfone, fluororesin, etc. Porous hollow fiber membranes produced by dry and wet spinning are frequently used for microfiltration membranes, ultrafiltration membranes, reverse osmosis filtration membranes and the like.

湿式または乾湿式紡糸により中空糸膜を製造する場合には、まず、疎水性ポリマーと親水性ポリマーとを含む製膜原液を調製する。ここで親水性ポリマーは、製膜原液の粘度を中空糸膜の形成に好適な範囲に調整し、製膜状態の安定化を図るために添加されるものであって、ポリエチレングリコールやポリビニルピロリドン等が使用されることが多い。ついで、この製膜原液を環状に吐出し、凝固液中で凝固させる凝固工程により、中空糸膜が得られる。なお、製膜原液は空気と接触する空走部を経て、凝固液中へ導入されても(乾湿式紡糸法)、直接凝固液に導入されても(湿式紡糸法)よい。   In the case of producing a hollow fiber membrane by wet or dry wet spinning, first, a membrane forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is prepared. Here, the hydrophilic polymer is added in order to adjust the viscosity of the membrane-forming stock solution to a range suitable for the formation of the hollow fiber membrane and stabilize the membrane-forming state, such as polyethylene glycol and polyvinylpyrrolidone. Is often used. Subsequently, a hollow fiber membrane is obtained by a coagulation step in which the membrane-forming stock solution is discharged in a ring shape and coagulated in the coagulation solution. In addition, the film-forming stock solution may be introduced into the coagulating liquid through a free running portion that is in contact with air (dry wet spinning method) or directly into the coagulating liquid (wet spinning method).

ところが、この時点で得られた中空糸膜中には、通常、その多孔質部に親水性ポリマーが溶液の状態で多量に残存している。このように親水性ポリマーが残存していると、中空糸膜に求められる重要な性能の1つである透水性能が不十分となる。そのため、凝固工程の後には、このように残存している親水性ポリマーを中空糸膜から除去する工程が高透水性の中空糸膜を得るうえで必要となる。   However, in the hollow fiber membrane obtained at this point, a large amount of the hydrophilic polymer usually remains in the porous portion in a solution state. If the hydrophilic polymer remains in this way, the water permeation performance, which is one of the important performances required for the hollow fiber membrane, becomes insufficient. Therefore, after the coagulation step, a step of removing the remaining hydrophilic polymer from the hollow fiber membrane is necessary for obtaining a highly permeable hollow fiber membrane.

残存している親水性ポリマーを中空糸膜から除去する方法としては、中空糸膜を水浴中で洗浄する方法がある。ところが、この方法は、中空糸膜中の親水性ポリマーが水浴中に拡散移動することにより、中空糸膜から除去されるものであるため、一般に長時間を要する。よって、中空糸膜を連続的に製造するプロセスにおいて、このような洗浄方法を採用すると、十分な洗浄時間を確保するために洗浄用の水浴設備を極端に大きくする必要があり、製造コストの点で問題がある。また、酸化剤や加水分解剤を用いて、親水性ポリマーを中空糸膜から除去しようとする方法も一般的に知られている(例えば特許文献1参照。)が、この方法でも長時間を要する。   As a method for removing the remaining hydrophilic polymer from the hollow fiber membrane, there is a method of washing the hollow fiber membrane in a water bath. However, this method generally takes a long time because the hydrophilic polymer in the hollow fiber membrane is removed from the hollow fiber membrane by diffusing and moving in the water bath. Therefore, when such a cleaning method is adopted in the process of continuously producing hollow fiber membranes, it is necessary to extremely increase the water bath equipment for cleaning in order to ensure sufficient cleaning time, and the point of manufacturing cost There is a problem. In addition, a method for removing a hydrophilic polymer from a hollow fiber membrane using an oxidizing agent or a hydrolyzing agent is also generally known (see, for example, Patent Document 1), but this method also requires a long time. .

特許文献2には、凝固後の中空糸膜に酸化剤を保持させた後、気相中で加熱する方法が開示されている。この方法によれば、酸化剤の濃度や、気相中で加熱する際の温度を制御することによって、効果的に親水性ポリマーを除去できると考えられるが、この方法でも、気相中での加熱の後には、中空糸膜を洗浄して低分子化された親水性ポリマーを除去する洗浄工程が最終的に必要であり、この洗浄工程での親水性ポリマーの除去も、やはり中空糸膜に残存している親水性ポリマーの拡散移動によるものである。
拡散移動の速度は、中空糸膜に残存している親水性ポリマーの濃度と膜外表面の親水性ポリマーの濃度との濃度差に依存するため、残存している親水性ポリマーの濃度が高い洗浄初期には拡散移動速度も大きく、洗浄時間に充分見合う親水性ポリマーの除去効果を期待できる。ところが、中空糸膜に残存している親水性ポリマーの濃度が次第に低くなると、上述の濃度差が小さくなり、それに伴って、洗浄時間に長時間を要するようになる。
より高い透水性能を発現させる場合には、中空糸膜に残存している親水性ポリマーをできるだけ除去する必要があるため、このように拡散移動に依存した方法では、やはり洗浄に長時間を要することとなり、水浴設備の大型化やこれに伴う設備コストやランニングコストの増大が懸念される。
Patent Document 2 discloses a method in which a solidified hollow fiber membrane is held in an oxidizing agent and then heated in a gas phase. According to this method, it is considered that the hydrophilic polymer can be effectively removed by controlling the concentration of the oxidant and the temperature at the time of heating in the gas phase. After the heating, it is necessary to finally wash the hollow fiber membrane to remove the low molecular weight hydrophilic polymer. The removal of the hydrophilic polymer in this washing step is also applied to the hollow fiber membrane. This is due to the diffusion movement of the remaining hydrophilic polymer.
The speed of diffusion transfer depends on the concentration difference between the concentration of the hydrophilic polymer remaining in the hollow fiber membrane and the concentration of the hydrophilic polymer on the outer surface of the membrane, so that the cleaning with a high concentration of the remaining hydrophilic polymer is performed. In the initial stage, the diffusion transfer rate is high, and a hydrophilic polymer removal effect that is adequate for the washing time can be expected. However, when the concentration of the hydrophilic polymer remaining in the hollow fiber membrane is gradually lowered, the above-mentioned concentration difference is reduced, and accordingly, a long time is required for washing.
In order to develop higher water permeability, it is necessary to remove the hydrophilic polymer remaining in the hollow fiber membrane as much as possible. Thus, in the method relying on diffusion transfer, it still takes a long time for washing. Therefore, there is a concern about the increase in the size of the bathing facility and the accompanying increase in facility cost and running cost.

これに対して、特許文献3には、加圧域において洗浄液を中空糸膜の外周側から内周側、すなわち中空部側へと圧入し、非加圧域において中空部から中空糸膜の外周側へ洗浄液を排出させ、中空糸膜を洗浄する方法が開示されている。
特許第3196029号公報 特開2005−42074号公報 特開平9−57078号公報
On the other hand, in Patent Document 3, the cleaning liquid is press-fitted from the outer peripheral side of the hollow fiber membrane to the inner peripheral side, that is, the hollow portion side in the pressurizing region, and the outer periphery of the hollow fiber membrane is pressed from the hollow portion in the non-pressurizing region A method is disclosed in which the cleaning liquid is discharged to the side and the hollow fiber membrane is cleaned.
Japanese Patent No. 3196029 JP-A-2005-42074 JP-A-9-57078

特許文献3の方法によれば、中空糸膜に残存している親水性ポリマーを洗浄液で強制的に外部へ排出させることができると考えられ、親水性ポリマーの拡散移動に依存した洗浄方法に比べると、洗浄時間を短縮できるものと期待できる。
しかしながら、この方法では、残存している親水性ポリマーの分子量が比較的大きい場合などには、加圧域で圧入された洗浄液中に分散した親水性ポリマーが中空部側までは移動できたとしても、非加圧域では通液抵抗のために中空部側から外周側へとは充分に排出されず、その結果、中空部内に親水性ポリマーが取り残されてしまうことが懸念される。
According to the method of Patent Document 3, it is considered that the hydrophilic polymer remaining in the hollow fiber membrane can be forcibly discharged to the outside with a cleaning liquid, compared with a cleaning method that relies on diffusion movement of the hydrophilic polymer. It can be expected that the cleaning time can be shortened.
However, in this method, even when the molecular weight of the remaining hydrophilic polymer is relatively large, even if the hydrophilic polymer dispersed in the washing liquid press-fitted in the pressurizing zone can move to the hollow portion side. In the non-pressurized region, there is a concern that the hydrophilic polymer is left behind in the hollow portion because the liquid passage resistance is not sufficiently discharged from the hollow portion side to the outer peripheral side.

本発明は上記事情に鑑みてなされたもので、設備を大型化しなくても、低コスト、短時間で中空糸膜中に残存する親水性ポリマーを十分に除去できる方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of sufficiently removing the hydrophilic polymer remaining in the hollow fiber membrane at low cost and in a short time without increasing the size of the equipment.

本発明の中空糸膜の製造方法は、疎水性ポリマーと親水性ポリマーとを含む製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、前記中空糸膜中に残存する前記親水性ポリマーを除去する親水性ポリマー除去工程とを有する中空糸膜の製造方法において、前記親水性ポリマー除去工程は、前記中空糸膜の外周側を減圧して、前記親水性ポリマーを中空糸膜の外周側へ排出させる減圧工程を有することを特徴とする。
この際、洗浄液に浸漬された中空糸膜に対して、前記減圧工程を行うことが好ましく、さらには、該減圧工程にて、前記中空糸膜の内周側から外周側へ洗浄液を通液させることが好ましい。
前記親水性ポリマー除去工程は、前記減圧工程の後段に、前記洗浄液を前記中空糸膜の外周側から内周側に供給する洗浄液供給工程をさらに有することが好ましい。
前記親水性ポリマー除去工程は、前記洗浄液供給工程の後段に、前記減圧工程をさらに有することが好ましい。
洗浄液に浸漬された中空糸膜に対して、前記減圧工程を行った場合には、前記親水性ポリマー除去工程は、気相中で前記中空糸膜の外周側を減圧する後工程を備えていることが好ましい。
The method for producing a hollow fiber membrane of the present invention comprises a coagulation step in which a membrane-forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is coagulated in a coagulation liquid to form a hollow fiber membrane, and the hollow fiber membrane remains in the hollow fiber membrane. In the method for producing a hollow fiber membrane having a hydrophilic polymer removal step for removing the hydrophilic polymer, the hydrophilic polymer removal step includes reducing the outer peripheral side of the hollow fiber membrane and removing the hydrophilic polymer from the hollow fiber. It has the pressure reduction process discharged | emitted to the outer peripheral side of a film | membrane, It is characterized by the above-mentioned.
At this time, it is preferable to perform the pressure reducing step on the hollow fiber membrane immersed in the cleaning liquid, and further, in the pressure reducing step, the cleaning liquid is passed from the inner peripheral side to the outer peripheral side of the hollow fiber membrane. It is preferable.
It is preferable that the hydrophilic polymer removing step further includes a cleaning liquid supply step for supplying the cleaning liquid from the outer peripheral side to the inner peripheral side of the hollow fiber membrane after the decompression step.
The hydrophilic polymer removing step preferably further includes the pressure reducing step after the cleaning liquid supplying step.
When the depressurization step is performed on the hollow fiber membrane immersed in the cleaning liquid, the hydrophilic polymer removal step includes a post-process for depressurizing the outer peripheral side of the hollow fiber membrane in the gas phase. It is preferable.

本発明によれば、設備を大型化しなくても、低コスト、短時間で中空糸膜中に残存する親水性ポリマーを十分に除去することができる。   According to the present invention, the hydrophilic polymer remaining in the hollow fiber membrane can be sufficiently removed at a low cost and in a short time without increasing the size of the equipment.

本発明の中空糸膜の製造方法は、疎水性ポリマーと親水性ポリマーとを含む製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、この凝固工程の後に、中空糸膜中に残存する親水性ポリマーを除去する親水性ポリマー除去工程とを有する。また、親水性ポリマー除去工程の後には、通常、中空糸膜を乾燥する乾燥工程を有する。以下、本発明の製造方法について、詳細に説明する。   The method for producing a hollow fiber membrane of the present invention comprises a coagulation step in which a membrane forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is coagulated in a coagulation solution to form a hollow fiber membrane, and after this coagulation step, a hollow fiber is formed. A hydrophilic polymer removing step of removing the hydrophilic polymer remaining in the film. Moreover, after a hydrophilic polymer removal process, it usually has a drying process which dries a hollow fiber membrane. Hereinafter, the production method of the present invention will be described in detail.

[凝固工程]
本発明の中空糸膜の製造方法は、疎水性ポリマーと親水性ポリマーとを含む製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程を有する。
製造する中空糸膜の構成には特に制限はなく、多孔質基材を備えたものを製造することもできる。例えば多孔質基材として組紐を備えた中空糸膜を製造する場合には、例えば、中心に中空部が形成され、その外側に環状の吐出口が形成されたノズルを使用し、中空部には組紐を導入し、この組紐の外周には吐出口からの製膜原液を塗布した後、これを凝固液に導入することによって凝固工程を行えばよい。多孔質基材を備えた中空糸膜は、多孔質基材を具備しない中空糸膜に比べて高強度なものとなる。一方、多孔質基材を具備しない通常の中空糸膜の場合には、環状の吐出口が形成されたノズルから製膜原液を吐出すればよい。また、こうして形成された膜の外側に製膜原液を再度塗布することにより多層構造の膜を形成させ、取扱時の擦れ等に対して耐久性のある中空糸膜を製造してもよい。
また、凝固工程は、製膜原液が空気と接触する空走部を経て、凝固液中へ導入される乾湿式紡糸法でも、直接凝固液に導かれる湿式紡糸法のいずれにより行ってもよい。
[Coagulation process]
The method for producing a hollow fiber membrane of the present invention includes a coagulation step in which a membrane-forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is coagulated in a coagulation solution to form a hollow fiber membrane.
There is no restriction | limiting in particular in the structure of the hollow fiber membrane to manufacture, The thing provided with the porous base material can also be manufactured. For example, when manufacturing a hollow fiber membrane having a braid as a porous substrate, for example, a nozzle having a hollow portion formed at the center and an annular discharge port formed outside thereof is used. A braid is introduced, and after the film forming stock solution from the discharge port is applied to the outer periphery of the braid, it is introduced into the coagulation liquid to perform the coagulation step. The hollow fiber membrane provided with the porous substrate has higher strength than the hollow fiber membrane not provided with the porous substrate. On the other hand, in the case of a normal hollow fiber membrane that does not include a porous substrate, the membrane-forming stock solution may be discharged from a nozzle in which an annular discharge port is formed. Alternatively, a membrane-forming solution may be applied to the outside of the membrane thus formed to form a multilayered membrane to produce a hollow fiber membrane that is durable against rubbing during handling.
Further, the coagulation step may be performed by either a dry-wet spinning method in which the film-forming stock solution is introduced into the coagulating solution through an idle running portion in contact with air or a wet spinning method that is directly guided to the coagulating solution.

疎水性ポリマーは、凝固工程により中空糸膜を形成し得るものであればよく、そのようなものであれば特に制限なく使用できるが、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなどが挙げられる。また、これらの樹脂の共重合体を使用してもよいし、これら樹脂や共重合体の一部に置換基を導入したものも使用できる。また、分子量などが異なる同種のポリマーをブレンドして用いても構わないし、2種以上の異なる種類の樹脂を混合して使用してもよい。これらのなかでフッ素系樹脂、中でもポリフッ化ビニリデンやフッ化ビニリデン単体と他の単量体からなる共重合体は、次亜塩素酸などの酸化剤に対する耐久性が優れている。よって、酸化剤により処理されるような中空糸膜を製造する場合には、疎水性ポリマーとしてフッ素系樹脂を選択することが好適である。   The hydrophobic polymer is not particularly limited as long as it can form a hollow fiber membrane by a coagulation step, and can be used without particular limitation as long as it is such as polysulfone resin such as polysulfone or polyethersulfone, polyvinylidene fluoride, etc. And fluororesin, polyacrylonitrile, cellulose derivatives, polyamide, polyester, polymethacrylate, polyacrylate, and the like. Further, copolymers of these resins may be used, and those having a substituent introduced into a part of these resins and copolymers can also be used. Further, the same type of polymers having different molecular weights may be blended and used, or two or more different types of resins may be mixed and used. Among these, fluororesins, especially polyvinylidene fluoride and copolymers made of vinylidene fluoride and other monomers have excellent durability against oxidizing agents such as hypochlorous acid. Therefore, when producing a hollow fiber membrane that is treated with an oxidizing agent, it is preferable to select a fluororesin as the hydrophobic polymer.

親水性ポリマーは、製膜原液の粘度を中空糸膜の形成に好適な範囲に調整し、製膜状態の安定化を図るために添加されるものであって、ポリエチレングリコールやポリビニルピロリドンなどが好ましく使用される。これらの中でも、中空糸膜の孔径の制御や中空糸膜の強度の点から、ポリビニルピロリドンやポリビニルピロリドンに他の単量体が共重合した共重合体が好ましい。
また、親水性ポリマーには、2種以上の樹脂を混合して使用することもできる。例えば親水性ポリマーとして、より高分子量のものを用いると、膜構造の良好な中空糸膜を形成しやすい傾向がある。一方、低分子量の親水性ポリマーは、後述の親水性ポリマー除去工程において中空糸膜からより除去されやすい点で好適である。よって、目的に応じて、分子量が異なる同種の親水性ポリマーを適宜ブレンドして用いてもよい。
The hydrophilic polymer is added to adjust the viscosity of the membrane-forming stock solution to a range suitable for the formation of the hollow fiber membrane and stabilize the membrane-forming state. Polyethylene glycol, polyvinyl pyrrolidone, etc. are preferable. used. Among these, polyvinylpyrrolidone and a copolymer obtained by copolymerizing other monomers with polyvinylpyrrolidone are preferable from the viewpoint of controlling the pore diameter of the hollow fiber membrane and the strength of the hollow fiber membrane.
Moreover, 2 or more types of resin can also be mixed and used for a hydrophilic polymer. For example, when a higher molecular weight hydrophilic polymer is used, a hollow fiber membrane having a good membrane structure tends to be formed. On the other hand, the low molecular weight hydrophilic polymer is suitable in that it is more easily removed from the hollow fiber membrane in the hydrophilic polymer removing step described later. Therefore, the same kind of hydrophilic polymers having different molecular weights may be appropriately blended depending on the purpose.

上述した疎水性ポリマーおよび親水性ポリマーをこれらが可溶な溶媒(良溶媒)に混合することにより、製膜原液を調製することができる。製膜原液には、必要に応じてその他の添加成分を加えてもよい。
溶媒の種類には特に制限はないが、乾湿式紡糸で凝固工程を行う場合には、空走部において製膜原液を吸湿させることによって中空糸膜の孔径を調整するため、水と均一に混合しやすい溶媒を選択することが好ましい。このような溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N−メチルモルホリン−N−オキシドなどが挙げられ、これらを1種以上使用できる。また、溶媒への疎水性ポリマーや親水性ポリマーの溶解性を損なわない範囲で、疎水性ポリマーや親水性ポリマーの貧溶媒を混合して使用してもよい。
A film-forming stock solution can be prepared by mixing the above-described hydrophobic polymer and hydrophilic polymer in a solvent in which they are soluble (good solvent). Other additive components may be added to the film-forming stock solution as necessary.
There is no particular limitation on the type of solvent, but when performing the coagulation process by dry and wet spinning, the pore diameter of the hollow fiber membrane is adjusted by absorbing the membrane forming stock solution in the idle running section, so that it is mixed uniformly with water. It is preferable to select a solvent that can be easily treated. Examples of such a solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N-methylmorpholine-N-oxide, and the like. Can be used. Moreover, you may mix and use the poor solvent of a hydrophobic polymer or a hydrophilic polymer in the range which does not impair the solubility of the hydrophobic polymer or hydrophilic polymer to a solvent.

製膜原液中における疎水性ポリマーの濃度は、薄すぎても濃すぎても製膜時の安定性が低下し、好適な中空糸膜構造が形成されに難くなる傾向にあるため、下限は10質量%が好ましく、15質量%がより好ましい。また、上限は30質量%が好ましく、25質量%がより好ましい。
一方、親水性ポリマーの濃度の下限は、中空糸膜をより形成しやすいものとするために1質量%が好ましく、5質量%がより好ましい。親水性ポリマーの濃度の上限は、製膜原液の取扱性の点から20質量%が好ましく、12質量%がより好ましい。
If the concentration of the hydrophobic polymer in the membrane forming stock solution is too thin or too thick, the stability at the time of membrane formation tends to be reduced, and it is difficult to form a suitable hollow fiber membrane structure. % By mass is preferable, and 15% by mass is more preferable. Further, the upper limit is preferably 30% by mass, and more preferably 25% by mass.
On the other hand, the lower limit of the concentration of the hydrophilic polymer is preferably 1% by mass and more preferably 5% by mass in order to make the hollow fiber membrane easier to form. The upper limit of the concentration of the hydrophilic polymer is preferably 20% by mass, and more preferably 12% by mass from the viewpoint of the handleability of the film-forming stock solution.

凝固液としては、水、アルコール類、グリセリン、エチレングリコール等を単独または混合して用いることができる。   As the coagulation liquid, water, alcohols, glycerin, ethylene glycol or the like can be used alone or in combination.

[親水性ポリマー除去工程]
上述の凝固工程により形成された中空糸膜は、一般的に孔径が大きく高透水性を潜在的には有しているが、中空糸膜中に親水性ポリマーが溶液状態で多量に残存しているために、このままでは充分な高透水性を発揮できない。よって、凝固工程の後には、中空糸膜中に残存する親水性ポリマーを除去する親水性ポリマー除去工程を行う。
[Hydrophilic polymer removal step]
The hollow fiber membrane formed by the above-mentioned coagulation process generally has a large pore diameter and potentially has high water permeability, but a large amount of hydrophilic polymer remains in the hollow fiber membrane in a solution state. Therefore, sufficient high water permeability cannot be exhibited as it is. Therefore, after the coagulation step, a hydrophilic polymer removal step for removing the hydrophilic polymer remaining in the hollow fiber membrane is performed.

本発明においては、親水性ポリマー除去工程として、少なくとも後述の減圧工程を行うことが必要であるが、その前に予備工程として、以下に説明する(i)中空糸膜の洗浄工程と、(ii)酸化剤を使用した親水性ポリマーの低分子量化工程と、(iii)低分子量化された親水性ポリマーの洗浄工程とを順次実施してもよい。このような予備工程を実施するか否かは、主に、中空糸膜の構造によって適宜判断すればよい。例えば、中空糸膜が多層構造である場合や孔径が緻密である場合などは、(i)〜(iii)の予備工程を実施することが好ましく、必要に応じて、この予備工程を複数回繰り返して行うことが、後の減圧工程の効果をより高める上で好ましい。   In the present invention, as the hydrophilic polymer removing step, it is necessary to perform at least a pressure reducing step described later, but before that, as a preliminary step, (i) a hollow fiber membrane washing step described below, and (ii) The step of reducing the molecular weight of the hydrophilic polymer using an oxidizing agent and the step of washing the hydrophilic polymer having the reduced molecular weight may be sequentially performed. Whether or not to perform such a preliminary process may be appropriately determined mainly depending on the structure of the hollow fiber membrane. For example, when the hollow fiber membrane has a multilayer structure or when the pore diameter is dense, it is preferable to carry out the preliminary steps (i) to (iii), and this preliminary step is repeated a plurality of times as necessary. It is preferable to carry out in order to further enhance the effect of the subsequent decompression step.

(予備工程)
(i)中空糸膜の洗浄工程
凝固工程で得られた中空糸膜には、親水性ポリマーが高濃度の溶液の状態で、膜(多孔質部)中に残存している。このような高濃度の親水性ポリマーは、ある程度までは、中空糸膜を洗浄液に浸漬することで比較的容易に除去される。よって、まず始めに、中空糸膜を洗浄液に浸漬して洗浄する工程を予備工程として行うことが好ましい。
洗浄液としては、清澄で親水性ポリマーが分散または溶解する液体であれば特に限定されるものではないが、洗浄効果が高いことから水が好ましい。使用する水としては、水道水、工業用水、河川水、井戸水等が挙げられ、これらにアルコール、無機塩類、酸化剤、界面活性剤等を混合して使用してもよい。また、洗浄液としては、疎水性ポリマーの良溶媒と水との混合液を用いることもできる。このような混合物を使用すると、中空糸膜を構成している疎水性ポリマーを適度に膨潤状態にし、その結果、中空糸膜に残存する親水性ポリマーを溶出させやすくすることができる。このような混合液を使用する場合、混合液中における良溶媒の割合が高いほどその効果は大きくなるが、高すぎると中空糸膜が溶解してしまうため、混合液中の良溶媒の割合の上限は85質量%が好ましく、70質量%がより好ましい。
(Preliminary process)
(I) Hollow fiber membrane washing step In the hollow fiber membrane obtained in the coagulation step, the hydrophilic polymer remains in the membrane (porous portion) in a high-concentration solution state. Such a high concentration of the hydrophilic polymer is relatively easily removed to some extent by immersing the hollow fiber membrane in a cleaning solution. Therefore, it is preferable to first perform the step of immersing and cleaning the hollow fiber membrane in a cleaning solution as a preliminary step.
The cleaning liquid is not particularly limited as long as it is a clear liquid in which the hydrophilic polymer is dispersed or dissolved, but water is preferable because of its high cleaning effect. Examples of water to be used include tap water, industrial water, river water, well water, and the like, and alcohols, inorganic salts, oxidizing agents, surfactants, and the like may be mixed and used. In addition, as the cleaning liquid, a mixed liquid of a good solvent for the hydrophobic polymer and water can be used. When such a mixture is used, the hydrophobic polymer constituting the hollow fiber membrane can be appropriately swollen, and as a result, the hydrophilic polymer remaining in the hollow fiber membrane can be easily eluted. When such a mixed solution is used, the higher the proportion of the good solvent in the mixed solution, the greater the effect.However, if the proportion is too high, the hollow fiber membrane will dissolve, so the proportion of the good solvent in the mixed solution The upper limit is preferably 85% by mass, and more preferably 70% by mass.

中空糸膜を洗浄液に浸漬して洗浄する場合、親水性ポリマーは主に拡散移動により除去されるため、拡散移動の効果を高めるための処理をともに行ってもよい。例えば、バブリングやカスケード処理を行って濃度勾配を大きくしたり、洗浄液を強制的に流したりしてもよい。また、洗浄液の温度を高温にしたり、洗浄液として脱気水を使用したりしてもよい。また、これらの処理は単独でも効果があるが、併用して行うことがより好ましい。
例えば洗浄温度は、親水性ポリマーの溶液の粘度を低く抑えて、拡散移動速度の低下を防ぐため、高い方が好適であり、50℃以上が好ましく、より好ましくは80℃以上である。さらに、洗浄液を沸騰させながら洗浄を行うと、沸騰によるバブリングによって中空糸膜の外表面を掻き取ることもできるため、効率のよい洗浄が可能となる。
When the hollow fiber membrane is immersed and washed in the cleaning liquid, the hydrophilic polymer is mainly removed by diffusion movement, and therefore, treatment for enhancing the effect of diffusion movement may be performed together. For example, bubbling or cascade processing may be performed to increase the concentration gradient, or the cleaning solution may be forced to flow. Further, the temperature of the cleaning liquid may be increased, or degassed water may be used as the cleaning liquid. These treatments are effective even when used alone, but it is more preferable to carry out these treatments in combination.
For example, the washing temperature is preferably higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, in order to keep the viscosity of the hydrophilic polymer solution low and prevent a decrease in diffusion transfer rate. Further, when cleaning is performed while boiling the cleaning liquid, the outer surface of the hollow fiber membrane can be scraped off by bubbling due to boiling, so that efficient cleaning is possible.

(ii)酸化剤を使用した親水性ポリマーの低分子量化工程
上述の(i)中空糸膜の洗浄工程によって、中空糸膜に残存する親水性ポリマーは、比較的濃度の低い状態となっている。このような低濃度の場合に、より高い洗浄効果を得るためには、酸化剤を使用して親水性ポリマーを酸化分解し、低分子量化することが好ましい。
具体的には、まず、中空糸膜に酸化剤を含む薬液を保持させ、ついで、薬液を保持した中空糸膜を気相中で加熱する方法が好ましい。中空糸膜に酸化剤を含む薬液を保持させるためには、中空糸膜の膜(多孔質部)に酸化剤を浸透させる方法や、中空糸膜の表面に残存する親水性ポリマーに酸化剤を吸収、膨潤させることが考えられ、そのための具体的方法としては、ローラー表面に酸化剤をつけ、中空糸膜をローラーに巻きつけながら酸化剤と接触させる方法、中空糸膜の外径より少し大きな内径のリング孔に中空糸膜を通して、リング内表面に酸化剤を供給することで中空糸膜表面に酸化剤を直接塗布する方法等も挙げられるが、酸化剤を含む薬液に中空糸膜を浸漬させる方法が最も好適である。
(Ii) Step of lowering the molecular weight of the hydrophilic polymer using an oxidizing agent The hydrophilic polymer remaining in the hollow fiber membrane is in a relatively low concentration state due to the above-described (i) washing step of the hollow fiber membrane. . In order to obtain a higher cleaning effect at such a low concentration, it is preferable to reduce the molecular weight by oxidizing and decomposing the hydrophilic polymer using an oxidizing agent.
Specifically, it is preferable to first hold a chemical solution containing an oxidizing agent in the hollow fiber membrane, and then heat the hollow fiber membrane holding the chemical solution in a gas phase. In order to retain a chemical solution containing an oxidant in the hollow fiber membrane, a method of infiltrating the oxidant into the membrane (porous portion) of the hollow fiber membrane or an oxidant to the hydrophilic polymer remaining on the surface of the hollow fiber membrane It is conceivable to absorb and swell, and as a specific method for that purpose, an oxidizing agent is attached to the roller surface, the hollow fiber membrane is wound around the roller and brought into contact with the oxidizing agent, and is slightly larger than the outer diameter of the hollow fiber membrane. There is also a method of directly applying an oxidizing agent to the hollow fiber membrane surface by supplying an oxidizing agent to the inner surface of the ring through a hollow fiber membrane through the inner diameter ring hole, but the hollow fiber membrane is immersed in a chemical solution containing the oxidizing agent. The method is preferably the method.

酸化剤としては、オゾン、過酸化水素、過マンガン酸塩、重クロム酸塩、過硫酸塩等を使用することもできるが、酸化力が強く分解性能に優れること、取扱い性に優れること、安価なこと等の点より、特に次亜塩素酸塩が好ましい。次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどが挙げられるが、特に次亜塩素酸ナトリウムが好ましい。   As the oxidizing agent, ozone, hydrogen peroxide, permanganate, dichromate, persulfate, etc. can be used, but it has strong oxidizing power and excellent decomposition performance, excellent handling properties, and low cost. Of these, hypochlorite is particularly preferable. Examples of hypochlorite include sodium hypochlorite and calcium hypochlorite, with sodium hypochlorite being particularly preferred.

酸化剤を含む薬液に中空糸膜を浸漬すると、中空糸膜中に残存する親水性ポリマーの少なくとも一部が酸化分解を開始して薬液中に溶出し、酸化剤を消費する。よって、浸漬中には、薬液の酸化剤濃度を一定範囲に維持するために、薬液に酸化剤を適宜追加することが好ましい。ただし、このような浸漬時には、薬液を中空糸膜に単に浸漬させるだけにとどめ、できるだけ親水性ポリマーを酸化分解させず、実質的には、ついで行われる気相中での加熱により親水性ポリマーの酸化分解が行われるようにすることが、酸化剤の使用量を必要最小限に抑制する点で好適である。そのためには、薬液の温度は50℃以下が好ましく、30℃以下がより好ましい。50℃より高温であると、中空糸膜の浸漬中に酸化分解が促進され、薬液中に脱落した親水性ポリマーがさらに酸化分解し、酸化剤の浪費が進んでしまう。このような酸化剤の浪費は作業の手間やコストを増加させ、また、廃液処理の負荷も増加させる傾向にある。一方、過度に低温であると、酸化分解は抑制されるものの、常温で実施する場合と比較して、低温に温度制御するためのコストなどが増加する傾向にある。よって、その点からすると、薬液の温度は0℃以上が好ましく、10℃以上がより好ましい。   When the hollow fiber membrane is immersed in a chemical solution containing an oxidizing agent, at least a part of the hydrophilic polymer remaining in the hollow fiber membrane starts oxidative decomposition and is eluted into the chemical solution, consuming the oxidizing agent. Therefore, during immersion, it is preferable to add an oxidant as appropriate to the chemical solution in order to maintain the oxidant concentration of the chemical solution within a certain range. However, at the time of such immersion, the chemical solution is simply immersed in the hollow fiber membrane, and the hydrophilic polymer is not oxidatively decomposed as much as possible. It is preferable that the oxidative decomposition is performed in that the amount of the oxidizing agent to be used is minimized. For this purpose, the temperature of the chemical solution is preferably 50 ° C. or lower, and more preferably 30 ° C. or lower. When the temperature is higher than 50 ° C., oxidative decomposition is promoted during the immersion of the hollow fiber membrane, and the hydrophilic polymer that has fallen into the chemical solution is further oxidatively decomposed, leading to waste of the oxidant. Such waste of the oxidizing agent tends to increase the labor and cost of the work and also increase the load of waste liquid treatment. On the other hand, when the temperature is excessively low, the oxidative decomposition is suppressed, but the cost for controlling the temperature to a low temperature tends to increase as compared with the case of carrying out at normal temperature. Therefore, from this point, the temperature of the chemical solution is preferably 0 ° C. or higher, and more preferably 10 ° C. or higher.

また、酸化剤として次亜塩素酸塩を用いる場合、次亜塩素酸塩の分解を極力抑えるために、酸化剤を含む薬液のpHを11以上とすることが好ましい。さらに、薬液中の酸化剤の濃度は、ピックアップ量を少量とし、酸化分解処理で極力無駄なく酸化剤を消費させることから適切な範囲とする必要があり、次亜塩素酸塩を使用する場合、有効塩素濃度の下限は2000mg/Lが好ましく、5000mg/L以上がより好ましい。上限は、120000mg/L以下が好ましく、100000mg/L以下がより好ましい。   Moreover, when using hypochlorite as an oxidizing agent, in order to suppress decomposition | disassembly of a hypochlorite as much as possible, it is preferable that the pH of the chemical | medical solution containing an oxidizing agent shall be 11 or more. Furthermore, the concentration of the oxidant in the chemical solution needs to be in a suitable range because the oxidant is consumed as little as possible by oxidative decomposition treatment with a small amount of pickup, and when using hypochlorite, The lower limit of the effective chlorine concentration is preferably 2000 mg / L, more preferably 5000 mg / L or more. The upper limit is preferably 120,000 mg / L or less, more preferably 100000 mg / L or less.

中空糸膜に薬液を保持させたあとは、中空糸膜を気相中で加熱することにより、親水性ポリマーを酸化分解する。気相中での加熱によれば、中空糸膜中に保持された薬液が大きく希釈されたり、薬液が加熱媒体中へ脱落溶出したりすることがほとんどなく、薬液中の酸化剤が中空糸膜中に残存する親水性ポリマーの分解に効率よく使用されるため好ましい。   After the chemical solution is held in the hollow fiber membrane, the hydrophilic polymer is oxidatively decomposed by heating the hollow fiber membrane in the gas phase. By heating in the gas phase, the chemical liquid retained in the hollow fiber membrane is hardly diluted and the chemical liquid is hardly dropped and eluted into the heating medium, so that the oxidizing agent in the chemical liquid is the hollow fiber membrane. It is preferable because it is efficiently used for decomposing the hydrophilic polymer remaining therein.

具体的な加熱方法としては、大気圧下で加熱流体を用いて中空糸膜を加熱することが好ましい。大気圧下で行うことによって、連続処理を行う場合であっても中空糸膜の出入口に特殊なシール装置を設けたり、耐圧構造の装置を使用したりする必要がないため、装置メリットが大きく、操作性も非常に優れる。
また、加熱流体としては相対湿度の高い流体を使用すること、すなわち湿熱条件で加熱を行うことが、次亜塩素酸塩などの酸化剤の乾燥を防ぎ、効率的な分解処理が可能となるため好ましい。その際、流体の相対湿度としては80%以上が好ましく、90%以上とすることがより好ましく、100%近傍とするのが最も好ましい。
加熱温度の下限は、連続処理を行う場合、処理時間を短くできることから50℃とするのが好ましく、80℃がより好ましい。温度の上限は、大気圧状態では100℃とするのが好ましい。
As a specific heating method, it is preferable to heat the hollow fiber membrane using a heating fluid under atmospheric pressure. By performing under atmospheric pressure, even if continuous processing is performed, there is no need to provide a special sealing device at the entrance and exit of the hollow fiber membrane or use a pressure-resistant structure device, so the device merit is great, The operability is also very good.
In addition, using a fluid with high relative humidity as the heating fluid, that is, heating under humid heat conditions, prevents drying of oxidants such as hypochlorite and enables efficient decomposition treatment. preferable. At that time, the relative humidity of the fluid is preferably 80% or more, more preferably 90% or more, and most preferably in the vicinity of 100%.
The lower limit of the heating temperature is preferably 50 ° C., more preferably 80 ° C., because the treatment time can be shortened when continuous treatment is performed. The upper limit of the temperature is preferably 100 ° C. in the atmospheric pressure state.

(iii)低分子量化された親水性ポリマーの洗浄工程
このように、(ii)酸化剤を使用した親水性ポリマーの低分子量化工程を実施した後には、上述した(i)中空糸膜の洗浄工程と同様の条件にて、再度、中空糸膜を洗浄液に浸漬して洗浄し、低分子量化された親水性ポリマーをある程度除去することが好ましい。
(Iii) Washing step of hydrophilic polymer with reduced molecular weight Thus, after carrying out the step of lowering the molecular weight of hydrophilic polymer using an oxidizing agent as described above, (i) Washing the hollow fiber membrane described above It is preferable to remove the hydrophilic polymer having a reduced molecular weight to some extent by again immersing the hollow fiber membrane in a washing solution and washing under the same conditions as in the step.

(減圧工程および洗浄液供給工程)
以上のようにして必要に応じて予備工程を行った後、減圧工程を行う。このような減圧工程によれば、予備工程を行ってもなお残存している親水性ポリマーであっても、効果的に除去することができる。
減圧工程は、中空糸膜の外周側を減圧して、中空糸膜中に残存する親水性ポリマーを中空糸膜の外周側へ排出させる工程であって、中空糸膜の外周側の圧力が内周側(中空部)よりも低くなるようにし、その際の圧力差により、親水性ポリマーを中空糸膜の外周側へと移動させ、除去するものである。
(Decompression process and cleaning liquid supply process)
After performing a preliminary process as needed as mentioned above, a pressure reduction process is performed. According to such a decompression step, even a hydrophilic polymer that remains even after the preliminary step can be effectively removed.
The depressurization step is a step of depressurizing the outer peripheral side of the hollow fiber membrane and discharging the hydrophilic polymer remaining in the hollow fiber membrane to the outer peripheral side of the hollow fiber membrane. The hydrophilic polymer is moved to the outer peripheral side of the hollow fiber membrane and removed by the pressure difference at that time so as to be lower than the peripheral side (hollow part).

減圧工程の具体的方法には特に制限はないが、例えば図1に示すような耐圧性の筒部材11を用いる方法が挙げられる。
この筒部材11は、減圧ポンプなどの減圧手段を接続するための接続口11aが側面に形成されているとともに、両端には、中空糸膜10が通過できる程度のクリアランスを有しつつ、筒部材11の内部を外部よりも減圧状態または加圧状態に保つことのできる、例えばラビリンスシールなどからなる図示略のシール機構が設けられている。このような筒部材11を大気中などの気相中に配置し、凝固工程と必要に応じて予備工程とを経た中空糸膜10を筒部材11内にその一端11bから連続的に導入するとともに減圧手段を作動させることにより、筒部材11内において、中空糸膜10の外周側が減圧され、中空糸膜10中に残存する親水性ポリマーが気相に同伴されて中空糸膜10の外周側へと吸引、除去される。
Although there is no restriction | limiting in particular in the specific method of a pressure reduction process, For example, the method of using the pressure-resistant cylinder member 11 as shown in FIG. 1 is mentioned.
The cylindrical member 11 is formed with a connection port 11a for connecting a decompression means such as a decompression pump on the side surface, and at both ends, the tubular member 11 has a clearance that allows the hollow fiber membrane 10 to pass therethrough. A seal mechanism (not shown) made of, for example, a labyrinth seal or the like, which can keep the inside of 11 at a reduced pressure state or a pressurized state from the outside, is provided. Such a cylindrical member 11 is disposed in a gas phase such as the atmosphere, and the hollow fiber membrane 10 that has undergone a solidification step and a preliminary step as necessary is continuously introduced into the cylindrical member 11 from its one end 11b. By operating the decompression means, the outer peripheral side of the hollow fiber membrane 10 is decompressed in the cylindrical member 11, and the hydrophilic polymer remaining in the hollow fiber membrane 10 is entrained in the gas phase to the outer peripheral side of the hollow fiber membrane 10. And sucked and removed.

より好ましい方法としては、図2に示すように、洗浄液の入った洗浄槽12を用意し、この洗浄槽12中に中空糸膜10を浸漬し、洗浄液に浸漬されたこの中空糸膜10に対して、図1の場合と同様に減圧工程を行う方法が挙げられる。
このようして減圧工程を行った場合において、中空糸膜10の内周側と外周側との圧力差が大きいと、主に図3中矢印で示すような洗浄液の流れを生じさせることができ、その結果、筒部材11からは露出し、洗浄液中には浸漬された部分の中空糸膜10において、洗浄槽12中の洗浄液が膜(多孔質部)を通過し、中空糸膜10の内周側に導入される。導入された洗浄液は、その後、減圧手段の作動により、再び膜(多孔質部)を通過して、外周側に排出される。その結果、中空糸膜10中に残存する親水性ポリマーが洗浄液とともに接続口11aから除去される。
このように減圧工程により中空糸膜10の内周側から外周側へ洗浄液を通液させる方法によれば、中空糸膜10から引き離された親水性ポリマーは洗浄液に分散または溶解し、洗浄液とともに吸引、除去されるため、中空糸膜10に付着する懸念も軽減され、高い除去効果が得られる。
なお、洗浄液に浸漬された中空糸膜10に対して、このように減圧工程を行った際においては、減圧手段の作動圧力(ゲージ圧)や中空糸膜10の構造などにより、中空糸膜10の内周側と外周側との圧力差が大きくならない場合もある。その場合には、通液抵抗により、洗浄槽12中の洗浄液が外周側から膜(多孔質部)を通過して内周側までは通液できず、その結果、内周側には空気が充満したままで、洗浄液が内周側に導入されないこともある。しかしながら、その場合でも、洗浄槽12中の洗浄液は少なくとも中空糸膜10の膜(多孔質部)にはある程度吸収されるため、主に図4中矢印で示すような洗浄液の流れ、すなわち、中空糸膜10の外周側→膜(多孔質部(図中断面で示す。))10a→外周側という流れが生じ、吸収された洗浄液は減圧手段の作動により中空糸膜10の外周側へと排出される。その結果、この場合でも、中空糸膜10中に残存する親水性ポリマーは、洗浄液とともに中空糸膜10の外周側へと除去され、接続口11aから排出される。
As a more preferable method, as shown in FIG. 2, a cleaning tank 12 containing a cleaning liquid is prepared, the hollow fiber membrane 10 is immersed in the cleaning tank 12, and the hollow fiber membrane 10 immersed in the cleaning liquid is used. Then, the method of performing the pressure reduction process similarly to the case of FIG.
When the pressure reducing step is performed in this manner, if the pressure difference between the inner peripheral side and the outer peripheral side of the hollow fiber membrane 10 is large, it is possible to cause a flow of cleaning liquid mainly as indicated by arrows in FIG. As a result, in the hollow fiber membrane 10 exposed from the cylindrical member 11 and immersed in the cleaning liquid, the cleaning liquid in the cleaning tank 12 passes through the membrane (porous portion), and the inside of the hollow fiber membrane 10 Introduced on the circumferential side. The introduced cleaning liquid then passes through the membrane (porous part) again by the operation of the decompression means and is discharged to the outer peripheral side. As a result, the hydrophilic polymer remaining in the hollow fiber membrane 10 is removed from the connection port 11a together with the cleaning liquid.
As described above, according to the method in which the cleaning liquid is passed from the inner peripheral side to the outer peripheral side of the hollow fiber membrane 10 by the decompression step, the hydrophilic polymer separated from the hollow fiber membrane 10 is dispersed or dissolved in the cleaning liquid and sucked together with the cleaning liquid Therefore, the concern of adhering to the hollow fiber membrane 10 is reduced, and a high removal effect is obtained.
In addition, when the decompression step is performed on the hollow fiber membrane 10 immersed in the cleaning liquid, the hollow fiber membrane 10 depends on the operating pressure (gauge pressure) of the decompression means, the structure of the hollow fiber membrane 10, and the like. In some cases, the pressure difference between the inner peripheral side and the outer peripheral side does not increase. In that case, due to the flow resistance, the cleaning liquid in the cleaning tank 12 cannot pass from the outer peripheral side to the inner peripheral side through the membrane (porous portion), and as a result, air is not supplied to the inner peripheral side. In some cases, the cleaning liquid may not be introduced to the inner peripheral side while it is full. However, even in that case, since the cleaning liquid in the cleaning tank 12 is absorbed to some extent at least by the membrane (porous portion) of the hollow fiber membrane 10, the flow of the cleaning liquid mainly as indicated by the arrows in FIG. The flow of the outer periphery side of the thread membrane 10 → the membrane (porous portion (shown in the cross section in the figure)) 10a → the outer periphery side occurs, and the absorbed cleaning liquid is discharged to the outer periphery side of the hollow fiber membrane 10 by the operation of the decompression means. Is done. As a result, even in this case, the hydrophilic polymer remaining in the hollow fiber membrane 10 is removed together with the cleaning liquid to the outer peripheral side of the hollow fiber membrane 10 and discharged from the connection port 11a.

さらに効果的な方法としては、このような減圧工程の後段に、中空糸膜10の外周側から内周側に洗浄液を強制的に供給する洗浄液供給工程を設ける方法が挙げられる。
具体的には、図5に示すように、2つの筒部材11,11を間隔をあけて洗浄槽12中に直列に設置し、前段側(図中左側)の筒部材11の接続口11aには減圧手段(図示略)を接続し、後段側(図中右側)の筒部材11の接続口11aには洗浄液を供給するための加圧供給ポンプなどの供給手段(図示略)を接続する。
そして、中空糸膜10をこれら筒部材11,11内に前段側から順次導入するとともに、減圧手段と供給手段とを作動させる。すると、主に図6中矢印で示すような洗浄液の流れが生じて、後段側の筒部材11内においては中空糸膜10の外周側から内周側に洗浄液が供給され(洗浄液供給工程)、前段側の筒部材11内においては中空糸膜10の内周側から外周側へ洗浄液を通液させることができる(減圧工程)。
このように減圧工程の後段に洗浄液供給工程を設けると、減圧工程において中空糸膜10の内周側から外周側へ通液する洗浄液量が図3の場合よりも増加し、その結果、親水性ポリマーの除去効果が大きくなる。
As a more effective method, there may be mentioned a method of providing a cleaning liquid supply process for forcibly supplying the cleaning liquid from the outer peripheral side to the inner peripheral side of the hollow fiber membrane 10 after the decompression process.
Specifically, as shown in FIG. 5, two cylindrical members 11, 11 are installed in series in the cleaning tank 12 with a space therebetween, and are connected to the connection port 11 a of the cylindrical member 11 on the front stage side (left side in the figure). Is connected to a pressure reducing means (not shown), and a supply means (not shown) such as a pressure supply pump for supplying a cleaning liquid is connected to the connection port 11a of the cylindrical member 11 on the rear side (right side in the figure).
Then, the hollow fiber membrane 10 is sequentially introduced into the cylindrical members 11 and 11 from the front side, and the decompression means and the supply means are operated. Then, the flow of the cleaning liquid mainly as indicated by the arrow in FIG. 6 occurs, and the cleaning liquid is supplied from the outer peripheral side of the hollow fiber membrane 10 to the inner peripheral side in the cylindrical member 11 on the rear stage (cleaning liquid supplying step). In the cylindrical member 11 on the front side, the cleaning liquid can be passed from the inner peripheral side of the hollow fiber membrane 10 to the outer peripheral side (decompression step).
Thus, when the cleaning liquid supply process is provided after the pressure reducing process, the amount of the cleaning liquid flowing from the inner peripheral side to the outer peripheral side of the hollow fiber membrane 10 in the pressure reducing process is increased as compared with the case of FIG. The removal effect of the polymer is increased.

減圧工程および洗浄液供給工程の条件は、中空糸膜10の膜構造や、中空糸膜10中に残存している親水性ポリマー濃度などに応じて、適宜設定すればよいが、減圧工程で過度に減圧したり、洗浄液供給工程で供給圧力を過度に高めたりすると、各筒部材11,11を耐圧性にするための設備コストが増大するし、特に供給圧力が高い場合には、洗浄液供給工程が行われる後段側の筒部材11の両端のシール機構から大量に洗浄液が流出し、中空糸膜10が糸揺れするという懸念も生じる。また、中空糸膜10自体の耐圧性能を考慮する必要もある。これらの点から、減圧工程の圧力は、減圧手段のゲージ圧として好ましくは−0.05〜−0.1MPa、より好ましくは−0.08〜−0.1MPaであり、洗浄液供給工程の供給圧力は、供給手段のゲージ圧として好ましくは0を超えて0.4MPa以下、より好ましくは0を超えて0.3MPa以下である。また、このような範囲内では、減圧工程と洗浄液供給工程とのゲージ圧の圧力差が大きいほど、より高い親水性ポリマー除去効果が得られる傾向にある。
減圧工程および洗浄液供給工程での中空糸膜10の各滞在時間(筒部材11,11に滞在する時間)はそれぞれ2〜10秒間であれば、効率的に、充分な親水性ポリマー除去効果を得ることができる。
The conditions for the decompression step and the cleaning liquid supply step may be set as appropriate according to the membrane structure of the hollow fiber membrane 10 and the concentration of the hydrophilic polymer remaining in the hollow fiber membrane 10. If the pressure is reduced or the supply pressure is excessively increased in the cleaning liquid supply process, the equipment cost for making the cylinder members 11 and 11 pressure resistant increases. In particular, when the supply pressure is high, the cleaning liquid supply process is performed. There is also a concern that a large amount of the cleaning liquid flows out from the sealing mechanism at both ends of the subsequent cylindrical member 11 and the hollow fiber membrane 10 shakes. It is also necessary to consider the pressure resistance performance of the hollow fiber membrane 10 itself. From these points, the pressure in the decompression step is preferably -0.05 to -0.1 MPa, more preferably -0.08 to -0.1 MPa as the gauge pressure of the decompression means, and the supply pressure in the cleaning liquid supply step Is preferably more than 0 and not more than 0.4 MPa, more preferably more than 0 and not more than 0.3 MPa. Further, within such a range, the higher the difference in gauge pressure between the decompression step and the cleaning liquid supply step, the higher the hydrophilic polymer removal effect tends to be obtained.
If each staying time of the hollow fiber membrane 10 in the decompression process and the cleaning liquid supply process (staying time in the cylindrical members 11, 11) is 2 to 10 seconds, respectively, a sufficient hydrophilic polymer removing effect can be obtained efficiently. be able to.

洗浄槽12中の洗浄液としては、上記(i)中空糸膜の洗浄工程において例示したものの中から選択して使用でき、洗浄効果が高いことから水を使用することが好ましい。また、洗浄液供給工程では、洗浄液を加圧蒸気の形態として中空糸膜の外周側に供給してもよい。加圧蒸気は供給後には圧力低下して、高温の洗浄液として中空糸膜10に圧入されるため、より効果的に親水性ポリマーを洗浄液中に捕らえ、除去することができる。   The cleaning liquid in the cleaning tank 12 can be selected from those exemplified in the above (i) hollow fiber membrane cleaning step, and it is preferable to use water since it has a high cleaning effect. In the cleaning liquid supply step, the cleaning liquid may be supplied in the form of pressurized steam to the outer peripheral side of the hollow fiber membrane. Since the pressurized steam is reduced in pressure after being supplied and is pressed into the hollow fiber membrane 10 as a high-temperature cleaning liquid, the hydrophilic polymer can be more effectively captured and removed in the cleaning liquid.

なお、図5では、中空糸膜10を洗浄液の入った洗浄槽12中に浸漬した状態で、減圧工程と洗浄液供給工程とを順次行う方法を例示したが、必ずしも洗浄槽12に浸漬する必要はなく、大気中などの気相中に2つの筒部材を直列に配置して、前段側の筒部材の接続口には減圧手段を接続し、後段側の筒部材の接続口には洗浄液を供給する供給手段を接続する形態としてもよい。
ただし、図5のように洗浄槽12内で実施すれば、2つの筒部材11,11の間において露出した中空糸膜10が洗浄液中に浸漬した状態となるため、この部分でも、弱いながらも親水性ポリマーを洗浄する効果が得られるようになる。また、気相中に筒部材を配置して実施した場合には、2つの筒部材の間において露出した中空糸膜から洗浄液が外部に漏れ出て、これを拭き取るなどの作業が必要となる場合があるのに対して、図5のように洗浄槽12内で実施すれば、洗浄液が漏れ出たとしても特に問題はない。
さらに、筒部材11,11の両端のシール機構は、上述したように、中空糸膜10が通過できる程度のクリアランスを有するものであるため、筒部材11,11を気相中に配置して実施するよりも、図5のように気相よりも粘度の高い液相中に浸漬して実施する方が、減圧工程および洗浄工程それぞれにおいて、より短時間で筒部材11,11内を目的とする圧力(ゲージ圧)にまで到達させることができるし、その分、シール機構のクリアランスを大きく設定したり、シール機構の設置長さ(筒部材の長さ方向)を短く設定したりもできる。
In addition, in FIG. 5, although the method of performing a pressure reduction process and a washing | cleaning liquid supply process one by one in the state which immersed the hollow fiber membrane 10 in the washing tank 12 containing the washing | cleaning liquid was illustrated, it is not necessary to immerse in the washing tank 12 necessarily. Instead, two cylinder members are arranged in series in the gas phase such as in the atmosphere, a pressure reducing means is connected to the connection port of the front cylinder member, and cleaning liquid is supplied to the connection port of the rear cylinder member It is good also as a form which connects the supply means to perform.
However, if it is carried out in the washing tank 12 as shown in FIG. 5, the hollow fiber membrane 10 exposed between the two cylindrical members 11 and 11 is immersed in the washing liquid. The effect of washing the hydrophilic polymer can be obtained. In addition, when the cylindrical member is arranged in the gas phase, the cleaning liquid leaks out from the hollow fiber membrane exposed between the two cylindrical members, and it is necessary to perform operations such as wiping it off. On the other hand, if it is carried out in the washing tank 12 as shown in FIG. 5, there is no particular problem even if the washing liquid leaks out.
Furthermore, since the sealing mechanism at both ends of the cylindrical members 11 and 11 has a clearance that allows the hollow fiber membrane 10 to pass through as described above, the cylindrical members 11 and 11 are disposed in the gas phase. Rather than performing in a liquid phase having a higher viscosity than the gas phase as shown in FIG. 5, the purpose is to have the inside of the cylindrical members 11, 11 in a shorter time in each of the decompression process and the cleaning process. The pressure (gauge pressure) can be reached, and accordingly, the clearance of the seal mechanism can be set larger, or the installation length of the seal mechanism (the length direction of the cylindrical member) can be set shorter.

また、図5では、洗浄液供給工程を減圧工程の後段に設けた場合を例示したが、減圧工程が後段であってもよい。
ただし、減圧工程が後段であると、洗浄液供給工程では、未だ減圧工程を経ておらず親水性ポリマーが多く残存する中空糸膜に対して洗浄液を供給することとなる。その結果、親水性ポリマーを多く含んだ洗浄液が減圧工程中の中空糸膜に供給され、供給された洗浄液中の親水性ポリマーが中空糸膜に再付着してしまう可能性が生じる。よって、洗浄液供給工程を減圧工程の後段に設ける方が好ましい。
5 illustrates the case where the cleaning liquid supply process is provided in the subsequent stage of the decompression process, but the decompression process may be in the subsequent stage.
However, if the decompression step is in the latter stage, in the cleaning solution supply step, the cleaning solution is supplied to the hollow fiber membrane in which a large amount of the hydrophilic polymer remains without passing through the decompression step. As a result, the cleaning liquid containing a large amount of the hydrophilic polymer is supplied to the hollow fiber membrane in the decompression step, and the hydrophilic polymer in the supplied cleaning liquid may be reattached to the hollow fiber membrane. Therefore, it is preferable to provide the cleaning liquid supply process after the decompression process.

さらに好ましい形態としては、図7に示すように、洗浄液供給工程の後段に、再度、減圧工程を設けて、ここでも中空糸膜10の内周側から外周側へ洗浄液を通液させるようにした形態が挙げられる。このような方法によれば、減圧工程が繰り返し設けられているために、中空糸膜10に残存する親水性ポリマーのうち、中空糸膜10の多孔質部の壁面に付着しているものなど、特に除去され難いものに対しても高い除去効果を発揮することができる。この場合にも、各減圧工程の圧力は、減圧手段のゲージ圧として好ましくは−0.05〜−0.1MPa、より好ましくは−0.08〜−0.1MPaであり、洗浄液供給工程の供給圧力は、供給手段のゲージ圧として好ましくは0を超えて0.4MPa以下、より好ましくは0を超えて0.3MPa以下である。
なお、図7においては、前段側から減圧工程−洗浄液供給工程−減圧工程の3工程を実施する場合を例示しているが、より高い親水性ポリマーの除去効果が要求される場合には、さらに後段側において、洗浄液供給工程および減圧工程を適宜繰り返してもよい。
As a more preferable form, as shown in FIG. 7, a decompression process is provided again after the cleaning liquid supply process, and again, the cleaning liquid is allowed to flow from the inner peripheral side to the outer peripheral side of the hollow fiber membrane 10. A form is mentioned. According to such a method, since the decompression step is repeatedly provided, among the hydrophilic polymers remaining in the hollow fiber membrane 10, those attached to the wall surface of the porous portion of the hollow fiber membrane 10, etc. In particular, a high removal effect can be exhibited even for those that are difficult to remove. Also in this case, the pressure in each decompression step is preferably -0.05 to -0.1 MPa, more preferably -0.08 to -0.1 MPa as the gauge pressure of the decompression means. The pressure is preferably more than 0 and not more than 0.4 MPa, more preferably more than 0 and not more than 0.3 MPa as the gauge pressure of the supplying means.
In addition, in FIG. 7, although the case where 3 steps of a pressure reduction process-a washing | cleaning liquid supply process-a pressure reduction process are implemented from the front | former stage side is illustrated, On the rear stage side, the cleaning liquid supply step and the pressure reduction step may be repeated as appropriate.

(後工程)
上述したように、洗浄液を使用し、これを中空糸膜の内周側から外周側へ通液させる減圧工程を少なくとも行った際には、親水性ポリマー除去工程中の最後段において、例えば図1のようにして、大気中などの気相中で中空糸膜の外周側を減圧する後工程を行うことが好ましい。このような後工程を行うことによって、中空糸膜に残存している主に水分を除去でき、その後の乾燥工程の負荷を低減することができる。このような後工程では、中空糸膜中の親水性ポリマーはすでに除去されていて、ほぼ水分のみが残存した状態になっているため、効果的な水分除去が行える。
(Post-process)
As described above, when at least the depressurization step of using the cleaning liquid and passing it from the inner peripheral side to the outer peripheral side of the hollow fiber membrane is performed, in the last stage in the hydrophilic polymer removing step, for example, FIG. As described above, it is preferable to perform a post-process in which the outer peripheral side of the hollow fiber membrane is decompressed in a gas phase such as in the air. By performing such a post-process, it is possible to mainly remove water remaining in the hollow fiber membrane, and to reduce the load of the subsequent drying process. In such a post-process, since the hydrophilic polymer in the hollow fiber membrane has already been removed and only water remains, effective water removal can be performed.

[乾燥工程]
乾燥工程の方法としては特に制限はなく、中空糸膜を熱風乾燥機などの乾燥装置に導入する方法で行えばよい。
[Drying process]
There is no restriction | limiting in particular as a method of a drying process, What is necessary is just to carry out by the method of introduce | transducing a hollow fiber membrane into drying apparatuses, such as a hot air dryer.

以上説明したような方法によれば、親水性ポリマー除去工程として、中空糸膜の外周側を減圧して、親水性ポリマーを中空糸膜の外周側へ排出させる減圧工程を少なくとも備えているため、親水性ポリマーの拡散移動に依存した従来の方法のように水浴設備を大型化しなくても、低コスト、短時間で中空糸膜中に残存する親水性ポリマーを十分に除去できる。   According to the method as described above, as the hydrophilic polymer removal step, since the outer peripheral side of the hollow fiber membrane is depressurized, and at least a depressurization step of discharging the hydrophilic polymer to the outer peripheral side of the hollow fiber membrane, The hydrophilic polymer remaining in the hollow fiber membrane can be sufficiently removed at a low cost and in a short time without increasing the size of the water bath facility as in the conventional method depending on the diffusion movement of the hydrophilic polymer.

なお、中空糸膜に残存している親水性ポリマーの量は、赤外分光光度計により中空糸膜の吸光度スペクトルを得て、この吸収スペクトルにおける疎水性ポリマーの吸収強度と親水性ポリマーの吸収強度とを比較することにより把握できる。例えば、疎水性ポリマーとしてポリフッ化ビニリデン、親水性ポリマーとしてポリビニルピロリドンを使用して中空糸膜を製造した場合には、ポリビニルピロリドンのカルボニル基伸縮振動(1700cm−1)による吸収強度と、ポリフッ化ビニリデンのC−F伸縮振動(1400cm−1)による吸収強度を求める。そして、ポリフッ化ビニリデンのC−F伸縮振動による吸収強度を100%とした際に、ポリビニルピロリドンのカルボニル基伸縮振動の吸収強度が何%に相当するかをこれら吸収強度の比から求め、この値(%)を残存している親水性ポリマーの量とする。
また、中空糸膜が例えば組紐のような多孔質基材を備えたものである場合には、中空糸膜を溶剤(例えばN,N−ジメチルアセトアミドなど)に加えて溶解させ、不溶成分である多孔質基材を取り除いた後、溶液をガラス板上などで蒸発乾固させてフィルム(例えば厚さ20μm程度)にし、このフィルムについて上述のようにして吸光度スペクトルを測定すればよい。
The amount of the hydrophilic polymer remaining in the hollow fiber membrane is determined by obtaining the absorption spectrum of the hollow fiber membrane with an infrared spectrophotometer, and the absorption strength of the hydrophobic polymer and the absorption strength of the hydrophilic polymer in this absorption spectrum. Can be grasped by comparing For example, when a hollow fiber membrane is produced using polyvinylidene fluoride as a hydrophobic polymer and polyvinylpyrrolidone as a hydrophilic polymer, the absorption strength due to the carbonyl group stretching vibration (1700 cm −1 ) of polyvinylpyrrolidone and the polyvinylidene fluoride The absorption intensity by CF stretching vibration (1400 cm −1 ) is obtained. Then, when the absorption strength due to C—F stretching vibration of polyvinylidene fluoride is defined as 100%, the percentage of the absorption strength of the carbonyl group stretching vibration of polyvinylpyrrolidone is determined from the ratio of these absorption strengths. (%) Is the amount of remaining hydrophilic polymer.
Further, when the hollow fiber membrane is provided with a porous base material such as braid, for example, the hollow fiber membrane is added to a solvent (for example, N, N-dimethylacetamide or the like) and dissolved to be an insoluble component. After removing the porous substrate, the solution is evaporated to dryness on a glass plate or the like to form a film (for example, a thickness of about 20 μm), and the absorbance spectrum of this film may be measured as described above.

以下、実施例を基に本発明を詳しく説明する。
[実施例1]
(凝固工程)
表1に示す質量比となるように、ポリフッ化ビニリデンA(アトフィナジャパン製、商品名カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン製、商品名カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名K−90)、N,N−ジメチルアセトアミドをそれぞれ混合して、製膜原液(1)および製膜原液(2)を調製した。
ついで、中心に中空部が形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005−42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には多孔質基材としてポリエステル製マルチフィラメント単繊組紐(マルチフィラメント;830T/96F、16打ち)を導入するとともに、その外周に製膜原液(2)、製膜原液(1)を内側から順次塗布し、80℃に保温した凝固液(N,N−ジメチルアセトアミド5質量部と水95質量部との混合液)中で凝固させた。このようにして、外表面近傍に分画層を1層有し、内部に向かって孔径が増大する傾斜構造の多孔質層が組紐にコーティングされた中空糸膜を得た。なお、塗布された製膜原液(1)および(2)のうち、中空糸膜の膜構造を形成する主原液は、外側に塗布された製膜原液(1)である。
さらに、この中空糸膜の外径よりも大きい内径の中空部が中心に形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005−42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には上述のようにして得られた中空糸膜を導入するとともに、その外周にグリセリン(和光純薬工業製 一級)、製膜原液(1)を内側から順次塗布し、先に使用したものと同じ80℃に保温された凝固液中で凝固させた。このようにしてさらに多孔質層がコーティングされた2層構造で組紐支持体を有する中空糸膜を得た。
このときの紡糸速度(中空糸膜の走行速度)は7.3m/minとした。
Hereinafter, the present invention will be described in detail based on examples.
[Example 1]
(Coagulation process)
Polyvinylidene fluoride A (manufactured by Atofina Japan, trade name Kyner 301F), polyvinylidene fluoride B (manufactured by Atofina Japan, trade name Kyner 9000LD), polyvinylpyrrolidone (manufactured by ISP, Trade name K-90) and N, N-dimethylacetamide were mixed to prepare a film-forming stock solution (1) and a film-forming stock solution (2).
Next, a hollow portion is formed at the center, and a nozzle in which an annular discharge port is sequentially formed on the outside so that two kinds of liquids can be sequentially applied (see FIG. 1 of JP-A-2005-42074). ) Is prepared, and this is kept at 30 ° C., and a polyester multifilament single filament braid (multifilament; 830T / 96F, 16 beats) is introduced into the hollow portion as a porous base material, and the outer periphery thereof is introduced. The film-forming stock solution (2) and the film-forming stock solution (1) were applied sequentially from the inside and coagulated in a coagulation liquid (mixed solution of 5 parts by mass of N, N-dimethylacetamide and 95 parts by mass of water) kept at 80 ° C. I let you. In this way, a hollow fiber membrane was obtained in which the braid was coated with a porous layer having an inclined structure having one fractional layer near the outer surface and increasing the pore diameter toward the inside. Of the applied film-forming stock solutions (1) and (2), the main stock solution forming the membrane structure of the hollow fiber membrane is the film-forming stock solution (1) applied to the outside.
In addition, a hollow portion having an inner diameter larger than the outer diameter of the hollow fiber membrane is formed in the center, and a nozzle having an annular discharge port formed in order so that two kinds of liquids can be sequentially applied to the outer side ( 1 is prepared, and the hollow fiber membrane obtained as described above is introduced into the hollow portion while keeping this at 30 ° C. Glycerin (first grade manufactured by Wako Pure Chemical Industries, Ltd.) and a film-forming stock solution (1) were sequentially applied from the inside and coagulated in the same coagulating liquid kept at 80 ° C. as previously used. In this way, a hollow fiber membrane having a braid support in a two-layer structure coated with a porous layer was obtained.
The spinning speed (running speed of the hollow fiber membrane) at this time was 7.3 m / min.

Figure 2008161755
Figure 2008161755

(親水性ポリマー除去工程)
こうして得られた中空糸膜について、次のようにして、親水性ポリマー除去工程を実施した。
(1)予備工程
予備工程として、以下の(i)〜(iii)の工程を2回繰り返して行った。
(i)中空糸膜の洗浄工程
100℃の沸騰水が入れられた洗浄槽中に、中空糸膜を滞在時間5分間の条件で浸漬し、洗浄を行った。
(ii)酸化剤を使用した親水性ポリマーの低分子量化工程
次に、温度30℃、濃度60000mg/Lの次亜塩素酸塩の水溶液が入れられた水槽中に、中空糸膜を滞在時間1分間の条件で浸漬した。その後、温度85℃、相対湿度100%の湿熱中、滞在時間3分の条件で加熱し、親水性ポリマーを低分子量化した。
(iii)低分子量化された親水性ポリマーの洗浄工程
次に、この中空糸膜を(i)と同じ条件で再度洗浄した。
(2)減圧工程−減圧工程
図7に示すように、洗浄液として温度74℃の水が入れられた洗浄槽12を用意し、その中に、3つの筒部材11,11,11を間隔をあけて直列に配置した。そして、これらの筒部材11,11,11に前段側から中空糸膜10を順次導入するとともに、3つのうち最前段の筒部材11の接続口11aと3つのうち最後段の筒部材11の接続口11aには減圧手段を接続し、それぞれ減圧手段のゲージ圧が前段側の減圧工程(表2中、減圧工程(I)と記載。)で−0.06MPa、後段側の減圧工程(表2中、減圧工程(II)と記載。)−0.05MPaとなるように減圧した。また、中空糸膜10が各筒部材11,11,11中に滞在する時間(滞在時間)はいずれも約3秒間とした。
一方、3つのうち中央の筒部材11の接続口11aには供給手段を接続し、洗浄液を別途供給できる構成としたが、本実施例1では供給手段を作動させなかった。なお、供給手段が接続されたこの筒部材11内には、両端のシール機構のクリアランスから浸入してきた洗浄液が満たされていた。
(Hydrophilic polymer removal step)
About the hollow fiber membrane obtained in this way, the hydrophilic polymer removal process was implemented as follows.
(1) Preliminary process The following processes (i) to (iii) were repeated twice as a preliminary process.
(I) Washing process of hollow fiber membrane The hollow fiber membrane was immersed in a washing tank containing boiling water at 100 ° C under the condition of staying time of 5 minutes for washing.
(Ii) Step of lowering the molecular weight of the hydrophilic polymer using an oxidizing agent Next, the hollow fiber membrane was placed in a water tank in which an aqueous solution of hypochlorite having a temperature of 30 ° C. and a concentration of 60000 mg / L was placed. Immersion was performed under the condition of minutes. Thereafter, the hydrophilic polymer was heated in a heat of 85 ° C. and a relative humidity of 100% under the condition of a residence time of 3 minutes to lower the molecular weight of the hydrophilic polymer.
(Iii) Step of washing hydrophilic polymer with reduced molecular weight Next, this hollow fiber membrane was washed again under the same conditions as in (i).
(2) Depressurization step-Decompression step As shown in FIG. 7, a cleaning tank 12 containing water at a temperature of 74 ° C. is prepared as a cleaning liquid, and the three cylindrical members 11, 11, 11 are spaced therein. Arranged in series. Then, the hollow fiber membranes 10 are sequentially introduced into the cylindrical members 11, 11, 11 from the front side, and the connection port 11 a of the frontmost cylindrical member 11 of the three and the connection of the last cylindrical member 11 of the three are connected. A pressure reducing means is connected to the mouth 11a, and the gauge pressure of the pressure reducing means is -0.06 MPa in the pressure reducing step on the front side (referred to as pressure reducing step (I) in Table 2), and the pressure reducing step on the rear side (Table 2). The pressure was reduced so that the pressure was reduced to 0.05 MPa. Moreover, the time (stay time) for which the hollow fiber membrane 10 stays in each cylindrical member 11, 11, 11 was made into about 3 second.
On the other hand, the supply means is connected to the connection port 11a of the central cylindrical member 11 among the three, and the cleaning liquid can be supplied separately. However, in the first embodiment, the supply means was not operated. The cylindrical member 11 to which the supply means was connected was filled with the cleaning liquid that had entered from the clearance of the seal mechanisms at both ends.

(乾燥工程)
親水性ポリマー除去工程後に、95℃×3分間の条件の乾燥工程に中空糸膜を通過させた。
(Drying process)
After the hydrophilic polymer removal step, the hollow fiber membrane was passed through a drying step at 95 ° C. for 3 minutes.

このような凝固工程、親水性ポリマー除去工程、乾燥工程により製造された2層構造で組紐支持体を有する中空糸膜は、外径2.8mm、内径1.0mmであった。
また、中空糸膜中のポリビニルピロリドンの量(残存量)を以下のようにして求めたところ、表2に示すように1.62質量%であった。
The hollow fiber membrane having a braided support in a two-layer structure manufactured by such a coagulation step, hydrophilic polymer removal step, and drying step had an outer diameter of 2.8 mm and an inner diameter of 1.0 mm.
Further, when the amount (residual amount) of polyvinylpyrrolidone in the hollow fiber membrane was determined as follows, it was 1.62% by mass as shown in Table 2.

(残存しているポリビニルピロリドンの量の測定)
所定長さに中空糸膜を切り出し、これをN,N−ジメチルアセトアミドに加え、膜を溶解させた。ついで、不溶成分である多孔質基材を取り除いた後の溶液をガラス板上で蒸発乾固させて、厚さ20μm程度のフィルムを得た。ついで、このフィルムをサンプルとして、赤外分光光度計により吸光度スペクトルを測定した。
そして、ポリフッ化ビニリデンのC−F伸縮振動による吸収強度を100%とした際に、ポリビニルピロリドンのカルボニル基伸縮振動の吸収強度が何%に相当するかをこれら吸収強度の比から求め、この値(%)を残存しているポリビニルピロリドンの残存量とした。
(Measurement of the amount of remaining polyvinylpyrrolidone)
A hollow fiber membrane was cut to a predetermined length and added to N, N-dimethylacetamide to dissolve the membrane. Subsequently, the solution after removing the porous substrate which is an insoluble component was evaporated to dryness on a glass plate to obtain a film having a thickness of about 20 μm. Next, using this film as a sample, an absorbance spectrum was measured with an infrared spectrophotometer.
Then, when the absorption strength due to C—F stretching vibration of polyvinylidene fluoride is defined as 100%, the percentage of the absorption strength of the carbonyl group stretching vibration of polyvinylpyrrolidone is determined from the ratio of these absorption strengths. (%) Was defined as the remaining amount of polyvinylpyrrolidone remaining.

[実施例2]
実施例1の親水性ポリマー除去工程の(2)減圧工程−減圧工程の代わりに、(2)減圧工程―洗浄液供給工程−減圧工程を実施した以外は、実施例1と同様にして中空糸膜を製造した。
具体的には、図7において、最前段の筒部材11の接続口11aと最後段の筒部材11の接続口11aには減圧手段を接続し、それぞれ減圧手段のゲージ圧が表2に示す−0.06MPa、−0.05MPaとなるように減圧した。また、3つのうち中央の筒部材11の接続口11aに接続された供給手段からは、ゲージ圧が0.05MPaとなるように74℃の水を洗浄液として供給した。各筒部材11,11,11における中空糸膜10の滞在時間はいずれも約3秒間とした。
中空糸膜中のポリビニルピロリドンの残存量を表2に示す。また、得られた中空糸膜の外径および内径は実施例1と同じであった。
[Example 2]
A hollow fiber membrane in the same manner as in Example 1, except that (2) Depressurization step-Decompression step in the hydrophilic polymer removal step of Example 1 was performed instead of (2) Depressurization step-Cleaning liquid supply step-Depressurization step Manufactured.
Specifically, in FIG. 7, a pressure reducing means is connected to the connection port 11a of the frontmost cylinder member 11 and the connection port 11a of the last cylinder member 11, and the gauge pressure of each pressure reduction means is shown in Table 2− The pressure was reduced to 0.06 MPa and −0.05 MPa. Moreover, 74 degreeC water was supplied as a washing | cleaning liquid from the supply means connected to the connection port 11a of the center cylinder member 11 among three so that a gauge pressure might be 0.05 MPa. The residence time of the hollow fiber membrane 10 in each cylindrical member 11, 11, 11 was set to about 3 seconds.
Table 2 shows the remaining amount of polyvinylpyrrolidone in the hollow fiber membrane. Further, the outer diameter and inner diameter of the obtained hollow fiber membrane were the same as those in Example 1.

[実施例3]
各減圧手段と洗浄液供給手段のゲージ圧が表2に示す値となるように、(2)減圧工程―洗浄液供給工程−減圧工程を実施した以外は、実施例2と同様にして中空糸膜を製造した。中空糸膜中のポリビニルピロリドンの残存量を表2に示す。また、得られた中空糸膜の外径および内径は実施例1と同じであった。
[Example 3]
The hollow fiber membrane was formed in the same manner as in Example 2 except that (2) Depressurization step-Cleaning solution supply step-Depressurization step was performed so that the gauge pressure of each decompression unit and the cleaning solution supply unit became the values shown in Table 2. Manufactured. Table 2 shows the remaining amount of polyvinylpyrrolidone in the hollow fiber membrane. Further, the outer diameter and inner diameter of the obtained hollow fiber membrane were the same as those in Example 1.

[実施例4]
各減圧手段と洗浄液供給手段のゲージ圧が表2に示す値となるように、(2)減圧工程―洗浄液供給工程−減圧工程を実施した以外は、実施例2と同様にして中空糸膜を製造した。中空糸膜中のポリビニルピロリドンの残存量を表2に示す。また、得られた中空糸膜の外径および内径は実施例1と同じであった。
また、この実施例4では、乾燥工程前後の中空糸膜1mあたりについて質量測定を実施した。その結果、乾燥工程前後で2.6g/mの質量差があり、乾燥工程により2.6g/mの水分が除去されたことがわかった。
[Example 4]
The hollow fiber membrane was formed in the same manner as in Example 2 except that (2) Depressurization step-Cleaning solution supply step-Depressurization step was performed so that the gauge pressure of each decompression unit and the cleaning solution supply unit became the values shown in Table 2. Manufactured. Table 2 shows the remaining amount of polyvinylpyrrolidone in the hollow fiber membrane. Further, the outer diameter and inner diameter of the obtained hollow fiber membrane were the same as those in Example 1.
Moreover, in this Example 4, mass measurement was implemented about 1 m of hollow fiber membranes before and behind a drying process. As a result, there was a mass difference of 2.6 g / m before and after the drying step, and it was found that 2.6 g / m of water was removed by the drying step.

[実施例5]
親水性ポリマー除去工程として、実施例4と同様にして(1)予備工程と(2)減圧工程―洗浄液供給工程−減圧工程とを実施した後、親水性ポリマー除去工程中の最後段において、大気中で中空糸膜の外周側を減圧する後工程を行ってから、乾燥工程を行った。それ以外は、実施例4と同様にして中空糸膜を製造した。なお、後工程は図1のような装置工程にて行い、減圧手段のゲージ圧が−0.06MPaとなるようにし、滞在時間は5秒間とした。
このような後工程中にトラップを設け、後工程で中空糸膜から除去された水分量を測定したところ、単位時間あたりで7g/min、中空糸膜長さあたりに換算すると0.96g/mであった。この結果と、実施例4の乾燥工程で除去された水分量が2.6g/mであったこととをあわせて考えると、本実施例5における後工程によれば、乾燥工程で除去される水分のうち36.9質量%(=0.96/2.6×100)が除去され、乾燥工程の負荷を軽減していることが示された。
[Example 5]
As the hydrophilic polymer removal step, (1) Preliminary step and (2) Depressurization step-Washing liquid supply step-Depressurization step were carried out in the same manner as in Example 4, and then the final step in the hydrophilic polymer removal step The drying process was performed after performing the post-process which decompressed the outer peripheral side of a hollow fiber membrane in it. Otherwise, a hollow fiber membrane was produced in the same manner as in Example 4. The post-process was performed in the apparatus process as shown in FIG. 1, the gauge pressure of the pressure reducing means was set to −0.06 MPa, and the staying time was 5 seconds.
A trap was provided in such a post process, and the amount of water removed from the hollow fiber membrane in the post process was measured. As a result, 7 g / min per unit time and 0.96 g / m when converted to the length of the hollow fiber membrane. Met. Considering this result together with the amount of water removed in the drying step of Example 4 being 2.6 g / m, according to the subsequent step in Example 5, it is removed in the drying step. It was shown that 36.9% by mass (= 0.96 / 2.6 × 100) of the moisture was removed, and the load of the drying process was reduced.

[比較例1]
親水性ポリマー除去工程として(1)予備工程のみを行い、減圧工程や洗浄液供給工程を一切行わなかった以外は、実施例1と同様にして中空糸膜を製造した。中空糸膜中のポリビニルピロリドンの残存量を表2に示す。また、得られた中空糸膜の外径および内径は実施例1と同じであった。
[Comparative Example 1]
A hollow fiber membrane was produced in the same manner as in Example 1, except that (1) only the preliminary step was performed as the hydrophilic polymer removing step, and no decompression step or cleaning liquid supply step was performed. Table 2 shows the remaining amount of polyvinylpyrrolidone in the hollow fiber membrane. Further, the outer diameter and inner diameter of the obtained hollow fiber membrane were the same as those in Example 1.

Figure 2008161755
Figure 2008161755

表2に示すように、親水性ポリマー除去工程として(1)予備工程のみを行った比較例1に比べて各実施例では、製造された中空糸膜中のポリビニルピロリドン残存量が低く、高い親水性ポリマー除去効果が得られていた。また、その際、減圧工程と洗浄液供給工程とのゲージ圧の圧力差が大きいほど、より高い親水性ポリマー除去効果が得られる傾向にあった。   As shown in Table 2, in each example, the remaining amount of polyvinylpyrrolidone in the produced hollow fiber membrane was low and high hydrophilicity compared with Comparative Example 1 in which only the preliminary step was performed as the hydrophilic polymer removal step (1). The effect of removing the conductive polymer was obtained. At that time, the higher the difference in gauge pressure between the decompression step and the cleaning liquid supply step, the higher the hydrophilic polymer removal effect tended to be obtained.

減圧工程の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a pressure reduction process. 減圧工程の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a pressure reduction process. 図2の減圧工程における洗浄液の流れの一例を示す説明図である。It is explanatory drawing which shows an example of the flow of the washing | cleaning liquid in the pressure reduction process of FIG. 図2の減圧工程における洗浄液の流れの他の一例を示す説明図である。It is explanatory drawing which shows another example of the flow of the washing | cleaning liquid in the pressure reduction process of FIG. 減圧工程の後段に洗浄液供給工程を設けた一例を示す概略構成図である。It is a schematic block diagram which shows an example which provided the washing | cleaning liquid supply process in the back | latter stage of the pressure reduction process. 図5の減圧工程および洗浄液供給工程における洗浄液の流れを示す説明図である。It is explanatory drawing which shows the flow of the washing | cleaning liquid in the pressure reduction process and washing | cleaning liquid supply process of FIG. 減圧工程の後段に洗浄液供給工程を設け、さらに減圧工程を設けた一例を示す概略構成図である。It is a schematic block diagram which shows an example which provided the washing | cleaning-liquid supply process in the back | latter stage of the pressure reduction process, and also provided the pressure reduction process.

符号の説明Explanation of symbols

10 中空糸膜 10 Hollow fiber membrane

Claims (6)

疎水性ポリマーと親水性ポリマーとを含む製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、前記中空糸膜中に残存する前記親水性ポリマーを除去する親水性ポリマー除去工程とを有する中空糸膜の製造方法において、
前記親水性ポリマー除去工程は、前記中空糸膜の外周側を減圧して、前記親水性ポリマーを中空糸膜の外周側へ排出させる減圧工程を有することを特徴とする中空糸膜の製造方法。
A film-forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is coagulated in a coagulation solution to form a hollow fiber membrane, and a hydrophilic polymer removal is performed to remove the hydrophilic polymer remaining in the hollow fiber membrane. In the method for producing a hollow fiber membrane having a step,
The said hydrophilic polymer removal process has a pressure reduction process which decompresses the outer peripheral side of the said hollow fiber membrane, and discharges | emits the said hydrophilic polymer to the outer peripheral side of a hollow fiber membrane, The manufacturing method of the hollow fiber membrane characterized by the above-mentioned.
洗浄液に浸漬された中空糸膜に対して、前記減圧工程を行うことを特徴とする請求項1に記載の中空糸膜の製造方法。   The method for producing a hollow fiber membrane according to claim 1, wherein the depressurizing step is performed on the hollow fiber membrane immersed in the cleaning liquid. 前記減圧工程にて、前記中空糸膜の内周側から外周側へ洗浄液を通液させることを特徴とする請求項2に記載の中空糸膜の製造方法。   The method for producing a hollow fiber membrane according to claim 2, wherein in the pressure reducing step, a cleaning liquid is passed from the inner peripheral side to the outer peripheral side of the hollow fiber membrane. 前記親水性ポリマー除去工程は、前記減圧工程の後段に、前記洗浄液を前記中空糸膜の外周側から内周側に供給する洗浄液供給工程をさらに有することを特徴とする請求項3に記載の中空糸膜の製造方法。   The hollow according to claim 3, wherein the hydrophilic polymer removing step further includes a cleaning liquid supply step of supplying the cleaning liquid from the outer peripheral side to the inner peripheral side of the hollow fiber membrane after the decompression step. Yarn membrane manufacturing method. 前記親水性ポリマー除去工程は、前記洗浄液供給工程の後段に、前記減圧工程をさらに有することを特徴とする請求項4に記載の中空糸膜の製造方法。   The method for producing a hollow fiber membrane according to claim 4, wherein the hydrophilic polymer removal step further includes the pressure reduction step after the cleaning liquid supply step. 前記親水性ポリマー除去工程は、気相中で前記中空糸膜の外周側を減圧する後工程を最後段に備えていることを特徴とする請求項2ないし5のいずれかに記載の中空糸膜の製造方法。   6. The hollow fiber membrane according to any one of claims 2 to 5, wherein the hydrophilic polymer removing step includes a post-step in the last stage of decompressing the outer peripheral side of the hollow fiber membrane in a gas phase. Manufacturing method.
JP2006351480A 2006-12-27 2006-12-27 Method for producing hollow fiber membrane Active JP4951332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351480A JP4951332B2 (en) 2006-12-27 2006-12-27 Method for producing hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351480A JP4951332B2 (en) 2006-12-27 2006-12-27 Method for producing hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2008161755A true JP2008161755A (en) 2008-07-17
JP4951332B2 JP4951332B2 (en) 2012-06-13

Family

ID=39691936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351480A Active JP4951332B2 (en) 2006-12-27 2006-12-27 Method for producing hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4951332B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010690A1 (en) * 2009-07-22 2011-01-27 三菱レイヨン株式会社 Process for producing porous film
WO2012108429A1 (en) 2011-02-07 2012-08-16 三菱レイヨン株式会社 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
WO2012147852A1 (en) 2011-04-26 2012-11-01 三菱レイヨン株式会社 Device for cleaning porous hollow fiber membrane
WO2013012030A1 (en) * 2011-07-19 2013-01-24 三菱レイヨン株式会社 Defect inspection system and defect inspection method for porous hollow fiber membranes, porous hollow fiber membrane, and method for producing porous hollow fiber membrane
EP2583745A1 (en) * 2011-10-20 2013-04-24 Gambro Lundia AB Process for continuously washing a hollow fibre membrane for depleting residuals
WO2013073831A1 (en) * 2011-11-16 2013-05-23 엘지전자 주식회사 Multilayered hollow fiber membrane having high strength and high permeability, and method of manufacturing same
CN103144321A (en) * 2013-02-07 2013-06-12 北京碧水源膜科技有限公司 Column type membrane leakage detection repair equipment and leakage detection repair method
JP2016000403A (en) * 2010-10-29 2016-01-07 三菱レイヨン株式会社 Cleaning equipment and manufacturing method of porous membrane
JP2016041410A (en) * 2014-08-19 2016-03-31 三菱レイヨン株式会社 Device and method for measuring permeability of porous hollow fiber membrane and method for manufacturing porous hollow fiber membrane
US9528760B2 (en) 2012-03-12 2016-12-27 Mitsubishi Rayon Co., Ltd. Method for producing porous membrane and drying device of porous membrane
WO2017001260A1 (en) * 2015-07-02 2017-01-05 Mahle International Gmbh Device and method for cleaning and/or conditioning a capillary membrane
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
JP2017148808A (en) * 2017-05-25 2017-08-31 三菱ケミカル株式会社 Method for production of hollow fiber membrane
KR102345206B1 (en) * 2020-12-30 2022-01-03 한국에너지기술연구원 Clearance system for improving operating performance of hollow fiber membrane
US11260351B2 (en) * 2020-02-14 2022-03-01 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117665A (en) * 1981-01-14 1982-07-22 Mitsubishi Rayon Co Continuous multi-stage treatment of fiber
JPH0957078A (en) * 1995-08-22 1997-03-04 Mitsubishi Rayon Co Ltd Method for cleaning hollow-fiber membrane and device therefor
JPH1176768A (en) * 1997-09-12 1999-03-23 Asahi Chem Ind Co Ltd Cleaning method of hollow yarn membrane and cleaning device therefor
JP2004230375A (en) * 2002-11-22 2004-08-19 Nikkiso Co Ltd Manufacturing method for semipermeable membrane, semipermeable membrane, manufacturing method for liquid treatment module, liquid treatment module, and manufacturing apparatus for liquid treatment module
JP2005296849A (en) * 2004-04-13 2005-10-27 Mitsubishi Rayon Co Ltd Manufacturing method of porous film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117665A (en) * 1981-01-14 1982-07-22 Mitsubishi Rayon Co Continuous multi-stage treatment of fiber
JPH0957078A (en) * 1995-08-22 1997-03-04 Mitsubishi Rayon Co Ltd Method for cleaning hollow-fiber membrane and device therefor
JPH1176768A (en) * 1997-09-12 1999-03-23 Asahi Chem Ind Co Ltd Cleaning method of hollow yarn membrane and cleaning device therefor
JP2004230375A (en) * 2002-11-22 2004-08-19 Nikkiso Co Ltd Manufacturing method for semipermeable membrane, semipermeable membrane, manufacturing method for liquid treatment module, liquid treatment module, and manufacturing apparatus for liquid treatment module
JP2005296849A (en) * 2004-04-13 2005-10-27 Mitsubishi Rayon Co Ltd Manufacturing method of porous film

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010690A1 (en) * 2009-07-22 2011-01-27 三菱レイヨン株式会社 Process for producing porous film
JPWO2011010690A1 (en) * 2009-07-22 2013-01-07 三菱レイヨン株式会社 Method for producing porous membrane
JP5569393B2 (en) * 2009-07-22 2014-08-13 三菱レイヨン株式会社 Method for producing porous membrane
KR101342187B1 (en) 2009-07-22 2013-12-16 미쯔비시 레이온 가부시끼가이샤 Process for producing porous film
JP2016000403A (en) * 2010-10-29 2016-01-07 三菱レイヨン株式会社 Cleaning equipment and manufacturing method of porous membrane
WO2012108429A1 (en) 2011-02-07 2012-08-16 三菱レイヨン株式会社 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
KR101818802B1 (en) * 2011-02-07 2018-01-15 미쯔비시 케미컬 주식회사 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
JP5928330B2 (en) * 2011-02-07 2016-06-01 三菱レイヨン株式会社 Cleaning device for porous hollow fiber membrane and method for producing porous hollow fiber membrane
CN103459004A (en) * 2011-02-07 2013-12-18 三菱丽阳株式会社 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
WO2012147852A1 (en) 2011-04-26 2012-11-01 三菱レイヨン株式会社 Device for cleaning porous hollow fiber membrane
JP5892064B2 (en) * 2011-04-26 2016-03-23 三菱レイヨン株式会社 Cleaning device for porous hollow fiber membrane
US20140041699A1 (en) * 2011-04-26 2014-02-13 Mitsubishi Rayon Co., Ltd. Device for cleaning porous hollow fiber membrane
JP5561369B2 (en) * 2011-07-19 2014-07-30 三菱レイヨン株式会社 Porous hollow fiber membrane defect inspection apparatus and defect inspection method, and porous hollow fiber membrane manufacturing method
CN103688147A (en) * 2011-07-19 2014-03-26 三菱丽阳株式会社 Defect inspection system and defect inspection method for porous hollow fiber membranes, porous hollow fiber membrane, and method for producing porous hollow fiber membrane
WO2013012030A1 (en) * 2011-07-19 2013-01-24 三菱レイヨン株式会社 Defect inspection system and defect inspection method for porous hollow fiber membranes, porous hollow fiber membrane, and method for producing porous hollow fiber membrane
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
EP2583745A1 (en) * 2011-10-20 2013-04-24 Gambro Lundia AB Process for continuously washing a hollow fibre membrane for depleting residuals
JP2014532544A (en) * 2011-10-20 2014-12-08 ガンブロ・ルンディア・エービーGambro Lundia Ab The process of continuously washing the hollow fiber membrane to remove residue
WO2013057161A1 (en) * 2011-10-20 2013-04-25 Gambro Lundia Ab Process for continuously washing a hollow fibre membrane for depleting residuals
CN103889561A (en) * 2011-10-20 2014-06-25 甘布罗伦迪亚股份公司 Process for continuously washing a hollow fibre membrane for depleting residuals
US9527040B2 (en) 2011-10-20 2016-12-27 Gambro Lundia Ab Process for continuously washing a hollow fiber membrane for depleting residuals
WO2013073831A1 (en) * 2011-11-16 2013-05-23 엘지전자 주식회사 Multilayered hollow fiber membrane having high strength and high permeability, and method of manufacturing same
KR101514665B1 (en) 2011-11-16 2015-04-24 엘지전자 주식회사 Multi-layer Hollow Fiber Membrane Having High Strength and Excellent Permeability and Preparing Method Thereof
US9528760B2 (en) 2012-03-12 2016-12-27 Mitsubishi Rayon Co., Ltd. Method for producing porous membrane and drying device of porous membrane
CN103144321A (en) * 2013-02-07 2013-06-12 北京碧水源膜科技有限公司 Column type membrane leakage detection repair equipment and leakage detection repair method
JP2016041410A (en) * 2014-08-19 2016-03-31 三菱レイヨン株式会社 Device and method for measuring permeability of porous hollow fiber membrane and method for manufacturing porous hollow fiber membrane
WO2017001260A1 (en) * 2015-07-02 2017-01-05 Mahle International Gmbh Device and method for cleaning and/or conditioning a capillary membrane
JP2017148808A (en) * 2017-05-25 2017-08-31 三菱ケミカル株式会社 Method for production of hollow fiber membrane
US11260351B2 (en) * 2020-02-14 2022-03-01 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
KR102345206B1 (en) * 2020-12-30 2022-01-03 한국에너지기술연구원 Clearance system for improving operating performance of hollow fiber membrane

Also Published As

Publication number Publication date
JP4951332B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4951332B2 (en) Method for producing hollow fiber membrane
KR101492744B1 (en) Drying device and drying method for hollow fiber membranes
JP5928330B2 (en) Cleaning device for porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP5633576B2 (en) Method for producing porous hollow fiber membrane
JP5585727B2 (en) Porous membrane manufacturing method and porous membrane drying apparatus
JP5561369B2 (en) Porous hollow fiber membrane defect inspection apparatus and defect inspection method, and porous hollow fiber membrane manufacturing method
JP5617930B2 (en) Porous membrane manufacturing method and manufacturing apparatus
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
JP5138572B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus
JP4803697B2 (en) Method for producing porous membrane
JP5742433B2 (en) Porous membrane processing equipment
JPWO2013125681A1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
JP6149577B2 (en) Method for producing hollow fiber membrane
JP6436185B2 (en) Method for producing hollow fiber membrane
JP4502324B2 (en) Method for producing porous membrane
JP2004161896A (en) Porous film and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4951332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250