JP5138572B2 - Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus - Google Patents

Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus Download PDF

Info

Publication number
JP5138572B2
JP5138572B2 JP2008329811A JP2008329811A JP5138572B2 JP 5138572 B2 JP5138572 B2 JP 5138572B2 JP 2008329811 A JP2008329811 A JP 2008329811A JP 2008329811 A JP2008329811 A JP 2008329811A JP 5138572 B2 JP5138572 B2 JP 5138572B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
drying
cylinder member
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008329811A
Other languages
Japanese (ja)
Other versions
JP2010149044A (en
Inventor
正樹 倉科
敏則 隅
泰夫 広本
浩之 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008329811A priority Critical patent/JP5138572B2/en
Publication of JP2010149044A publication Critical patent/JP2010149044A/en
Application granted granted Critical
Publication of JP5138572B2 publication Critical patent/JP5138572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、濾過膜などに好適に使用される中空糸膜の製造方法と、この製造方法に好適に用いられる中空糸膜の乾燥装置に関する。   The present invention relates to a method for producing a hollow fiber membrane suitably used for a filtration membrane and the like, and a hollow fiber membrane drying apparatus suitably used for this production method.

食品工業分野、医療分野、電子工業分野等の分野における有用成分の濃縮、回収、不要成分の除去、造水等には、セルロースアセテート、ポリアクリロニトリル、ポリスルホン、フッ素系樹脂等からなり、例えば湿式または乾湿式紡糸により製造された多孔質の中空糸膜が、精密濾過膜、限外濾過膜、逆浸透濾過膜等に多用されている。   Concentrating and collecting useful components in the fields of food industry, medical field, electronics industry, etc., removal of unnecessary components, fresh water, etc. are composed of cellulose acetate, polyacrylonitrile, polysulfone, fluororesin, etc. Porous hollow fiber membranes produced by dry and wet spinning are frequently used for microfiltration membranes, ultrafiltration membranes, reverse osmosis filtration membranes and the like.

湿式または乾湿式紡糸により中空糸膜を製造する場合には、まず、疎水性ポリマーおよび親水性ポリマーを含む製膜原液を調製する。ついで、この製膜原液を環状に吐出し、凝固液中で凝固させる凝固工程により、中空糸膜を形成する。なお、製膜原液は空気と接触する空走部を経て、凝固液中へ導入されても(乾湿式紡糸法)、直接凝固液に導入されても(湿式紡糸法)よい。
このような中空糸膜の多孔質部には、通常、親水性ポリマーが溶液の状態で残存しているため、通常、この親水性ポリマーを洗浄などで除去した後、中空糸膜を乾燥する。
In the case of producing a hollow fiber membrane by wet or dry wet spinning, first, a membrane forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is prepared. Next, a hollow fiber membrane is formed by a coagulation step in which the membrane-forming stock solution is discharged in a ring shape and coagulated in the coagulation solution. In addition, the film-forming stock solution may be introduced into the coagulating liquid through a free running portion that is in contact with air (dry wet spinning method) or directly into the coagulating liquid (wet spinning method).
Since the hydrophilic polymer usually remains in a solution state in the porous part of such a hollow fiber membrane, the hydrophilic polymer is usually removed by washing or the like, and then the hollow fiber membrane is dried.

ここで、中空糸膜の乾燥には、例えば特許文献1の段落0049に記載されているように、熱風循環式の乾燥装置が使用される場合が多い。具体的には、毎秒数m程度の風速で乾燥装置内に熱風が循環している乾燥装置内において、中空糸膜を連続的に走行させることで、中空糸膜の外周側に熱風を送風して乾燥する方法が採られる。
特開2005−220202号公報
Here, in order to dry the hollow fiber membrane, for example, as described in paragraph 0049 of Patent Document 1, a hot air circulation type drying apparatus is often used. Specifically, hot air is blown to the outer peripheral side of the hollow fiber membrane by continuously running the hollow fiber membrane in a drying device in which hot air circulates in the drying device at a wind speed of about several meters per second. The method of drying is used.
JP-A-2005-220202

しかしながら、このような熱風循環式の乾燥装置を使用して、中空糸膜を十分に乾燥させるためには、乾燥装置で中空糸膜を何往復もさせ、その滞在時間を数分間程度に設定する必要があり、乾燥時間を要した。また、このような乾燥装置は大型であるため、広い設置スペースを要するとともに、必要な熱風量も多かった。このように従来の乾燥方法では、短時間、低コストで中空糸膜を乾燥することは困難であった。   However, in order to sufficiently dry the hollow fiber membrane using such a hot air circulation type drying device, the hollow fiber membrane is reciprocated several times by the drying device, and the staying time is set to about several minutes. Needed and took drying time. In addition, since such a drying apparatus is large, a large installation space is required and a large amount of hot air is required. Thus, with the conventional drying method, it was difficult to dry the hollow fiber membrane in a short time and at a low cost.

本発明は上記事情に鑑みてなされたもので、大型の設備を必要とすることなく、短時間、低コストで、中空糸膜を乾燥できる中空糸膜の製造方法と、この製造方法に好適に用いられる乾燥装置の提供を課題とする。     The present invention has been made in view of the above circumstances, and a method for producing a hollow fiber membrane that can dry the hollow fiber membrane in a short time and at a low cost without requiring a large facility, and suitable for this production method. It is an object to provide a drying apparatus to be used.

本発明の中空糸膜の製造方法は、製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、前記中空糸膜を乾燥する乾燥工程とを有する中空糸膜の製造方法において、前記乾燥工程は、乾燥用ガスを前記中空糸膜の外周側から内周側に透過させて中空部に導入し、前記中空部を通過させた後、前記内周側から前記外周側に透過させて排出する乾燥用ガス圧入工程を有し、前記乾燥用ガス圧入工程では、乾燥用筒部材の内部に前記中空糸膜を通過させるとともに、前記乾燥用筒部材の側面に形成された供給口から乾燥用ガスを前記内部に供給することを特徴とする
前記乾燥工程は、前記乾燥用ガス圧入工程の前段に、予備乾燥工程を有することが好ましい。
前記予備乾燥工程は、熱風乾燥工程および減圧乾燥工程のうちの1つ以上を有することが好ましい。
本発明の中空糸膜の乾燥装置は、乾燥用ガスが供給される供給口が側面に形成され、中空糸膜が内部を通過する乾燥用筒部材と、前記供給口に接続される乾燥用ガス供給手段とを具備することを特徴とする。
前記中空糸膜と前記乾燥用筒部材とのクリアランスは、0.4mm〜1.6mmであることが好ましい。
前記乾燥用筒部材の長さと、前記中空糸膜と前記乾燥用筒部材のクリアランスとの比は、2000:1〜1000:1であることが好ましい。
前記乾燥用ガスの供給圧力は、前記乾燥用筒部材の前記供給口における前記乾燥用ガスのゲージ圧として、0.1〜0.3MPaであることが好ましい。
The method for producing a hollow fiber membrane of the present invention comprises: a coagulation step for coagulating a membrane forming raw solution in a coagulation solution to form a hollow fiber membrane; and a method for producing a hollow fiber membrane having a drying step for drying the hollow fiber membrane. In the drying step, the drying gas is permeated from the outer peripheral side of the hollow fiber membrane to the inner peripheral side, introduced into the hollow portion, passed through the hollow portion, and then from the inner peripheral side to the outer peripheral side. It is transmitted to have a drying gas injection step of discharging said at drying gas injection process, with passing the hollow fiber membrane inside the drying cylinder member, which is formed on a side surface of the drying cylinder member supply and supplying the drying gas into the mouth.
The drying step preferably includes a preliminary drying step before the drying gas press-fitting step.
The preliminary drying process preferably includes one or more of a hot air drying process and a reduced pressure drying process.
The hollow fiber membrane drying apparatus according to the present invention has a drying cylinder connected to the supply port, and a drying cylinder member through which the hollow fiber membrane passes and the supply port to which a drying gas is supplied is formed on the side surface. And a supply means.
The clearance between the hollow fiber membrane and the drying cylinder member is preferably 0.4 mm to 1.6 mm.
The ratio of the length of the drying cylinder member to the clearance between the hollow fiber membrane and the drying cylinder member is preferably 2000: 1 to 1000: 1.
The supply pressure of the drying gas is preferably 0.1 to 0.3 MPa as the gauge pressure of the drying gas at the supply port of the drying cylinder member.

本発明によれば、大型の設備を必要とすることなく、短時間、低コストで、中空糸膜を乾燥できる中空糸膜の製造方法と、この製造方法に好適に用いられる乾燥装置を提供することができる。   According to the present invention, there is provided a method for producing a hollow fiber membrane capable of drying the hollow fiber membrane in a short time and at a low cost without requiring a large facility, and a drying apparatus suitably used for this production method. be able to.

以下、本発明について、疎水性ポリマーと親水性ポリマーとを含む製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、形成された中空糸膜中に残存する親水性ポリマーを除去する親水性ポリマー除去工程と、親水性ポリマーが除去された中空糸膜を乾燥する乾燥工程を有する中空糸膜の製造方法を一実施形態例として示し、詳細に説明する。   Hereinafter, regarding the present invention, a film-forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is coagulated in a coagulation liquid to form a hollow fiber membrane, and a hydrophilic polymer remaining in the formed hollow fiber membrane A method for producing a hollow fiber membrane having a hydrophilic polymer removing step for removing water and a drying step for drying the hollow fiber membrane from which the hydrophilic polymer has been removed will be described in detail as an embodiment.

[凝固工程]
本実施形態例の中空糸膜の製造方法では、まず、疎水性ポリマーと親水性ポリマーとを含む製膜原液を調製する。ついで、通常、この製膜原液を環状の吐出口が形成されたノズルから凝固液中に吐出し、凝固液中で凝固させる凝固工程により、中空糸膜を形成する。
凝固工程は、製膜原液が空気と接触する空走部を経て、凝固液中へ導入される乾湿式紡糸法でも、直接凝固液に導かれる湿式紡糸法のいずれにより行ってもよい。また、ここで製造する中空糸膜の構成には特に制限はなく、例えば多孔質基材を備えたものでも、多層構造であって、取扱時の擦れ等に対して耐久性のあるものでもよい。
尚、多孔質基材の例としては、特に限定されるものではないが、各種の繊維で製紐された中空状の編紐や組紐等が挙げられ、各種素材を単独または組み合わせて用いることができる。中空編紐や組紐に使用される繊維として、合成繊維、半合成繊維、再生繊維、天然繊維等が挙げられ、また繊維の形態は、モノフィラメント、マルチフィラメント、紡績糸のいずれであっても良い。
[Coagulation process]
In the method for producing a hollow fiber membrane of the present embodiment, first, a membrane forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is prepared. Subsequently, the hollow fiber membrane is usually formed by a coagulation step in which the membrane-forming solution is discharged from a nozzle having an annular discharge port into the coagulation solution and coagulated in the coagulation solution.
The coagulation step may be performed by either a dry-wet spinning method in which the film-forming stock solution is introduced into the coagulating solution through an idle running portion in contact with air or a wet spinning method that is directly guided to the coagulating solution. The structure of the hollow fiber membrane produced here is not particularly limited. For example, the hollow fiber membrane may be provided with a porous base material or may have a multilayer structure and be durable against rubbing during handling. .
Examples of the porous substrate are not particularly limited, but include hollow knitted or braided strings made of various fibers, and various materials can be used alone or in combination. it can. Examples of the fiber used for the hollow knitted string and braid include synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, and the like, and the form of the fiber may be any of monofilament, multifilament, and spun yarn.

疎水性ポリマーは、凝固工程により中空糸膜を形成し得るものであればよく、そのようなものであれば特に制限なく使用できるが、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなどが挙げられる。また、これらの樹脂の共重合体を使用してもよいし、これら樹脂や共重合体の一部に置換基を導入したものも使用できる。また、分子量などが異なる同種のポリマーをブレンドして用いても構わないし、2種以上の異なる種類の樹脂を混合して使用してもよい。これらのなかでフッ素系樹脂、中でもポリフッ化ビニリデンやフッ化ビニリデン単体と他の単量体からなる共重合体は、次亜塩素酸などの酸化剤に対する耐久性が優れている。よって、例えば後述の親水性ポリマー除去工程などで、酸化剤により処理されるような中空糸膜を製造する場合には、疎水性ポリマーとしてフッ素系樹脂を選択することが好適である。     The hydrophobic polymer is not particularly limited as long as it can form a hollow fiber membrane by a coagulation step, and can be used without particular limitation as long as it is such as polysulfone resin such as polysulfone or polyethersulfone, polyvinylidene fluoride, etc. And fluororesin, polyacrylonitrile, cellulose derivatives, polyamide, polyester, polymethacrylate, polyacrylate, and the like. Further, copolymers of these resins may be used, and those having a substituent introduced into a part of these resins and copolymers can also be used. Further, the same type of polymers having different molecular weights may be blended and used, or two or more different types of resins may be mixed and used. Among these, fluororesins, especially polyvinylidene fluoride and copolymers made of vinylidene fluoride and other monomers have excellent durability against oxidizing agents such as hypochlorous acid. Therefore, for example, in the case of producing a hollow fiber membrane that is treated with an oxidizing agent in the hydrophilic polymer removal step described later, it is preferable to select a fluororesin as the hydrophobic polymer.

親水性ポリマーは、製膜原液の粘度を中空糸膜の形成に好適な範囲に調整し、製膜状態の安定化を図るために添加されるものであって、ポリエチレングリコールやポリビニルピロリドンなどが好ましく使用される。これらの中でも、中空糸膜の孔径の制御や中空糸膜の強度の点から、ポリビニルピロリドンやポリビニルピロリドンに他の単量体が共重合した共重合体が好ましい。
また、親水性ポリマーには、2種以上の樹脂を混合して使用することもできる。例えば親水性ポリマーとして、より高分子量のものを用いると、膜構造の良好な中空糸膜を形成しやすい傾向がある。一方、低分子量の親水性ポリマーは、後述の親水性ポリマー除去工程において中空糸膜からより除去されやすい点で好適である。よって、目的に応じて、分子量が異なる同種の親水性ポリマーを適宜ブレンドして用いてもよい。
The hydrophilic polymer is added to adjust the viscosity of the membrane-forming stock solution to a range suitable for the formation of the hollow fiber membrane and stabilize the membrane-forming state. Polyethylene glycol, polyvinyl pyrrolidone, etc. are preferable. used. Among these, polyvinylpyrrolidone and a copolymer obtained by copolymerizing other monomers with polyvinylpyrrolidone are preferable from the viewpoint of controlling the pore diameter of the hollow fiber membrane and the strength of the hollow fiber membrane.
Moreover, 2 or more types of resin can also be mixed and used for a hydrophilic polymer. For example, when a higher molecular weight hydrophilic polymer is used, a hollow fiber membrane having a good membrane structure tends to be formed. On the other hand, the low molecular weight hydrophilic polymer is suitable in that it is more easily removed from the hollow fiber membrane in the hydrophilic polymer removing step described later. Therefore, the same kind of hydrophilic polymers having different molecular weights may be appropriately blended depending on the purpose.

上述した疎水性ポリマーおよび親水性ポリマーをこれらが可溶な溶媒(良溶媒)に混合することにより、製膜原液を調製することができる。製膜原液には、必要に応じてその他の添加成分を加えてもよい。
溶媒の種類には特に制限はないが、乾湿式紡糸で凝固工程を行う場合には、空走部において製膜原液を吸湿させることによって中空糸膜の孔径を調整するため、水と均一に混合しやすい溶媒を選択することが好ましい。このような溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N−メチルモルホリン−N−オキシドなどが挙げられ、これらを1種以上使用できる。また、溶媒への疎水性ポリマーや親水性ポリマーの溶解性を損なわない範囲で、疎水性ポリマーや親水性ポリマーの貧溶媒を混合して使用してもよい。製膜原液の温度は、特に制限はないが通常は20〜40℃である。
A film-forming stock solution can be prepared by mixing the above-described hydrophobic polymer and hydrophilic polymer in a solvent in which they are soluble (good solvent). Other additive components may be added to the film-forming stock solution as necessary.
There is no particular limitation on the type of solvent, but when performing the coagulation process by dry and wet spinning, the pore diameter of the hollow fiber membrane is adjusted by absorbing the membrane forming stock solution in the idle running section, so that it is mixed uniformly with water. It is preferable to select a solvent that can be easily treated. Examples of such a solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N-methylmorpholine-N-oxide, and the like. Can be used. Moreover, you may mix and use the poor solvent of a hydrophobic polymer or a hydrophilic polymer in the range which does not impair the solubility of the hydrophobic polymer or hydrophilic polymer to a solvent. The temperature of the film-forming stock solution is not particularly limited, but is usually 20 to 40 ° C.

製膜原液中における疎水性ポリマーの濃度は、薄すぎても濃すぎても製膜時の安定性が低下し、好適な中空糸膜構造が形成されに難くなる傾向にあるため、下限は10質量%が好ましく、15質量%がより好ましい。また、上限は30質量%が好ましく、25質量%がより好ましい。
一方、親水性ポリマーの濃度の下限は、中空糸膜をより形成しやすいものとするために1質量%が好ましく、5質量%がより好ましい。親水性ポリマーの濃度の上限は、製膜原液の取扱性の点から20質量%が好ましく、12質量%がより好ましい。
If the concentration of the hydrophobic polymer in the membrane forming stock solution is too thin or too thick, the stability at the time of membrane formation tends to be reduced, and it is difficult to form a suitable hollow fiber membrane structure. % By mass is preferable, and 15% by mass is more preferable. Further, the upper limit is preferably 30% by mass, and more preferably 25% by mass.
On the other hand, the lower limit of the concentration of the hydrophilic polymer is preferably 1% by mass and more preferably 5% by mass in order to make the hollow fiber membrane easier to form. The upper limit of the concentration of the hydrophilic polymer is preferably 20% by mass, and more preferably 12% by mass from the viewpoint of the handleability of the film-forming stock solution.

凝固液としては、水、アルコール類、グリセリン、エチレングリコール等を単独または混合して用いることができる。凝固液の温度は、特に制限はないが通常は60〜90℃である。     As the coagulation liquid, water, alcohols, glycerin, ethylene glycol or the like can be used alone or in combination. The temperature of the coagulation liquid is not particularly limited, but is usually 60 to 90 ° C.

[親水性ポリマー除去工程]
上述の凝固工程により形成された中空糸膜は、一般的に孔径が大きく高透水性を潜在的には有しているが、中空糸膜中に親水性ポリマーが溶液状態で多量に残存しているために、このままでは充分な高透水性を発揮できない。よって、凝固工程の後には、中空糸膜中に残存する親水性ポリマーを除去する親水性ポリマー除去工程を行うことが好ましい。
[Hydrophilic polymer removal step]
The hollow fiber membrane formed by the above-mentioned coagulation process generally has a large pore diameter and potentially has high water permeability, but a large amount of hydrophilic polymer remains in the hollow fiber membrane in a solution state. Therefore, sufficient high water permeability cannot be exhibited as it is. Therefore, after the coagulation step, it is preferable to perform a hydrophilic polymer removal step of removing the hydrophilic polymer remaining in the hollow fiber membrane.

親水性ポリマー除去工程の具体的方法としては特に制限はないが、例えば、予備工程と、減圧工程と、洗浄液供給工程とを備えた工程が好適である。
凝固工程で得られた中空糸膜には、親水性ポリマーが高濃度の溶液の状態で、膜(多孔質部)中に残存している。このような高濃度の親水性ポリマーは、ある程度までは、中空糸膜を洗浄液に浸漬することで比較的容易に除去される。よって、予備工程として、まず始めに中空糸膜を洗浄液に浸漬して洗浄する(i)中空糸膜の洗浄工程を行い、ついで、(ii)酸化剤を使用した親水性ポリマーの低分子量化工程、(iii)低分子量化された親水性ポリマーの洗浄工程を順次行う方法が挙げられる。
Although there is no restriction | limiting in particular as a specific method of a hydrophilic polymer removal process, For example, the process provided with the preliminary | backup process, the pressure reduction process, and the washing | cleaning liquid supply process is suitable.
In the hollow fiber membrane obtained in the coagulation step, the hydrophilic polymer remains in the membrane (porous portion) in a high concentration solution state. Such a high concentration of the hydrophilic polymer is relatively easily removed to some extent by immersing the hollow fiber membrane in a cleaning solution. Therefore, as a preliminary process, first, the hollow fiber membrane is first immersed and washed in a cleaning solution (i) a hollow fiber membrane cleaning step is performed, and then (ii) a hydrophilic polymer low molecular weight reduction step using an oxidizing agent. (Iii) A method of sequentially performing the washing step of the hydrophilic polymer having a reduced molecular weight.

(i)中空糸膜の洗浄工程で使用する洗浄液としては、清澄で親水性ポリマーが分散または溶解する液体であれば特に限定されるものではないが、洗浄効果が高いことから水が好ましい。使用する水としては、水道水、工業用水、河川水、井戸水等が挙げられ、これらにアルコール、無機塩類、酸化剤、界面活性剤等を混合して使用してもよい。また、洗浄液としては、疎水性ポリマーの良溶媒と水との混合液を用いることもできる。
洗浄温度は、親水性ポリマーの溶液の粘度を低く抑えて、拡散移動速度の低下を防ぐため、高い方が好適であり、50℃以上が好ましく、より好ましくは80℃以上である。さらに、洗浄液を沸騰させながら洗浄を行うと、沸騰によるバブリングによって中空糸膜の外表面を掻き取ることもできるため、効率のよい洗浄が可能となる。
(I) The washing liquid used in the washing step of the hollow fiber membrane is not particularly limited as long as it is a clear liquid in which the hydrophilic polymer is dispersed or dissolved, but water is preferable because of its high washing effect. Examples of water to be used include tap water, industrial water, river water, well water, and the like, and alcohols, inorganic salts, oxidizing agents, surfactants, and the like may be mixed and used. In addition, as the cleaning liquid, a mixed liquid of a good solvent for the hydrophobic polymer and water can be used.
The washing temperature is preferably high, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, in order to keep the viscosity of the hydrophilic polymer solution low and prevent a decrease in diffusion transfer rate. Further, when cleaning is performed while boiling the cleaning liquid, the outer surface of the hollow fiber membrane can be scraped off by bubbling due to boiling, so that efficient cleaning is possible.

(i)中空糸膜の洗浄工程によって、中空糸膜に残存する親水性ポリマーは、比較的濃度の低い状態となっている。このような低濃度の場合に、より高い洗浄効果を得るためには、(ii)酸化剤を使用した親水性ポリマーの低分子量化工程を行うことが好ましい。 具体的には、まず、中空糸膜に酸化剤を含む薬液を保持させ、ついで、薬液を保持した中空糸膜を気相中で加熱する方法が好ましい。酸化剤としては、オゾン、過酸化水素、過マンガン酸塩、重クロム酸塩、過硫酸塩等を使用することもできるが、酸化力が強く分解性能に優れること、取扱い性に優れること、安価なこと等の点より、特に次亜塩素酸塩が好ましい。次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどが挙げられるが、特に次亜塩素酸ナトリウムが好ましい。     (I) The hydrophilic polymer remaining in the hollow fiber membrane is in a relatively low concentration state by the washing process of the hollow fiber membrane. In order to obtain a higher cleaning effect at such a low concentration, it is preferable to perform (ii) a step of lowering the molecular weight of the hydrophilic polymer using an oxidizing agent. Specifically, it is preferable to first hold a chemical solution containing an oxidizing agent in the hollow fiber membrane, and then heat the hollow fiber membrane holding the chemical solution in a gas phase. As the oxidizing agent, ozone, hydrogen peroxide, permanganate, dichromate, persulfate, etc. can be used, but it has strong oxidizing power and excellent decomposition performance, excellent handling properties, and low cost. Of these, hypochlorite is particularly preferable. Examples of hypochlorite include sodium hypochlorite and calcium hypochlorite, with sodium hypochlorite being particularly preferred.

この際、薬液の温度は50℃以下が好ましく、30℃以下がより好ましい。50℃より高温であると、中空糸膜の浸漬中に酸化分解が促進され、薬液中に脱落した親水性ポリマーがさらに酸化分解し、酸化剤の浪費が進んでしまう。一方、過度に低温であると、酸化分解は抑制されるものの、常温で実施する場合と比較して、低温に温度制御するためのコストなどが増加する傾向にある。よって、その点からすると、薬液の温度は0℃以上が好ましく、10℃以上がより好ましい。   At this time, the temperature of the chemical solution is preferably 50 ° C. or less, and more preferably 30 ° C. or less. When the temperature is higher than 50 ° C., oxidative decomposition is promoted during the immersion of the hollow fiber membrane, and the hydrophilic polymer that has fallen into the chemical solution is further oxidatively decomposed, leading to waste of the oxidant. On the other hand, when the temperature is excessively low, the oxidative decomposition is suppressed, but the cost for controlling the temperature to a low temperature tends to increase as compared with the case of carrying out at normal temperature. Therefore, from this point, the temperature of the chemical solution is preferably 0 ° C. or higher, more preferably 10 ° C. or higher.

中空糸膜に薬液を保持させたあとは、中空糸膜を気相中で加熱することにより、親水性ポリマーを酸化分解する。気相中での加熱によれば、中空糸膜中に保持された薬液が大きく希釈されたり、薬液が加熱媒体中へ脱落溶出したりすることがほとんどなく、薬液中の酸化剤が中空糸膜中に残存する親水性ポリマーの分解に効率よく使用されるため好ましい。     After the chemical solution is held in the hollow fiber membrane, the hydrophilic polymer is oxidatively decomposed by heating the hollow fiber membrane in the gas phase. By heating in the gas phase, the chemical liquid retained in the hollow fiber membrane is hardly diluted and the chemical liquid is hardly dropped and eluted into the heating medium, so that the oxidizing agent in the chemical liquid is the hollow fiber membrane. It is preferable because it is efficiently used for decomposing the hydrophilic polymer remaining therein.

具体的な加熱方法としては、大気圧下で加熱流体を用いて中空糸膜を加熱することが好ましい。加熱流体としては相対湿度の高い流体を使用すること、すなわち湿熱条件で加熱を行うことが、次亜塩素酸塩などの酸化剤の乾燥を防ぎ、効率的な分解処理が可能となるため好ましい。その際、流体の相対湿度としては80%以上が好ましく、90%以上とすることがより好ましく、100%近傍とするのが最も好ましい。
加熱温度の下限は、連続処理を行う場合、処理時間を短くできることから50℃とするのが好ましく、80℃がより好ましい。温度の上限は、大気圧状態では100℃とするのが好ましい。
As a specific heating method, it is preferable to heat the hollow fiber membrane using a heating fluid under atmospheric pressure. It is preferable to use a fluid having a high relative humidity as the heating fluid, that is, heating under humid heat conditions, because drying of an oxidizing agent such as hypochlorite is prevented and efficient decomposition treatment is possible. At that time, the relative humidity of the fluid is preferably 80% or more, more preferably 90% or more, and most preferably in the vicinity of 100%.
The lower limit of the heating temperature is preferably 50 ° C., more preferably 80 ° C., because the treatment time can be shortened when continuous treatment is performed. The upper limit of the temperature is preferably 100 ° C. in the atmospheric pressure state.

このように、(ii)酸化剤を使用した親水性ポリマーの低分子量化工程を実施した後には、上述した(i)中空糸膜の洗浄工程と同様の条件にて、再度、中空糸膜を洗浄液に浸漬して洗浄し、低分子量化された親水性ポリマーをある程度除去する(iii)低分子量化された親水性ポリマーの洗浄工程を行うことが好ましい。   As described above, after the (ii) step of lowering the molecular weight of the hydrophilic polymer using the oxidizing agent, the hollow fiber membrane is again formed under the same conditions as in the above-described (i) hollow fiber membrane washing step. It is preferable to perform a washing step of the hydrophilic polymer having a reduced molecular weight by removing the hydrophilic polymer having a reduced molecular weight to some extent by immersing in a cleaning solution for cleaning.

以上のようにして必要に応じて予備工程を行った後、減圧工程を行う。減圧工程によれば、予備工程を行ってもなお残存している親水性ポリマーであっても、効果的に除去することができる。
減圧工程は、中空糸膜の外周側を減圧して、中空糸膜中に残存する親水性ポリマーを中空糸膜の外周側へ排出させる工程であって、中空糸膜の外周側の圧力が内周側(中空部)よりも低くなるようにし、その際の圧力差により、親水性ポリマーを中空糸膜の外周側へと移動させ、除去するものである。
After performing a preliminary process as needed as mentioned above, a pressure reduction process is performed. According to the decompression step, even a hydrophilic polymer that remains even after the preliminary step can be effectively removed.
The depressurization step is a step of depressurizing the outer peripheral side of the hollow fiber membrane and discharging the hydrophilic polymer remaining in the hollow fiber membrane to the outer peripheral side of the hollow fiber membrane. The hydrophilic polymer is moved to the outer peripheral side of the hollow fiber membrane and removed by the pressure difference at that time so as to be lower than the peripheral side (hollow part).

減圧工程の具体的方法には特に制限はないが、例えば、図1に示すように、減圧ポンプなどの減圧手段を接続するための接続口11aが側面(周面)に形成されているとともに、中空糸膜10が通過できる程度のクリアランスを有しつつ、その内部を外部よりも減圧状態または加圧状態に保つことのできるシール機構が両端11b、11cに設けられた筒部材11を用いることが好ましい。このような筒部材11を大気中などの気相中に配置し、凝固工程と必要に応じて予備工程とを経た中空糸膜10を筒部材11内にその一端11bから連続的に導入するとともに減圧手段を作動させることにより、筒部材11内において、中空糸膜10の外周側が減圧され、中空糸膜10中に残存する親水性ポリマーが気相に同伴されて中空糸膜10の外周側へと吸引、除去される。   Although there is no particular limitation on the specific method of the decompression step, for example, as shown in FIG. 1, a connection port 11a for connecting decompression means such as a decompression pump is formed on the side surface (circumferential surface), Use of the cylindrical member 11 provided with both ends 11b and 11c is provided with a sealing mechanism having a clearance enough to allow the hollow fiber membrane 10 to pass therethrough and capable of keeping the inside in a reduced pressure state or a pressurized state from the outside. preferable. Such a cylindrical member 11 is disposed in a gas phase such as the atmosphere, and the hollow fiber membrane 10 that has undergone a solidification step and a preliminary step as necessary is continuously introduced into the cylindrical member 11 from its one end 11b. By operating the decompression means, the outer peripheral side of the hollow fiber membrane 10 is decompressed in the cylindrical member 11, and the hydrophilic polymer remaining in the hollow fiber membrane 10 is entrained in the gas phase to the outer peripheral side of the hollow fiber membrane 10. And sucked and removed.

また、より好ましい方法としては、図2に示すように、洗浄液の入った洗浄槽12を用意し、この洗浄槽12中に中空糸膜10を浸漬し、洗浄液に浸漬されたこの中空糸膜10に対して、上述のように減圧工程を行う方法が挙げられる。
このようして減圧工程を行った場合において、中空糸膜10の内周側と外周側との圧力差が大きいと、筒部材11からは出ていて、洗浄液中には浸漬された部分の中空糸膜10において、洗浄槽12中の洗浄液が膜を通過し、中空糸膜10の内周側に導入される。導入された洗浄液は、その後、減圧手段の作動により、再び膜を通過して、外周側に排出される。その結果、中空糸膜10中に残存する親水性ポリマーが洗浄液とともに接続口11aから除去される。
このような減圧工程により、中空糸膜10の内周側から外周側へ洗浄液を通液させる方法によれば、中空糸膜10から引き離された親水性ポリマーは洗浄液に分散または溶解し、洗浄液とともに吸引、除去されるため、中空糸膜10に再度付着する懸念も軽減され、高い除去効果が得られる。
なお、洗浄液としては、(i)中空糸膜の洗浄工程で例示したものを使用できる。
洗浄液の温度は、特に制限はないが30〜80℃とすることが好ましい。温度が高いと親水性ポリマーが洗浄液に分散・溶解しやすくなるが、洗浄液の飽和蒸気圧が高くなるため、高い減圧度が確保できなくなる懸念が生じる。逆に、温度が低いと高い減圧度が確保でき、水分を引き抜きやすくなるが、親水性ポリマーの洗浄液への分散・溶解性が低下してしまう懸念が生じる。
As a more preferable method, as shown in FIG. 2, a cleaning tank 12 containing a cleaning liquid is prepared, the hollow fiber membrane 10 is immersed in the cleaning tank 12, and the hollow fiber membrane 10 is immersed in the cleaning liquid. On the other hand, the method of performing a pressure reduction process as mentioned above is mentioned.
When the pressure reducing step is performed in this way, if the pressure difference between the inner peripheral side and the outer peripheral side of the hollow fiber membrane 10 is large, the hollow member 10 comes out of the cylindrical member 11 and is hollow in the portion immersed in the cleaning liquid. In the thread membrane 10, the cleaning liquid in the cleaning tank 12 passes through the membrane and is introduced to the inner peripheral side of the hollow fiber membrane 10. Then, the introduced cleaning liquid passes through the membrane again and is discharged to the outer peripheral side by the operation of the decompression means. As a result, the hydrophilic polymer remaining in the hollow fiber membrane 10 is removed from the connection port 11a together with the cleaning liquid.
According to the method of passing the cleaning liquid from the inner peripheral side to the outer peripheral side of the hollow fiber membrane 10 by such a decompression step, the hydrophilic polymer separated from the hollow fiber membrane 10 is dispersed or dissolved in the cleaning liquid, and together with the cleaning liquid Since suction and removal are performed, the concern of re-adhering to the hollow fiber membrane 10 is reduced, and a high removal effect is obtained.
In addition, as a washing | cleaning liquid, what was illustrated at the washing process of (i) hollow fiber membranes can be used.
The temperature of the cleaning liquid is not particularly limited but is preferably 30 to 80 ° C. When the temperature is high, the hydrophilic polymer is easily dispersed and dissolved in the cleaning liquid. However, since the saturated vapor pressure of the cleaning liquid increases, there is a concern that a high degree of vacuum cannot be secured. On the contrary, when the temperature is low, a high degree of decompression can be secured and water can be easily extracted, but there is a concern that the dispersion / solubility of the hydrophilic polymer in the cleaning liquid is lowered.

さらに親水性ポリマーを除去する効果を高めるためには、このような減圧工程の後段に、中空糸膜10の外周側から内周側に洗浄液を強制的に供給する洗浄液供給工程を組み合わせ、親水性ポリマーの除去効果を高めてもよい。
具体的には、先に説明した筒部材11を2本用意し、これらを間隔をあけて洗浄槽12中に直列に設置し、前段側の筒部材11の接続口11aには減圧手段を接続し、後段側の筒部材11の接続口11aには洗浄液を供給するための加圧供給ポンプなどの供給手段を接続する。
そして、中空糸膜10をこれら2本の筒部材11内に前段側から順次導入するとともに、減圧手段と供給手段とを作動させる。すると、後段側の筒部材11内においては中空糸膜10の外周側から内周側に洗浄液が供給され(洗浄液供給工程)、前段側の筒部材11内においては中空糸膜10の内周側から外周側へ洗浄液を通液させることができる(減圧工程)。
このように減圧工程の後段に洗浄液供給工程を設けると、減圧工程において中空糸膜10の内周側から外周側へ通液する洗浄液量が増加し、その結果、親水性ポリマーの除去効果が大きくなる。
Further, in order to enhance the effect of removing the hydrophilic polymer, a cleaning liquid supply process for forcibly supplying a cleaning liquid from the outer peripheral side to the inner peripheral side of the hollow fiber membrane 10 is combined with the hydrophilic step after the decompression step. The polymer removal effect may be enhanced.
Specifically, two cylindrical members 11 described above are prepared, installed in series in the cleaning tank 12 with a space therebetween, and a decompression means is connected to the connection port 11a of the upstream cylindrical member 11 A supply means such as a pressurized supply pump for supplying the cleaning liquid is connected to the connection port 11a of the cylindrical member 11 on the rear stage side.
Then, the hollow fiber membrane 10 is sequentially introduced into the two cylindrical members 11 from the front side, and the decompression means and the supply means are operated. Then, the cleaning liquid is supplied from the outer peripheral side of the hollow fiber membrane 10 to the inner peripheral side in the cylindrical member 11 on the rear stage side (cleaning liquid supply step), and the inner peripheral side of the hollow fiber membrane 10 in the cylindrical member 11 on the front stage side. The cleaning liquid can be passed from the outer periphery to the outer peripheral side (decompression step).
As described above, when the cleaning liquid supply process is provided after the decompression process, the amount of the cleaning liquid flowing from the inner periphery side to the outer periphery side of the hollow fiber membrane 10 in the decompression process increases, and as a result, the effect of removing the hydrophilic polymer is large. Become.

このような減圧工程および洗浄液供給工程の条件は、中空糸膜10の種類(材質、膜構造)、中空糸膜10中に残存している親水性ポリマー濃度、各筒部材11を耐圧性にするための設備コスト、中空糸膜10自体の耐圧性能などを考慮するとともに、減圧工程および洗浄液供給工程で中空糸膜10が糸揺れしにくい条件とする必要もある。これらの点から、減圧工程の圧力は、減圧手段のゲージ圧として好ましくは−0.05〜−0.1MPa、より好ましくは−0.08〜−0.1MPaであり、洗浄液供給工程の供給圧力は、供給手段のゲージ圧として好ましくは0を超えて0.4MPa以下、より好ましくは0を超えて0.3MPa以下である。また、このような範囲内では、減圧工程と洗浄液供給工程とのゲージ圧の圧力差が大きいほど、より高い親水性ポリマー除去効果が得られる傾向にある。
減圧工程および洗浄液供給工程での中空糸膜10の各滞在時間(各筒部材に滞在する時間)はそれぞれ2〜10秒間であれば、効率的に、充分な親水性ポリマー除去効果を得ることができる。
The conditions of the decompression step and the cleaning liquid supply step are as follows: the type (material, membrane structure) of the hollow fiber membrane 10, the hydrophilic polymer concentration remaining in the hollow fiber membrane 10, and the pressure resistance of each cylindrical member 11 For this reason, it is necessary to consider the equipment cost and the pressure resistance performance of the hollow fiber membrane 10 itself, and to make the hollow fiber membrane 10 difficult to shake in the decompression step and the cleaning liquid supply step. From these points, the pressure in the decompression step is preferably -0.05 to -0.1 MPa, more preferably -0.08 to -0.1 MPa as the gauge pressure of the decompression means, and the supply pressure in the cleaning liquid supply step Is preferably more than 0 and not more than 0.4 MPa, more preferably more than 0 and not more than 0.3 MPa. Further, within such a range, the higher the difference in gauge pressure between the decompression step and the cleaning liquid supply step, the higher the hydrophilic polymer removal effect tends to be obtained.
If each staying time of the hollow fiber membrane 10 in the decompression step and the cleaning liquid supply step (staying time in each cylindrical member) is 2 to 10 seconds, respectively, a sufficient hydrophilic polymer removing effect can be obtained efficiently. it can.

[乾燥工程]
ついで、このように親水性ポリマー除去工程が実施された中空糸膜10を乾燥する(乾燥工程)。
乾燥工程では、乾燥用ガスを中空糸膜10の外周側から内周側に透過させて中空部に導入し、中空部を通過させた後、内周側から外周側に透過させて排出する乾燥用ガス圧入工程を少なくとも行う。
[Drying process]
Next, the hollow fiber membrane 10 having been subjected to the hydrophilic polymer removing step in this way is dried (drying step).
In the drying step, the drying gas is permeated from the outer peripheral side to the inner peripheral side of the hollow fiber membrane 10 and introduced into the hollow portion, and after passing through the hollow portion, the drying gas is permeated from the inner peripheral side to the outer peripheral side and discharged. At least a gas injection step is performed.

乾燥用ガス圧入工程の具体的方法には特に制限はないが、例えば図3に示すような耐圧性の乾燥用筒部材20と、図示略の乾燥用ガス供給手段とを備えた中空糸膜の乾燥装置を用い、乾燥用ガスとして、例えば熱風(高温空気)、高温不活性ガスなどの高温ガスを使用した方法が挙げられる。
この例の乾燥用筒部材20は、中空糸膜10が内部を通過できる内径のものであって、長手方向の中央部の側面(周面)には、乾燥用ガスを乾燥用筒部材20内に供給するための供給口21が形成されている。
このような乾燥用筒部材20内に、中空糸膜をその一端20aから連続的に導入して通過させるとともに、供給口21に図示略の乾燥用ガス供給手段を接続して作動させ、乾燥用ガスを乾燥用筒部材20内に供給する。すると、乾燥用筒部材20内における中空糸膜10の外周側の圧力は、乾燥用ガスの供給により、内周側よりも高い状態となる。このような圧力差により、乾燥用ガスは、図中矢印Aで示すように、中空糸膜10の膜を透過し、中空糸膜10の外周側から内周側に導入される。
The specific method of the drying gas press-in step is not particularly limited. For example, a hollow fiber membrane provided with a pressure-resistant drying cylinder member 20 as shown in FIG. 3 and a drying gas supply means (not shown). A method using a drying apparatus and using a high-temperature gas such as hot air (high-temperature air) or a high-temperature inert gas as the drying gas can be used.
The drying cylinder member 20 in this example has an inner diameter that allows the hollow fiber membrane 10 to pass through the inside, and the drying gas is placed inside the drying cylinder member 20 on the side surface (circumferential surface) of the central portion in the longitudinal direction. The supply port 21 for supplying to is formed.
The hollow fiber membrane is continuously introduced into and passed through the drying cylinder member 20 from one end 20a thereof, and the drying gas supply means (not shown) is connected to the supply port 21 to operate it. Gas is supplied into the drying cylinder member 20. Then, the pressure on the outer peripheral side of the hollow fiber membrane 10 in the drying cylinder member 20 becomes higher than that on the inner peripheral side by supplying the drying gas. Due to such a pressure difference, the drying gas passes through the membrane of the hollow fiber membrane 10 and is introduced from the outer peripheral side to the inner peripheral side of the hollow fiber membrane 10 as indicated by an arrow A in the figure.

こうして中空糸膜10の内周側、すなわち中空部に導入された乾燥用ガスは、ついで、図中矢印Bで示すように、乾燥用筒部材20内を通過する中空糸膜10の中空部を流れ、乾燥用筒部材20の両端20a、20bの位置に到達する。すると、乾燥用筒部材20外では、中空糸膜10の外周側の圧力は内周側よりも低いため、このような圧力差により、図中矢印Cで示すように、乾燥用ガスは中空糸膜10の膜を透過して、中空糸膜10の内周側から外周側に排出される。
そして、中空糸膜10に含まれる水分は、このような乾燥用ガスに同伴され、中空糸膜10の内周側から外周側に排出される。
The drying gas thus introduced into the inner peripheral side of the hollow fiber membrane 10, that is, the hollow portion, then passes through the hollow portion of the hollow fiber membrane 10 passing through the drying cylindrical member 20 as indicated by an arrow B in the figure. The flow reaches the positions of both ends 20a and 20b of the drying cylinder member 20. Then, outside the drying cylinder member 20, the pressure on the outer peripheral side of the hollow fiber membrane 10 is lower than that on the inner peripheral side. Therefore, as shown by the arrow C in FIG. The membrane 10 passes through the membrane and is discharged from the inner peripheral side of the hollow fiber membrane 10 to the outer peripheral side.
The moisture contained in the hollow fiber membrane 10 is accompanied by such a drying gas and is discharged from the inner peripheral side of the hollow fiber membrane 10 to the outer peripheral side.

このように中空糸膜10の外周側から内周側に乾燥用ガスを透過させて中空部に導入し、ついで中空糸膜10の中空部を通過させた後、内周側から外周側に排出させる乾燥用ガス圧入工程によれば、例えば従来のように、熱風循環式の乾燥装置内において中空糸膜10を何往復も走行させ、中空糸膜10の外周側に熱風を送風して乾燥する方法に比べて、短時間で、かつ、非常に少ない熱風量で、効率的に中空糸膜10を乾燥でき、非常に低コストである。また、このような乾燥用ガス圧入工程は、中空糸膜10が通過する小型の乾燥用筒部材20を備えた乾燥装置により簡便に実施でき、大型の設備を必要とすることもないため、設置スペースの点からも好適である。   In this way, the drying gas is permeated from the outer peripheral side to the inner peripheral side of the hollow fiber membrane 10 to be introduced into the hollow portion, and then passed through the hollow portion of the hollow fiber membrane 10, and then discharged from the inner peripheral side to the outer peripheral side. According to the drying gas press-fitting step to be performed, for example, as in the prior art, the hollow fiber membrane 10 is caused to reciprocate several times in a hot air circulation type drying apparatus, and hot air is blown to the outer peripheral side of the hollow fiber membrane 10 to be dried. Compared with the method, the hollow fiber membrane 10 can be efficiently dried in a short time and with a very small amount of hot air, and the cost is very low. Further, such a drying gas press-in step can be easily performed by a drying apparatus including a small drying cylinder member 20 through which the hollow fiber membrane 10 passes, and does not require a large facility. It is also preferable in terms of space.

乾燥用ガス圧入工程の条件は、中空糸膜10の種類(材質、膜構造)や、中空糸膜10中に残存している水分量などに応じて、適宜設定すればよいが、乾燥用ガスの温度としては、90〜110℃が好ましく、より好ましくは95〜105℃である。このような温度であれば、中空糸膜10の材質にもよるが、中空糸膜10に熱による悪影響を与えることなく、効果的に乾燥できる。また、乾燥用ガスを加熱するためのエネルギーコストも適度に抑制できる。尚、乾燥用ガスの温度は乾燥用筒部材20の供給口21において測定した。   The conditions of the drying gas press-in process may be set as appropriate depending on the type (material, membrane structure) of the hollow fiber membrane 10 and the amount of water remaining in the hollow fiber membrane 10. The temperature is preferably 90 to 110 ° C, more preferably 95 to 105 ° C. At such a temperature, although depending on the material of the hollow fiber membrane 10, the hollow fiber membrane 10 can be effectively dried without adversely affecting the hollow fiber membrane 10 due to heat. Moreover, the energy cost for heating the drying gas can be moderately suppressed. The temperature of the drying gas was measured at the supply port 21 of the drying cylinder member 20.

乾燥用ガスの供給圧力としては、乾燥用筒部材20の供給口21における乾燥用ガスのゲージ圧として、0.1〜0.3MPaの範囲が好ましく、より好ましくは0.1〜0.2MPaである。供給圧力が上記範囲であると、効率的に中空糸膜10を乾燥できるとともに、乾燥用筒部材20を耐圧性にするための設備コストも適度に抑制でき、中空糸膜10が糸揺れするという問題も生じにくい。また、このような範囲であれば、乾燥ガスの供給圧力が中空糸膜10自体の耐圧性能を超えることもない。   As the supply pressure of the drying gas, the gauge pressure of the drying gas at the supply port 21 of the drying cylinder member 20 is preferably in the range of 0.1 to 0.3 MPa, more preferably 0.1 to 0.2 MPa. is there. When the supply pressure is in the above range, the hollow fiber membrane 10 can be efficiently dried, the equipment cost for making the drying cylinder member 20 pressure resistant can be moderately suppressed, and the hollow fiber membrane 10 oscillates. Problems are less likely to occur. Further, within such a range, the supply pressure of the dry gas does not exceed the pressure resistance performance of the hollow fiber membrane 10 itself.

供給圧力をこのような範囲内にするためには、中空糸膜10の外径に応じて、乾燥用筒部材20の内径や長さを適宜決定することが必要である。
すなわち、乾燥用筒部材20の内径が大きすぎると、乾燥用筒部材20内における中空糸膜10の外周側と内周側の圧力差を十分に確保できず、その結果、上記供給圧力が得られにくくなる傾向がある。一方、乾燥用筒部材20の内径が小さすぎると、乾燥用ガス圧入工程において中空糸膜10と乾燥用筒部材20の内周面とが接触する場合があり、中空糸膜10にダメージを与えてしまう可能性がある。また、乾燥用筒部材20の長さを大きくするにしたがって、十分な供給圧力が得られやすくなる傾向にあるが、過度に長くなると、設備の大型化、作業性の低下などの懸念が生じる。
これらの観点から、中空糸膜10と乾燥用筒部材20とのクリアランスは、0.4mm〜1.6mmが好ましく、さらに好ましくは0.6mm〜1.2mmである。なお、ここでクリアランスとは、乾燥用筒部材20の内径の1/2と、中空糸膜10の外径の1/2との差である。また、その際、乾燥用筒部材20の長さと該クリアランスとの比を2000:1〜1000:1とすることが好ましく、より好ましくは1800:1〜1200:1である。
尚、ここでの中空糸膜10の外径は、外径測定器(KEYECE社製、型式LS−3030)により測定された値である。
In order to make the supply pressure within such a range, it is necessary to appropriately determine the inner diameter and length of the drying cylinder member 20 according to the outer diameter of the hollow fiber membrane 10.
That is, if the inner diameter of the drying cylinder member 20 is too large, a sufficient pressure difference between the outer peripheral side and the inner peripheral side of the hollow fiber membrane 10 in the drying cylinder member 20 cannot be secured, and as a result, the supply pressure is obtained. There is a tendency to become difficult to be. On the other hand, if the inner diameter of the drying cylinder member 20 is too small, the hollow fiber membrane 10 and the inner peripheral surface of the drying cylinder member 20 may come into contact with each other in the drying gas press-fitting step, causing damage to the hollow fiber membrane 10. There is a possibility that. Further, as the length of the drying cylinder member 20 is increased, a sufficient supply pressure tends to be easily obtained. However, when the length is excessively long, there are concerns such as an increase in equipment size and a decrease in workability.
From these viewpoints, the clearance between the hollow fiber membrane 10 and the drying cylinder member 20 is preferably 0.4 mm to 1.6 mm, and more preferably 0.6 mm to 1.2 mm. Here, the clearance is a difference between 1/2 of the inner diameter of the drying cylinder member 20 and 1/2 of the outer diameter of the hollow fiber membrane 10. At that time, the ratio of the length of the drying cylinder member 20 to the clearance is preferably 2000: 1 to 1000: 1, more preferably 1800: 1 to 1200: 1.
In addition, the outer diameter of the hollow fiber membrane 10 here is a value measured by an outer diameter measuring device (manufactured by KEYECE, model LS-3030).

また、このような供給圧力の場合、乾燥用ガス圧入工程における中空糸膜10の滞在時間(乾燥用ガス圧入工程において、乾燥用筒部材20内に滞在する時間)が20〜40秒間であれば、効率的かつ十分に乾燥することができる。
中空糸膜10の乾燥用筒部材20内における走行速度は、滞在時間が上記範囲となるように決定されればよいが、通常、紡糸速度と同じ速度であり、8〜15m/minとされる。また、乾燥用筒部材20の長さは、上述した中空糸膜10と乾燥用筒部材20とのクリアランスだけでなく、滞在時間も考慮して決定することが好適である。
In the case of such supply pressure, if the stay time of the hollow fiber membrane 10 in the drying gas press-in step (the time in which the hollow fiber membrane 10 stays in the drying gas press-in step) is 20 to 40 seconds Can be dried efficiently and sufficiently.
The traveling speed of the hollow fiber membrane 10 in the drying cylinder member 20 may be determined so that the staying time is in the above range, but is usually the same speed as the spinning speed and is 8 to 15 m / min. . Further, it is preferable that the length of the drying cylinder member 20 is determined in consideration of not only the clearance between the hollow fiber membrane 10 and the drying cylinder member 20 but also the staying time.

乾燥効果を上げるためには、図4に示すように、複数(図4では2本)の乾燥用筒部材20を間隔をあけて直列に設置し、各乾燥用筒部材20内にそれぞれ乾燥用ガスを導入するとともに、これら乾燥用筒部材20内に順次中空糸膜10を通過させる方法により、乾燥用ガス圧入工程を実施してもよい。例えば、長さがαの乾燥用筒部材20を間隔をあけて2本直列に設置し、乾燥用ガス圧入工程を行った場合と、長さが2αの1本の乾燥用筒部材20を用いて乾燥用ガス圧入工程を行った場合とを比較すると、乾燥用筒部材20を2本直列に設置した場合には、中空糸膜10の中空部への乾燥用ガスの導入および排出が2回行われ、1本の乾燥用筒部材20を用いた場合には、1回のみとなる。乾燥効果は、このように乾燥用ガスの導入および排出の回数の影響も受けると考えられる。また、図4のように直列に設置された乾燥用筒部材20間の中空糸膜10の中空部では、隣接する乾燥用筒部材20からそれぞれ導入された乾燥用ガスが互いに衝突し、より効果的に乾燥用ガスが外に排出される。そのため、複数の乾燥用筒部材20を間隔をあけて直列に設置することで、より高い乾燥効果が期待できる。   In order to increase the drying effect, as shown in FIG. 4, a plurality (two in FIG. 4) of drying cylinder members 20 are installed in series at intervals, and each drying cylinder member 20 is used for drying. While introducing the gas, the drying gas press-fitting step may be performed by a method in which the hollow fiber membrane 10 is sequentially passed through the drying cylinder member 20. For example, when two drying cylinder members 20 having a length of α are installed in series at intervals, a drying gas press-fitting step is performed, and one drying cylinder member 20 having a length of 2α is used. In comparison with the case where the drying gas press-fitting step is performed, when two drying cylinder members 20 are installed in series, the introduction and discharge of the drying gas into the hollow portion of the hollow fiber membrane 10 are performed twice. If one drying cylinder member 20 is used, it is only once. Thus, the drying effect is considered to be affected by the number of times of introduction and discharge of the drying gas. Moreover, in the hollow part of the hollow fiber membrane 10 between the drying cylinder members 20 installed in series as shown in FIG. 4, the drying gases introduced from the adjacent drying cylinder members 20 collide with each other, and thus more effective. Thus, the drying gas is discharged outside. Therefore, a higher drying effect can be expected by arranging a plurality of drying cylinder members 20 in series at intervals.

さらに効率的に乾燥用ガス圧入工程を行うためには、乾燥工程において、乾燥用ガス圧入工程の前段に予備乾燥工程を設けることが好ましい。このように予備乾燥工程を設け、ある程度の水分を中空糸膜10から除去しておくことによって、乾燥用ガス圧入工程による乾燥効果をより一層高めることができる。
具体的な方法としては、例えば、高温の乾燥用ガスを中空糸膜10の外周側に送風して乾燥する方法(熱風乾燥工程)や、中空糸膜10を減圧乾燥する方法(減圧乾燥工程)などが挙げられ、これらの方法を組み合わせてもよい。
In order to perform the drying gas press-in step more efficiently, it is preferable to provide a preliminary drying step before the drying gas press-in step in the drying step. Thus, by providing a preliminary drying step and removing a certain amount of moisture from the hollow fiber membrane 10, the drying effect by the drying gas press-in step can be further enhanced.
As a specific method, for example, a method of blowing high-temperature drying gas to the outer peripheral side of the hollow fiber membrane 10 and drying it (hot air drying step), or a method of drying the hollow fiber membrane 10 under reduced pressure (vacuum drying step). Etc., and these methods may be combined.

予備乾燥工程として熱風乾燥工程を実施する場合、その具体的な方法としては、図5に示すように、例えば95〜115℃の熱風を毎秒数m程度の風速で循環させた循環式の熱風乾燥機30内に、中空糸膜10を連続的に走行させ、中空糸膜10を外周側から乾燥する方法が挙げられる。こうして熱風乾燥機30を通過させてから、中空糸膜10を乾燥用ガス圧入工程用の乾燥用筒部材20に通過させ、乾燥用ガス圧入工程を行えばよい。熱風乾燥工程における中空糸膜10の滞在時間(熱風乾燥工程において、熱風乾燥機30内に滞在する時間)は、5〜90秒間であれば、十分に予備乾燥の効果が得られる。   When the hot air drying step is performed as the preliminary drying step, as a specific method, as shown in FIG. 5, for example, circulating hot air drying in which hot air of 95 to 115 ° C. is circulated at a wind speed of about several meters per second. There is a method in which the hollow fiber membrane 10 is continuously run in the machine 30 and the hollow fiber membrane 10 is dried from the outer peripheral side. After passing through the hot air dryer 30 in this way, the hollow fiber membrane 10 may be passed through the drying cylinder member 20 for the drying gas press-fitting step to perform the drying gas press-fitting step. If the staying time of the hollow fiber membrane 10 in the hot air drying process (the time of staying in the hot air dryer 30 in the hot air drying process) is 5 to 90 seconds, the effect of preliminary drying is sufficiently obtained.

減圧乾燥工程を実施する場合には、図6に示すように、乾燥ガス圧入工程で用いたものと類似した耐圧性の乾燥用筒部材40を乾燥用ガス圧入工程の前段に配置し、この乾燥用筒部材40を用いて減圧乾燥工程を行った後、乾燥用ガス圧入工程を行うようにすればよい。減圧乾燥工程で用いる乾燥用筒部材40は、乾燥用筒部材40の内部を外部よりも減圧状態に維持できるものである必要がある。そのため、乾燥用筒部材40の両端には、中空糸膜10が通過できる程度のクリアランスを有しつつ、乾燥用筒部材40の内部を外部よりも減圧状態に維持できるラビリンスシールなどからなる図示略のシール機構が設けられることが好ましい。   When performing the vacuum drying step, as shown in FIG. 6, a pressure-resistant drying cylinder member 40 similar to that used in the dry gas press-in step is disposed in the previous stage of the dry gas press-in step, and this drying is performed. After performing the vacuum drying process using the cylinder member 40, the drying gas press-in process may be performed. The drying cylinder member 40 used in the reduced-pressure drying process needs to be able to maintain the inside of the drying cylinder member 40 in a reduced pressure state from the outside. Therefore, a labyrinth seal or the like that can maintain the inside of the drying cylinder member 40 in a reduced pressure state from the outside while having a clearance that allows the hollow fiber membrane 10 to pass through at both ends of the drying cylinder member 40 is not illustrated. It is preferable that a sealing mechanism is provided.

そして、中空糸膜10をまず減圧乾燥工程用の乾燥用筒部材40の一端40aから連続的に導入するとともに、その乾燥用筒部材40の側面に形成された開口部41に減圧ポンプなどの図示略の減圧手段を接続して作動させ、乾燥用筒部材40の内部を減圧する。それにより、乾燥用筒部材40内において、中空糸膜10の外周側が減圧され、中空糸膜10中の水分が気相に同伴されて中空糸膜10の外周側へと吸引、除去される。この際の圧力は、減圧手段のゲージ圧として好ましくは−0.05〜−0.1MPa、より好ましくは−0.08〜−0.1MPaとする。また、減圧工程における中空糸膜10の滞在時間(減圧工程において、乾燥用筒部材40内に滞在する時間)は、5〜30秒間であれば、十分に予備乾燥の効果が得られる。
その後、中空糸膜10を乾燥用ガス圧入工程用の乾燥用筒部材20に通過させ、乾燥用ガス圧入工程を行えばよい。
Then, the hollow fiber membrane 10 is first continuously introduced from one end 40a of the drying cylinder member 40 for the reduced pressure drying process, and a decompression pump or the like is illustrated in the opening 41 formed on the side surface of the drying cylinder member 40. An approximately decompression means is connected and operated to decompress the inside of the drying cylinder member 40. Thereby, in the drying cylinder member 40, the outer peripheral side of the hollow fiber membrane 10 is decompressed, and the water in the hollow fiber membrane 10 is entrained in the gas phase and sucked and removed to the outer peripheral side of the hollow fiber membrane 10. The pressure at this time is preferably -0.05 to -0.1 MPa, more preferably -0.08 to -0.1 MPa as the gauge pressure of the decompression means. Further, if the staying time of the hollow fiber membrane 10 in the decompression step (the time in which the hollow fiber membrane 10 stays in the drying cylinder member 40 in the decompression step) is 5 to 30 seconds, the effect of preliminary drying is sufficiently obtained.
Thereafter, the hollow fiber membrane 10 may be passed through the drying cylinder member 20 for the drying gas press-fitting process to perform the drying gas press-fitting process.

熱風乾燥工程と減圧乾燥工程とを組み合わせて、予備乾燥工程を行う場合には、これらの工程を単に順次実施する方法でもよいが、例えば図7に示すように、熱風乾燥機30内に減圧乾燥工程用の乾燥用筒部材40を設置して、熱風による乾燥効果と減圧乾燥による乾燥効果とが相乗的に得られるようにすることもできる。   When the preliminary drying step is performed by combining the hot air drying step and the reduced pressure drying step, these steps may be simply performed sequentially. For example, as shown in FIG. It is also possible to install a drying cylinder member 40 for the process so that the drying effect by hot air and the drying effect by reduced pressure drying can be obtained synergistically.

以上説明したように、乾燥工程において、乾燥用ガスを中空糸膜10の外周側から内周側に透過させて中空部に導入し、中空部を通過させた後、内周側から外周側に透過させて排出する乾燥用ガス圧入工程を少なくとも実施することによって、短時間で、かつ、非常に少ない熱風量で低コストで中空糸膜10を乾燥できる。また、このような乾燥用ガス圧入工程は、大型の設備を必要とすることもないため、設置スペースの点からも好適である。   As described above, in the drying process, the drying gas is permeated from the outer peripheral side of the hollow fiber membrane 10 to the inner peripheral side and introduced into the hollow portion, and after passing through the hollow portion, from the inner peripheral side to the outer peripheral side. The hollow fiber membrane 10 can be dried at a low cost in a short time and with a very small amount of hot air by performing at least the drying gas press-fitting step for permeating and discharging. Further, such a drying gas press-fitting step is suitable from the viewpoint of installation space because it does not require a large facility.

以下、実施例を挙げて本発明を具体的に説明する。
[実施例1]
表1に示す質量比となるように、ポリフッ化ビニリデンA(アトフィナジャパン製、商品名カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン製、商品名カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名K−90)、N,N−ジメチルアセトアミドをそれぞれ混合して、製膜原液(1)および製膜原液(2)を調製した。
ついで、中心に中空部が形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005−42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には多孔質基材としてポリエステル製マルチフィラメント単繊組紐(マルチフィラメント;830T/96F、16打ち)を導入するとともに、その外周に製膜原液(2)、製膜原液(1)を内側から順次塗布し、80℃に保温した凝固液(N,N−ジメチルアセトアミド5質量部と水95質量部との混合液)中で凝固させた。このようにして、外表面近傍に分画層を1層有し、内部に向かって孔径が増大する傾斜構造の多孔質層が組紐にコーティングされた中空糸膜を得た。なお、塗布された製膜原液(1)および(2)のうち、中空糸膜の膜構造を形成する主原液は、外側に塗布された製膜原液(1)である。
さらに、この中空糸膜の外径よりも大きい内径の中空部が中心に形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005−42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には上述のようにして得られた中空糸膜を導入するとともに、その外周にグリセリン(和光純薬工業製 一級)、製膜原液(1)を内側から順次塗布し、先に使用したものと同じ80℃に保温された凝固液中で凝固させた。このようにしてさらに多孔質層がコーティングされた2層構造で組紐支持体を有する中空糸膜を得た。
このときの紡糸速度(中空糸膜の走行速度)は8.8m/minとした。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example 1]
Polyvinylidene fluoride A (manufactured by Atofina Japan, trade name Kyner 301F), polyvinylidene fluoride B (manufactured by Atofina Japan, trade name Kyner 9000LD), polyvinylpyrrolidone (manufactured by ISP, Trade name K-90) and N, N-dimethylacetamide were mixed to prepare a film-forming stock solution (1) and a film-forming stock solution (2).
Next, a hollow portion is formed at the center, and a nozzle in which an annular discharge port is sequentially formed on the outside so that two kinds of liquids can be sequentially applied (see FIG. 1 of JP-A-2005-42074). ) Is prepared, and this is kept at 30 ° C., and a polyester multifilament single filament braid (multifilament; 830T / 96F, 16 beats) is introduced into the hollow portion as a porous base material, and the outer periphery thereof is introduced. The film-forming stock solution (2) and the film-forming stock solution (1) were applied sequentially from the inside and coagulated in a coagulation liquid (mixed solution of 5 parts by mass of N, N-dimethylacetamide and 95 parts by mass of water) kept at 80 ° C. I let you. In this way, a hollow fiber membrane was obtained in which the braid was coated with a porous layer having an inclined structure having one fractional layer near the outer surface and increasing the pore diameter toward the inside. Of the applied film-forming stock solutions (1) and (2), the main stock solution forming the membrane structure of the hollow fiber membrane is the film-forming stock solution (1) applied to the outside.
In addition, a hollow portion having an inner diameter larger than the outer diameter of the hollow fiber membrane is formed in the center, and a nozzle having an annular discharge port formed in order so that two kinds of liquids can be sequentially applied to the outer side ( 1 is prepared, and the hollow fiber membrane obtained as described above is introduced into the hollow portion while keeping this at 30 ° C. Glycerin (first grade manufactured by Wako Pure Chemical Industries, Ltd.) and a film-forming stock solution (1) were sequentially applied from the inside and coagulated in the same coagulating liquid kept at 80 ° C. as previously used. In this way, a hollow fiber membrane having a braid support in a two-layer structure coated with a porous layer was obtained.
The spinning speed (running speed of the hollow fiber membrane) at this time was 8.8 m / min.

Figure 0005138572
Figure 0005138572

(親水性ポリマー除去工程)
こうして得られた中空糸膜について、次のようにして、親水性ポリマー除去工程を実施した。
(1)予備工程
予備工程として、以下の(i)〜(iii)の工程を2回繰り返して行った。
(i)中空糸膜の洗浄工程
100℃の沸騰水が入れられた洗浄槽中に、中空糸膜を滞在時間5分間の条件で浸漬し、洗浄を行った。
(ii)酸化剤を使用した親水性ポリマーの低分子量化工程
次に、温度30℃、濃度60000mg/Lの次亜塩素酸塩の水溶液が入れられた水槽中に、中空糸膜を滞在時間1分間の条件で浸漬した。その後、温度85℃、相対湿度100%の湿熱中、滞在時間3分の条件で加熱し、親水性ポリマーを低分子量化した。
(iii)低分子量化された親水性ポリマーの洗浄工程
次に、この中空糸膜を(i)と同じ条件で再度洗浄した。
(2)減圧工程−洗浄液供給工程−減圧工程
洗浄液として温度74℃の水が入れられた洗浄槽を用意し、その中に、図1に示した筒部材11を3つ間隔をあけて直列に配置した。そして、これらの筒部材11に前段側から中空糸膜10を順次導入するとともに、3つのうち最前段の筒部材11の接続口11aと、3つのうち最後段の筒部材11の接続口11aには減圧手段を接続し、それぞれ減圧手段のゲージ圧が前段側の減圧工程で−0.06MPa、後段側の減圧工程で−0.05MPaとなるように減圧した。3つのうち中央の筒部材11の接続口11aに接続された供給手段からは、ゲージ圧が0.1MPaとなるように74℃の水を洗浄液として供給した。
また、中空糸膜10が3つの各筒部材11中に滞在する時間(滞在時間)はいずれも約3秒間とした。
(Hydrophilic polymer removal step)
About the hollow fiber membrane obtained in this way, the hydrophilic polymer removal process was implemented as follows.
(1) Preliminary process The following processes (i) to (iii) were repeated twice as a preliminary process.
(I) Washing process of hollow fiber membrane The hollow fiber membrane was immersed in a washing tank containing boiling water at 100 ° C under the condition of staying time of 5 minutes for washing.
(Ii) Step of lowering the molecular weight of the hydrophilic polymer using an oxidizing agent Next, the hollow fiber membrane was placed in a water tank in which an aqueous solution of hypochlorite having a temperature of 30 ° C. and a concentration of 60000 mg / L was placed. Immersion was performed under conditions of minutes. Thereafter, the hydrophilic polymer was heated in a heat of 85 ° C. and a relative humidity of 100% under the condition of a residence time of 3 minutes to lower the molecular weight of the hydrophilic polymer.
(Iii) Step of washing hydrophilic polymer with reduced molecular weight Next, this hollow fiber membrane was washed again under the same conditions as in (i).
(2) Depressurization step-Cleaning liquid supply step-Depressurization step A cleaning tank containing water at a temperature of 74 ° C. is prepared as a cleaning liquid, and three cylinder members 11 shown in FIG. Arranged. And while introducing the hollow fiber membrane 10 into these cylinder members 11 sequentially from the front | former stage side, it connects to the connection port 11a of the cylinder member 11 of the foremost stage among three, and the connection port 11a of the cylinder member 11 of the last stage among three. The pressure reducing means were connected to each other, and the pressure was reduced so that the gauge pressure of the pressure reducing means was -0.06 MPa in the pressure reducing step on the front side and -0.05 MPa in the pressure reducing step on the rear side. Among the three, 74 ° C. water was supplied as a cleaning liquid from the supply means connected to the connection port 11a of the central cylindrical member 11 so that the gauge pressure was 0.1 MPa.
In addition, the time during which the hollow fiber membrane 10 stays in each of the three cylindrical members 11 (stay time) was about 3 seconds.

(乾燥工程)
ついで、親水性ポリマー除去工程後の中空糸膜10について、乾燥工程を行った。具体的には、図3に示す乾燥用筒部材(ステンレス製、内径:4mm、長さ:約780mm)20を6本用意し、これを間隔をあけて直列に設置し、乾燥用ガス圧入工程を行った。
乾燥用ガス圧入工程で用いた6本の各乾燥用筒部材20内の供給口21には乾燥ガス供給手段を接続し、乾燥用ガスとして95℃の熱風を導入した。この際、乾燥用ガスの供給圧力(供給口21における乾燥用ガスのゲージ圧)が0.2MPaとなるようにした。このとき、具体的な熱風の供給量は、1140(乾燥用筒部材1本あたり190)L/minであった。なお、中空糸膜10の乾燥用筒部材20内における走行速度は、紡糸速度と同じ8.8m/minであった。また、中空糸膜10の乾燥用筒部材20における滞在時間(乾燥用ガス圧入工程において、6本の乾燥用筒部材20内に滞在した総時間)は、30秒間であった。
このような乾燥工程後の中空糸膜10について、水分率を測定した結果、0.8%であった。
なお、ここでの水分率は、中空糸膜10の乾燥質量に対する残存している水分の質量の割合を示した乾量基準の水分率である。また、水分率の測定にはケット科学研究所(株)製の赤外水分計を使用した。
このようにして最終的に得られた2層構造で組紐支持体を有する中空糸膜10は、外径2.8mm、内径1.0mmであった。
また、中空糸膜10の外径と、乾燥用筒部材20の内径から、中空糸膜10と乾燥用筒部材20とのクリアランスは0.6mmであり、乾燥用筒部材20の長さと該クリアランスとの比は780:0.6=1300:1となる。
尚、中空糸膜10の外径は、外径測定器(KEYECE社製、型式LS−3030)を用いて測定した。具体的には、この外径測定器を2台用意し、測定される径が中空糸膜10の軸線を中心として互いに90°ずれるように、これら測定器をそれぞれ取り付け、2方向の外径を測定した。測定結果はいずれも2.8mmであった。
(Drying process)
Subsequently, the drying process was performed about the hollow fiber membrane 10 after the hydrophilic polymer removal process. Specifically, six drying cylinder members (made of stainless steel, inner diameter: 4 mm, length: about 780 mm) 20 shown in FIG. 3 are prepared, and these are installed in series at intervals, and a drying gas injection step Went.
A drying gas supply means was connected to the supply ports 21 in each of the six drying cylinder members 20 used in the drying gas press-fitting step, and hot air at 95 ° C. was introduced as the drying gas. At this time, the supply pressure of the drying gas (the gauge pressure of the drying gas at the supply port 21) was set to 0.2 MPa. At this time, the specific amount of hot air supplied was 1140 (190 per drying cylinder member) L / min. The traveling speed of the hollow fiber membrane 10 in the drying cylinder member 20 was 8.8 m / min, which is the same as the spinning speed. Further, the residence time of the hollow fiber membrane 10 in the drying cylinder member 20 (total time spent in the six drying cylinder members 20 in the drying gas press-fitting step) was 30 seconds.
As a result of measuring the moisture content of the hollow fiber membrane 10 after such a drying step, it was 0.8%.
Here, the moisture content is a moisture content based on the dry weight indicating the ratio of the remaining moisture mass to the dry mass of the hollow fiber membrane 10. In addition, an infrared moisture meter manufactured by Kett Science Laboratory Co., Ltd. was used for measuring the moisture content.
The hollow fiber membrane 10 having a braided support with a two-layer structure finally obtained in this manner had an outer diameter of 2.8 mm and an inner diameter of 1.0 mm.
Further, from the outer diameter of the hollow fiber membrane 10 and the inner diameter of the drying cylinder member 20, the clearance between the hollow fiber membrane 10 and the drying cylinder member 20 is 0.6 mm, and the length of the drying cylinder member 20 and the clearance are the same. Is 780: 0.6 = 1300: 1.
In addition, the outer diameter of the hollow fiber membrane 10 was measured using the outer diameter measuring device (the product made by KEYECE, model LS-3030). Specifically, two such outer diameter measuring devices are prepared, and these measuring devices are respectively attached so that the measured diameters are shifted from each other by 90 ° about the axis of the hollow fiber membrane 10, and the outer diameters in two directions are set. It was measured. The measurement results were all 2.8 mm.

[実施例2]
実施例1と同様にして親水性ポリマー除去工程を実施した後、乾燥工程を行った。乾燥用ガスとして導入する熱風温度を90℃、乾燥用ガスの供給圧力が0.3MPa、熱風の供給量は1350(乾燥用筒部材1本あたり225)L/minである以外は全て実施例1と同様の条件で乾燥を行った。
その結果、実施例1と同様の水分率の中空糸膜10を得ることができた。
[Example 2]
After carrying out the hydrophilic polymer removing step in the same manner as in Example 1, a drying step was carried out. Example 1 except that the temperature of hot air introduced as a drying gas is 90 ° C., the supply pressure of the drying gas is 0.3 MPa, and the supply amount of hot air is 1350 (225 per cylinder member for drying) L / min. Drying was performed under the same conditions.
As a result, a hollow fiber membrane 10 having the same moisture content as in Example 1 could be obtained.

[実施例3]
実施例1と同様にして親水性ポリマー除去工程を実施した後、乾燥工程を行った。乾燥用ガスとして導入する熱風温度を110℃、乾燥用ガスの供給圧力が0.15MPa、熱風の供給量は1050(乾燥用筒部材1本あたり175)L/minである以外は全て実施例1と同様の条件で乾燥を行った。
その結果、実施例1と同様の水分率の中空糸膜10を得ることができた。
[Example 3]
After carrying out the hydrophilic polymer removing step in the same manner as in Example 1, a drying step was carried out. Example 1 except that the temperature of hot air introduced as the drying gas is 110 ° C., the supply pressure of the drying gas is 0.15 MPa, and the supply amount of hot air is 1050 (175 per cylinder member for drying) L / min. Drying was performed under the same conditions.
As a result, a hollow fiber membrane 10 having the same moisture content as in Example 1 could be obtained.

[比較例]
乾燥工程後の中空糸膜10の水分量が実施例1と同程度となるまで、熱風循環式の乾燥機を用いて、中空糸膜10を乾燥した。熱風温度は115℃とした。
その結果、乾燥時間、すなわち循環式の熱風乾燥機内における中空糸膜10の滞在時間は200秒間であり、非常に長時間を要した。
[Comparative example]
The hollow fiber membrane 10 was dried using a hot-air circulating dryer until the moisture content of the hollow fiber membrane 10 after the drying step was approximately the same as in Example 1. The hot air temperature was 115 ° C.
As a result, the drying time, that is, the residence time of the hollow fiber membrane 10 in the circulation type hot air dryer was 200 seconds, which required a very long time.

親水性ポリマー除去工程の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a hydrophilic polymer removal process. 親水性ポリマー除去工程の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a hydrophilic polymer removal process. 乾燥ガス圧入工程の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a dry gas injection process. 乾燥ガス圧入工程の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a dry gas injection process. 予備乾燥工程後に乾燥ガス圧入工程を実施した一例を示す概略構成図である。It is a schematic block diagram which shows an example which implemented the dry gas injection process after the preliminary drying process. 予備乾燥工程後に乾燥ガス圧入工程を実施した他の一例を示す概略構成図である。It is a schematic block diagram which shows another example which implemented the dry gas injection process after the preliminary drying process. 予備乾燥工程後に乾燥ガス圧入工程を実施した他の一例を示す概略構成図である。It is a schematic block diagram which shows another example which implemented the dry gas injection process after the preliminary drying process.

符号の説明Explanation of symbols

10 中空糸膜
20 乾燥用筒部材
21 供給口
DESCRIPTION OF SYMBOLS 10 Hollow fiber membrane 20 Drying cylinder member 21 Supply port

Claims (9)

製膜原液を凝固液中で凝固させ、中空糸膜を形成する凝固工程と、前記中空糸膜を乾燥する乾燥工程とを有する中空糸膜の製造方法において、
前記乾燥工程は、乾燥用ガスを前記中空糸膜の外周側から内周側に透過させて中空部に導入し、前記中空部を通過させた後、前記内周側から前記外周側に透過させて排出する乾燥用ガス圧入工程を有し、
前記乾燥用ガス圧入工程では、乾燥用筒部材の内部に前記中空糸膜を通過させるとともに、前記乾燥用筒部材の側面に形成された供給口から乾燥用ガスを前記内部に供給することを特徴とする中空糸膜の製造方法。
In a method for producing a hollow fiber membrane comprising a coagulation step of coagulating a membrane-forming stock solution in a coagulation solution to form a hollow fiber membrane, and a drying step of drying the hollow fiber membrane,
In the drying step, a drying gas is permeated from the outer peripheral side to the inner peripheral side of the hollow fiber membrane and introduced into the hollow portion, and after passing through the hollow portion, is allowed to permeate from the inner peripheral side to the outer peripheral side. have a drying gas injection step of discharging Te,
In the drying gas press-fitting step, the hollow fiber membrane is allowed to pass through the inside of the drying cylinder member, and the drying gas is supplied to the inside from a supply port formed on a side surface of the drying cylinder member. A method for producing a hollow fiber membrane.
前記乾燥工程は、前記乾燥用ガス圧入工程の前段に、予備乾燥工程を有することを特徴とする請求項1に記載の中空糸膜の製造方法。 The method for producing a hollow fiber membrane according to claim 1, wherein the drying step includes a preliminary drying step before the gas injection step for drying. 前記予備乾燥工程は、熱風乾燥工程および減圧乾燥工程のうちの1つ以上を有することを特徴とする請求項2に記載の中空糸膜の製造方法。 The method for producing a hollow fiber membrane according to claim 2, wherein the preliminary drying step includes one or more of a hot air drying step and a reduced pressure drying step. 前記中空糸膜と前記乾燥用筒部材とのクリアランスは、0.4mm〜1.6mmである請求項1〜3のいずれか一項に記載の中空糸膜の製造方法。The clearance between the hollow fiber membrane and the drying cylinder member is 0.4 mm to 1.6 mm. The method for producing a hollow fiber membrane according to any one of claims 1 to 3. 前記乾燥用筒部材の長さと、前記中空糸膜と前記乾燥用筒部材のクリアランスとの比は、2000:1〜1000:1である請求項1〜4のいずれか一項に記載の中空糸膜の製造方法。The hollow fiber according to any one of claims 1 to 4, wherein the ratio of the length of the drying cylinder member to the clearance between the hollow fiber membrane and the drying cylinder member is 2000: 1 to 1000: 1. A method for producing a membrane. 前記乾燥用ガスの供給圧力は、前記乾燥用筒部材の前記供給口における前記乾燥用ガスのゲージ圧として、0.1〜0.3MPaである請求項1〜5のいずれか一項に記載の中空糸膜の製造方法。The supply pressure of the drying gas is 0.1 to 0.3 MPa as a gauge pressure of the drying gas at the supply port of the drying cylinder member, according to any one of claims 1 to 5. A method for producing a hollow fiber membrane. 乾燥用ガスが供給される供給口が側面に形成され、中空糸膜が内部を通過する乾燥用筒部材と、前記供給口に接続される乾燥用ガス供給手段とを具備することを特徴とする中空糸膜の乾燥装置。   A supply port to which a drying gas is supplied is formed on a side surface, and includes a drying cylinder member through which a hollow fiber membrane passes, and a drying gas supply unit connected to the supply port. Hollow fiber membrane drying equipment. 前記中空糸膜と前記乾燥用筒部材とのクリアランスは、0.4mm〜1.6mmである請求項7に記載の中空糸膜の乾燥装置。The apparatus for drying a hollow fiber membrane according to claim 7, wherein a clearance between the hollow fiber membrane and the drying cylinder member is 0.4 mm to 1.6 mm. 前記乾燥用筒部材の長さと、前記中空糸膜と前記乾燥用筒部材のクリアランスとの比は、2000:1〜1000:1である請求項7または8に記載の中空糸膜の乾燥装置。The hollow fiber membrane drying apparatus according to claim 7 or 8, wherein a ratio of a length of the drying cylinder member to a clearance between the hollow fiber membrane and the drying cylinder member is 2000: 1 to 1000: 1.
JP2008329811A 2008-12-25 2008-12-25 Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus Active JP5138572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329811A JP5138572B2 (en) 2008-12-25 2008-12-25 Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329811A JP5138572B2 (en) 2008-12-25 2008-12-25 Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus

Publications (2)

Publication Number Publication Date
JP2010149044A JP2010149044A (en) 2010-07-08
JP5138572B2 true JP5138572B2 (en) 2013-02-06

Family

ID=42568748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329811A Active JP5138572B2 (en) 2008-12-25 2008-12-25 Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus

Country Status (1)

Country Link
JP (1) JP5138572B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492744B1 (en) * 2010-07-07 2015-02-11 미쯔비시 레이온 가부시끼가이샤 Drying device and drying method for hollow fiber membranes
KR101818802B1 (en) * 2011-02-07 2018-01-15 미쯔비시 케미컬 주식회사 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
KR101712714B1 (en) * 2012-03-12 2017-03-06 미쯔비시 레이온 가부시끼가이샤 Porous membrane production method, and porous membrane drying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330808B2 (en) * 1973-10-03 1978-08-29
JPS60166008A (en) * 1984-02-07 1985-08-29 Terumo Corp Preparation of hollow yarn for dialysis
FR2664680B1 (en) * 1990-07-13 1993-06-18 Hospal Ind METHOD AND DEVICE FOR DRYING THE HOLES OF A HOLLOW FIBER BEAM FOR A MEMBRANE APPARATUS MADE OF HOLLOW FIBERS.
JP3219445B2 (en) * 1992-02-12 2001-10-15 旭化成株式会社 Drying method for hollow fiber bundles
JP2001259380A (en) * 2000-03-23 2001-09-25 Toray Ind Inc Method and apparatus for drying hollow fiber bundle
JP2004353142A (en) * 2003-05-30 2004-12-16 Toyobo Co Ltd Treatment method for drying hollow fiber membrane

Also Published As

Publication number Publication date
JP2010149044A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5296794B2 (en) Hollow fiber membrane drying apparatus and drying method
JP4951332B2 (en) Method for producing hollow fiber membrane
JP5928330B2 (en) Cleaning device for porous hollow fiber membrane and method for producing porous hollow fiber membrane
KR101604934B1 (en) Method for manufacturing porous hollow fiber film
KR101712714B1 (en) Porous membrane production method, and porous membrane drying device
JP5834507B2 (en) Method and apparatus for producing porous hollow fiber membrane
JP5617930B2 (en) Porous membrane manufacturing method and manufacturing apparatus
JP5138572B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
JP4803697B2 (en) Method for producing porous membrane
JP5742433B2 (en) Porous membrane processing equipment
JP6048180B2 (en) Porous membrane manufacturing method and manufacturing apparatus
JP5782814B2 (en) Porous membrane processing apparatus and porous membrane processing method
JP6149577B2 (en) Method for producing hollow fiber membrane
JP6436185B2 (en) Method for producing hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R151 Written notification of patent or utility model registration

Ref document number: 5138572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250