JP2018143930A - Method for producing porous membrane - Google Patents

Method for producing porous membrane Download PDF

Info

Publication number
JP2018143930A
JP2018143930A JP2017039498A JP2017039498A JP2018143930A JP 2018143930 A JP2018143930 A JP 2018143930A JP 2017039498 A JP2017039498 A JP 2017039498A JP 2017039498 A JP2017039498 A JP 2017039498A JP 2018143930 A JP2018143930 A JP 2018143930A
Authority
JP
Japan
Prior art keywords
aqueous solution
porous membrane
decomposition
hypochlorite aqueous
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017039498A
Other languages
Japanese (ja)
Inventor
祐吾 溝越
Yugo Mizokoshi
祐吾 溝越
龍太郎 石橋
Ryutaro Ishibashi
龍太郎 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017039498A priority Critical patent/JP2018143930A/en
Publication of JP2018143930A publication Critical patent/JP2018143930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous membrane which suppresses a used amount of an oxidant for a short period of time, and can decompose an aperture auxiliary remained on a porous membrane precursor.SOLUTION: A method for producing a porous membrane includes: a film production step of solidifying a film production stock solution containing 10-30 mass%, preferably, 15-25 mass% of a fluorine resin and 1-20 mass%, preferably, 5-12 mass% of an aperture auxiliary with a solidification liquid to form a porous membrane precursor 30; and a decomposition step of decomposing and removing the aperture auxiliary remained on the porous membrane precursor 30 with a hypochlorite aqueous solution, where pH (measurement temperature: 25°C) of the hypochlorite aqueous solution in the decomposition step is kept to 9.5 or more using at least one of NaOH or Ca(OH). In the method for producing the porous membrane, the fluorine resin is polyvinylidene fluoride, the aperture auxiliary is a water-soluble polymer, preferably, one or more of polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene glycol.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質膜の製造方法に関する。   The present invention relates to a method for producing a porous membrane.

食品工業、医療、電子工業等の分野においては、有用成分の濃縮、回収、不要成分の除去、造水等を目的として、多孔質の中空糸膜等の分離膜(多孔質膜)を用いた精密濾過膜、限外濾過膜、逆浸透濾過膜等が多用されている。
分離膜は、例えば、セルロースアセテート、ポリアクリロニトリル、ポリスルホン、フッ素樹脂等が溶媒に溶解した製膜原液を凝固液で凝固させることで多孔質膜前駆体を形成し(製膜工程)、該多孔質膜前駆体に残存する溶媒等を除去し、乾燥することで製造される。
例えば、フッ素樹脂で構成される分離膜は、ジメチルホルムアミドなどの有機溶媒に可溶であるため、分離膜の製造には乾湿式紡糸法や湿式紡糸法が多く用いられる。
In the fields of food industry, medical care, electronics industry, etc., separation membranes (porous membranes) such as porous hollow fiber membranes were used for the purpose of concentrating and recovering useful components, removing unnecessary components, and producing fresh water. Microfiltration membranes, ultrafiltration membranes, reverse osmosis filtration membranes and the like are frequently used.
For example, the separation membrane forms a porous membrane precursor by coagulating a membrane-forming stock solution in which cellulose acetate, polyacrylonitrile, polysulfone, fluororesin and the like are dissolved in a solvent with a coagulating solution (a membrane-forming step), and the porous membrane It is produced by removing the solvent remaining in the film precursor and drying it.
For example, since a separation membrane made of a fluororesin is soluble in an organic solvent such as dimethylformamide, dry and wet spinning methods and wet spinning methods are often used for the production of the separation membrane.

ところで、中空糸膜の製造においては、目標分画を満足する孔径と、充分な透水性を得るために、製膜原液がノズルより吐出され、凝固液に至るまでの空気と接触する区間(空走部)において、いかに相分離状態を制御するかが重要となる。
この相分離状態を制御するために、製膜原液に開孔助剤を含有させることは、よく知られた手法である。開孔助剤としては、通常、ポリエチレングリコールやポリビニルピロリドン等の高分子の親水性ポリマーなどが用いられる。
By the way, in the production of the hollow fiber membrane, in order to obtain a pore size satisfying the target fraction and sufficient water permeability, a section (empty space) in which the membrane-forming raw solution is discharged from the nozzle and contacts the air until reaching the coagulation liquid. It is important how the phase separation state is controlled in the traveling section).
In order to control this phase separation state, it is a well-known technique to contain a pore opening aid in the membrane forming stock solution. As the pore opening aid, a high molecular weight hydrophilic polymer such as polyethylene glycol or polyvinyl pyrrolidone is usually used.

しかし、製膜工程により得られた多孔質膜前駆体には、通常、開孔助剤が溶液の状態で残存している。開孔助剤が多孔質膜前駆体に残存していると、多孔質膜は高い透水性を発揮することが困難となる。
そこで、多孔質膜の透水性を発現させるために、各種酸化剤を用いて多孔質膜前駆体に残存する開孔助剤を分解除去することが行われている。
However, in the porous film precursor obtained by the film forming process, the pore opening aid usually remains in a solution state. If the pore opening aid remains in the porous membrane precursor, it becomes difficult for the porous membrane to exhibit high water permeability.
Therefore, in order to express the water permeability of the porous membrane, the pore opening aid remaining in the porous membrane precursor is decomposed and removed using various oxidizing agents.

例えば、特許文献1には、次亜塩素酸塩などの酸化剤を含む薬液を低温(50℃以下)にして、この薬液に多孔質膜前駆体を浸漬し、多孔質膜前駆体に薬液を低温で保持させた後、薬液を保持した多孔質膜前駆体を気相中で加熱し、さらに水で洗浄して多孔質膜前駆体に残存する親水性ポリマーを分解する方法が記載されている。
また、特許文献2には、次亜塩素酸塩などの酸化剤を含む薬液を30〜120℃に加熱した状態で多孔質膜前駆体に接触させることによって、短時間で、多孔質膜前駆体に残存する親水性ポリマーを分解する方法が記載されている。
また、特許文献3には、初期のpHを9〜12に調整した次亜塩素酸塩水溶液を用いて、次亜塩素酸塩の分解を抑制しつつ親水性ポリマーを分解する方法が記載されている。
For example, in Patent Document 1, a chemical solution containing an oxidizing agent such as hypochlorite is cooled to a low temperature (50 ° C. or lower), the porous membrane precursor is immersed in the chemical solution, and the chemical solution is applied to the porous membrane precursor. A method is described in which a porous membrane precursor holding a chemical solution is heated in a gas phase after being held at a low temperature, and further washed with water to decompose the hydrophilic polymer remaining in the porous membrane precursor. .
Patent Document 2 discloses that a porous membrane precursor is brought into contact with a porous membrane precursor in a short period of time by contacting a chemical solution containing an oxidizing agent such as hypochlorite with a temperature of 30 to 120 ° C. Describes a method of decomposing the remaining hydrophilic polymer.
Patent Document 3 describes a method of decomposing a hydrophilic polymer while suppressing decomposition of hypochlorite using a hypochlorite aqueous solution whose initial pH is adjusted to 9 to 12. Yes.

特開2005−220202号公報JP-A-2005-220202 国際公開第2013/018900号International Publication No. 2013/018900 特許第4724914号公報Japanese Patent No. 4724914

しかしながら、特許文献1に記載の方法の場合、製膜工程により得られた多孔質膜前駆体中に残存する親水性ポリマーを充分に分解するためには、低温での薬液への浸漬工程と、気相中での加熱工程と、その後の水洗工程とを複数サイクル、繰り返す必要があり、時間を要するものであった。
特許文献2に記載の方法を用いれば短時間で親水性ポリマーを分解できるものの、分解中に次亜塩素酸塩などの酸化剤を含む薬液に親水性ポリマーが溶出し、その結果、加熱高温下で酸化剤が失活してしまう。そのため、酸化剤が親水性ポリマーの分解に有効に使われにくくなり、親水性ポリマーを充分に分解するには多量の酸化剤を用いる必要があった。
特許文献3に記載のように、初期の次亜塩素酸塩水溶液のpHを9〜12に調整しても、走行する多孔質膜前駆体を連続して処理するなどの場合は、親水性ポリマーの分解中に親水性ポリマーが次第に次亜塩素酸塩水溶液に溶出してpHが低下し、pHが9未満になってしまい、次亜塩素酸塩が分解してしまうという問題があった。
このように、従来、多孔質膜前駆体に残存する開孔助剤を短時間で、かつ酸化剤の使用量を抑えて分解できる技術は見出されていなかった。
However, in the case of the method described in Patent Document 1, in order to sufficiently decompose the hydrophilic polymer remaining in the porous membrane precursor obtained by the film forming step, a step of immersing in a chemical solution at a low temperature, It was necessary to repeat the heating step in the gas phase and the subsequent water washing step for a plurality of cycles, which required time.
Although the hydrophilic polymer can be decomposed in a short time by using the method described in Patent Document 2, the hydrophilic polymer is eluted in the chemical solution containing an oxidizing agent such as hypochlorite during the decomposition, and as a result, under heating and high temperature. As a result, the oxidizing agent is deactivated. For this reason, the oxidizing agent becomes difficult to be effectively used for decomposing the hydrophilic polymer, and it is necessary to use a large amount of the oxidizing agent in order to sufficiently decompose the hydrophilic polymer.
As described in Patent Document 3, even if the pH of the initial hypochlorite aqueous solution is adjusted to 9 to 12, even when the traveling porous membrane precursor is continuously processed, a hydrophilic polymer is used. During the decomposition, the hydrophilic polymer gradually eluted into the hypochlorite aqueous solution and the pH was lowered, the pH became less than 9, and the hypochlorite was decomposed.
Thus, conventionally, no technique has been found that can decompose the pore opening assistant remaining in the porous membrane precursor in a short time and with a reduced amount of oxidizing agent used.

本発明は上記事情に鑑みてなされたもので、短時間で、かつ酸化剤の使用量を抑えて多孔質膜前駆体に残存する開孔助剤を分解できる多孔質膜の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a method for producing a porous membrane capable of decomposing the opening aid remaining in the porous membrane precursor in a short period of time while suppressing the amount of oxidant used. This is the issue.

本発明者らは鋭意検討した結果、開孔助剤の分解に用いる次亜塩素酸塩水溶液に、例えば分解途中で塩基を供給して、開孔助剤分解時の次亜塩素酸塩水溶液のpHを9.5以上に維持することで、次亜塩素酸塩の失活を抑制し、多孔質膜前駆体に残存する開孔助剤の分解を短時間で、しかも次亜塩素酸塩の使用量を抑えつつ分解できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have, for example, supplied a base during the decomposition to the hypochlorite aqueous solution used for the decomposition of the pore opening assistant, and the hypochlorite aqueous solution during the decomposition of the pore opening assistant. By maintaining the pH at 9.5 or higher, the deactivation of hypochlorite is suppressed, the decomposition of the pore opening assistant remaining in the porous membrane precursor is reduced in a short time, and the hypochlorite The present inventors have found that it can be decomposed while suppressing the amount used, and have completed the present invention.

すなわち、本発明は以下の態様を有する。
[1] フッ素樹脂と開孔助剤とを含む製膜原液を凝固液で凝固させて多孔質膜前駆体を形成する製膜工程と、次亜塩素酸塩水溶液で前記多孔質膜前駆体に残存する開孔助剤を分解除去する分解工程とを有し、前記分解工程における次亜塩素酸塩水溶液のpH(測定温度:25℃)を9.5以上に維持する、多孔質膜の製造方法。
[2] 前記分解工程において次亜塩素酸塩水溶液に塩基を供給してpH(測定温度:25℃)を9.5以上に維持する、[1]に記載の多孔質膜の製造方法。
[3] 前記塩基が、水酸化ナトリウムおよび水酸化カルシウムの少なくとも一方である、[2]に記載の多孔質膜の製造方法。
[4] 前記分解工程における次亜塩素酸塩水溶液のpH(測定温度:25℃)が10.5以下となった時に塩基を供給する、[2]または[3]に記載の多孔質膜の製造方法。
[5] 前記分解工程における次亜塩素酸塩水溶液の濃度が1.0質量%以上である、[1]〜[4]のいずれか1つに記載の多孔質膜の製造方法。
[6] 前記フッ素樹脂がポリフッ化ビニリデンである、[1]〜[5]のいずれか1つに記載の多孔質膜の製造方法。
[7] 前記開孔助剤が親水性ポリマーである、[1]〜[6]のいずれか1つに記載の多孔質膜の製造方法。
[8] 前記親水性ポリマーが、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールからなる群より選ばれる少なくとも1種である、[7]に記載の多孔質膜の製造方法。
[9] 前記分解工程における次亜塩素酸塩水溶液中の開孔助剤の濃度が0.1〜20.0質量%である、[1]〜[8]のいずれか1つに記載の多孔質膜の製造方法。
[10] 前記分解工程における次亜塩素酸塩水溶液の温度が80〜100℃である、[1]〜[9]のいずれか1つに記載の多孔質膜の製造方法。
That is, this invention has the following aspects.
[1] A film-forming step of forming a porous film precursor by coagulating a film-forming stock solution containing a fluororesin and an opening aid with a coagulating liquid; and forming the porous film precursor with a hypochlorite aqueous solution And a decomposition step of decomposing and removing the remaining pore opening assistant, and maintaining the pH (measurement temperature: 25 ° C.) of the hypochlorite aqueous solution in the decomposition step at 9.5 or higher. Method.
[2] The method for producing a porous membrane according to [1], wherein a base is supplied to the hypochlorite aqueous solution and the pH (measurement temperature: 25 ° C.) is maintained at 9.5 or higher in the decomposition step.
[3] The method for producing a porous membrane according to [2], wherein the base is at least one of sodium hydroxide and calcium hydroxide.
[4] The porous membrane according to [2] or [3], wherein a base is supplied when the pH (measurement temperature: 25 ° C.) of the hypochlorite aqueous solution in the decomposition step is 10.5 or less. Production method.
[5] The method for producing a porous membrane according to any one of [1] to [4], wherein the concentration of the hypochlorite aqueous solution in the decomposition step is 1.0% by mass or more.
[6] The method for producing a porous membrane according to any one of [1] to [5], wherein the fluororesin is polyvinylidene fluoride.
[7] The method for producing a porous membrane according to any one of [1] to [6], wherein the pore opening aid is a hydrophilic polymer.
[8] The method for producing a porous membrane according to [7], wherein the hydrophilic polymer is at least one selected from the group consisting of polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol.
[9] The porosity according to any one of [1] to [8], wherein the concentration of the pore opening aid in the hypochlorite aqueous solution in the decomposition step is 0.1 to 20.0 mass%. A method for producing a membrane.
[10] The method for producing a porous membrane according to any one of [1] to [9], wherein the temperature of the hypochlorite aqueous solution in the decomposition step is 80 to 100 ° C.

本発明の多孔質膜の製造方法によれば、短時間で、かつ酸化剤の使用量を抑えて多孔質膜前駆体に残存する開孔助剤を分解できる。   According to the method for producing a porous membrane of the present invention, it is possible to decompose the pore opening assistant remaining in the porous membrane precursor in a short time and with a reduced amount of the oxidizing agent used.

本発明の多孔質膜の製造方法に用いる分解装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the decomposition | disassembly apparatus used for the manufacturing method of the porous membrane of this invention.

以下、多孔質膜の一例として中空糸膜を挙げて、本発明の一実施形態を詳細に説明する。
なお、本明細書では、開孔助剤分解後、水での洗浄が終了したものを多孔質膜と言い、開孔助剤分解前の段階のものを多孔質膜前駆体と言う。多孔質膜が中空糸膜の場合、開孔助剤分解後、水での洗浄が終了したものを中空糸膜と言い、開孔助剤分解前の段階のものを中空糸膜前駆体と言う。
また、pHは温度によって変化するため、本明細書に記載するpHはすべて25℃において測定した値である。
Hereinafter, an embodiment of the present invention will be described in detail by taking a hollow fiber membrane as an example of a porous membrane.
In the present specification, after completion of the pore opening aid decomposition, the one that has been washed with water is referred to as a porous membrane, and the portion before the pore opening aid decomposition is referred to as a porous membrane precursor. When the porous membrane is a hollow fiber membrane, the one that has been washed with water after decomposition of the opening aid is called a hollow fiber membrane, and the one before the opening aid decomposition is called a hollow fiber membrane precursor. .
Moreover, since pH changes with temperature, all pH described in this specification is the value measured in 25 degreeC.

本実施形態の多孔質膜の製造方法は、フッ素樹脂と開孔助剤とを含む製膜原液を凝固液で凝固させて多孔質膜前駆体を形成する工程(以下、「製膜工程」ともいう。)と、pHを9.5以上に維持した次亜塩素酸塩水溶液で、製膜工程により得られた多孔質膜前駆体を洗浄し、多孔質膜前駆体に残存する開孔助剤を分解除去する工程(以下、「分解工程」ともいう。)と、分解工程後の多孔質膜前駆体を水で洗浄する工程(以下、「水洗工程」ともいう。)と、水洗工程により得られた多孔質膜を乾燥する工程(以下、「乾燥工程」ともいう。)とを有する。   The method for producing a porous membrane according to the present embodiment includes a step of forming a porous membrane precursor by coagulating a film-forming stock solution containing a fluororesin and a pore opening aid with a coagulating liquid (hereinafter referred to as “film-forming step”). And the pore opening aid remaining in the porous membrane precursor by washing the porous membrane precursor obtained in the membrane formation step with a hypochlorite aqueous solution whose pH is maintained at 9.5 or higher. Obtained by decomposing and removing (hereinafter also referred to as “decomposition step”), a step of washing the porous membrane precursor after the decomposition step with water (hereinafter also referred to as “water washing step”), and a water washing step. And a step of drying the obtained porous membrane (hereinafter also referred to as “drying step”).

<製膜工程>
製膜工程は、フッ素樹脂と開孔助剤とを含む製膜原液を凝固液で凝固させて多孔質膜前駆体を形成する工程である。
フッ素樹脂としては、ポリフッ化ビニリデン、ポリフッ化ビニル、フッ化ビニリデンと他の単量体(例えばヘキサフルオロプロピレン、アクリル系モノマー等)との共重合体などが挙げられる。これらフッ素樹脂は、1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、多孔質膜の耐酸性や耐久性が向上する点から、ポリフッ化ビニリデンが好ましい。
製膜原液100質量%中のフッ素樹脂の含有量は、10〜30質量%が好ましく、15〜25質量%がより好ましい。フッ素樹脂の含有量が上記範囲内であれば、製膜時の安定性を良好に維持でき、好適な中空糸膜構造が形成されやすくなる傾向にある。
<Film forming process>
The film forming step is a step of forming a porous film precursor by coagulating a film forming stock solution containing a fluororesin and an opening aid with a coagulating liquid.
Examples of the fluororesin include polyvinylidene fluoride, polyvinyl fluoride, copolymers of vinylidene fluoride and other monomers (for example, hexafluoropropylene, acrylic monomers, and the like). These fluororesins may be used individually by 1 type, and may use 2 or more types together. Among these, polyvinylidene fluoride is preferable because the acid resistance and durability of the porous film are improved.
10-30 mass% is preferable and, as for content of the fluororesin in 100 mass% of film forming stock solutions, 15-25 mass% is more preferable. If the content of the fluororesin is within the above range, the stability during film formation can be maintained well, and a suitable hollow fiber membrane structure tends to be formed.

開孔助剤としては、親水性ポリマーが挙げられ、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールなどが挙げられる。これら開孔助剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
製膜原液100質量%中の開孔助剤の含有量は、1〜20質量%が好ましく、5〜12質量%がより好ましい。開孔助剤の含有量が、1質量%以上であれば中空糸膜前駆体を形成しやすくなり、20質量%以下であれば製膜原液の粘度が上昇するのを抑制でき、取扱性を良好に維持できる。
Examples of the pore opening aid include hydrophilic polymers, and specific examples include polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. These opening aids may be used alone or in combination of two or more.
1-20 mass% is preferable and, as for content of the hole opening assistant in 100 mass% of film forming undiluted | stock solution, 5-12 mass% is more preferable. If the content of the pore opening aid is 1% by mass or more, it becomes easy to form a hollow fiber membrane precursor, and if it is 20% by mass or less, an increase in the viscosity of the membrane-forming stock solution can be suppressed. It can be maintained well.

開孔助剤としてポリビニルピロリドンを用いる場合、ポリビニルピロリドンとしては、K値が30〜120のものが好ましい。
ここでK値は、ポリビニルピロリドンの分子量に対応するパラメータとしてよく用いられるものであって、ポリビニルピロリドンの水溶液の毛細管粘度計法における動粘度測定結果を基に、以下の式(1)から算出される。
When polyvinylpyrrolidone is used as the pore opening aid, the polyvinyl pyrrolidone preferably has a K value of 30 to 120.
Here, the K value is often used as a parameter corresponding to the molecular weight of polyvinylpyrrolidone, and is calculated from the following equation (1) based on the kinematic viscosity measurement result in the capillary viscometer method of the aqueous solution of polyvinylpyrrolidone. The

Figure 2018143930
Figure 2018143930

上記式(1)中、cは溶液100ml中のポリビニルピロリドンの質量(g)であり、ηrelは水の動粘度に対するポリビニルピロリドン水溶液の動粘度の比である。 In the above formula (1), c is the mass (g) of polyvinylpyrrolidone in 100 ml of the solution, and η rel is the ratio of the kinematic viscosity of the polyvinylpyrrolidone aqueous solution to the kinematic viscosity of water.

ポリビニルピロリドンのK値が上記範囲内であれば、賦形性が良好となり、所望の中空糸膜が容易に得られやすくなる傾向にある。特に、K値が大きい、すなわち高分子量のポリビニルピロリドンを用いると、膜構造の良好な中空糸膜を形成しやすい傾向にある。一方、K値が小さい、すなわち低分子量のポリビニルピロリドンは、後述の分解工程において中空糸膜前駆体からより除去されやすい点で好適である。よって、目的に応じて、K値が異なる同種のポリビニルピロリドンを適宜混合して用いてもよい。   If the K value of polyvinylpyrrolidone is within the above range, the formability will be good and the desired hollow fiber membrane will tend to be easily obtained. In particular, when polyvinyl pyrrolidone having a high K value, that is, a high molecular weight is used, a hollow fiber membrane having a good membrane structure tends to be easily formed. On the other hand, polyvinyl pyrrolidone having a small K value, that is, a low molecular weight, is preferable in that it is more easily removed from the hollow fiber membrane precursor in the decomposition step described later. Therefore, the same kind of polyvinylpyrrolidone having different K values may be appropriately mixed depending on the purpose.

製膜原液は、フッ素系樹脂および開孔助剤を溶媒に溶解して調製される。
溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、N−ビニルピロリドン等に代表される水溶性の非プロトン性極性溶媒が挙げられる。
製膜原液の温度は特に制限はないが、通常は20〜60℃である。
The film-forming stock solution is prepared by dissolving a fluororesin and a pore opening aid in a solvent.
Examples of the solvent include water-soluble aprotic polar solvents represented by dimethylformamide, dimethylacetamide, N-vinylpyrrolidone and the like.
The temperature of the film-forming stock solution is not particularly limited, but is usually 20 to 60 ° C.

中空糸膜状への紡糸に際しては、製膜原液を環状の吐出口が形成されたノズルから凝固液中に吐出し、凝固液中で凝固させて中空糸膜前駆体を形成する。紡糸は、製膜原液が空気と接触する空走部を経て凝固液中へ導入される乾湿式紡糸法、製膜原液が直接凝固液に導かれる湿式紡糸法のいずれにより行ってもよい。   When spinning into a hollow fiber membrane, the membrane forming raw solution is discharged into a coagulating liquid from a nozzle having an annular discharge port, and solidified in the coagulating liquid to form a hollow fiber membrane precursor. The spinning may be carried out by either a dry-wet spinning method in which the film-forming stock solution is introduced into the coagulating liquid through an idle running portion in contact with air, or a wet spinning method in which the film-forming stock solution is directly introduced into the coagulating liquid.

中空糸膜前駆体の構成には特に制限はなく、例えば多孔質基材を備えたものでもよいし、多層構造であって、取扱時の擦れ等に対して耐久性のあるものでもよい。
多孔質基材としては特に限定されるものではないが、例えば各種の繊維で製紐された中空状の編紐や組紐等が挙げられ、各種素材を単独または組み合わせて用いることができる。中空編紐や組紐に使用される繊維としては、合成繊維、半合成繊維、再生繊維、天然繊維等が挙げられる。また、繊維の形態は、モノフィラメント、マルチフィラメント、紡績糸のいずれであってもよい。
There is no restriction | limiting in particular in the structure of a hollow fiber membrane precursor, For example, the thing provided with the porous base material may be used, and it may be a multilayer structure and durable with respect to the rubbing at the time of handling.
Although it does not specifically limit as a porous base material, For example, the hollow knitted string, braided string, etc. which were made with various fibers are mentioned, Various materials can be used individually or in combination. Examples of fibers used for the hollow knitted string and braided string include synthetic fibers, semi-synthetic fibers, regenerated fibers, and natural fibers. The form of the fiber may be any of monofilament, multifilament, and spun yarn.

凝固液としては、水、アルコール類、グリセリン、エチレングリコール等を単独または混合して用いることができる。また、凝固液は水と疎水性ポリマーの良溶剤との混合液でもよい。
凝固液の温度は特に制限はないが、通常は60〜90℃である。
As the coagulation liquid, water, alcohols, glycerin, ethylene glycol or the like can be used alone or in combination. The coagulation liquid may be a mixed liquid of water and a good solvent for the hydrophobic polymer.
The temperature of the coagulation liquid is not particularly limited, but is usually 60 to 90 ° C.

<分解工程>
分解工程は、次亜塩素酸塩水溶液で、製膜工程により得られた多孔質膜前駆体を洗浄し、多孔質膜前駆体に残存する開孔助剤を分解除去する工程である。この際、次亜塩素酸塩水溶液のpHを9.5以上に維持しながら多孔質膜前駆体を洗浄する。
製膜工程により得られた中空糸膜前駆体等の多孔質膜前駆体には、ポリビニルピロリドン等の開孔助剤が残存しているため、この段階では膜透水能はほとんどない。そこで、特定の次亜塩素酸塩水溶液で多孔質膜前駆体を洗浄することにより、多孔質膜前駆体に残存する開孔助剤の分解除去を行う。
<Disassembly process>
The decomposition step is a step of washing the porous membrane precursor obtained by the film formation step with a hypochlorite aqueous solution and decomposing and removing the pore opening assistant remaining in the porous membrane precursor. At this time, the porous membrane precursor is washed while maintaining the pH of the hypochlorite aqueous solution at 9.5 or higher.
In the porous membrane precursor such as the hollow fiber membrane precursor obtained by the membrane forming process, the pore opening aid such as polyvinylpyrrolidone remains, and therefore there is almost no membrane water permeability at this stage. Therefore, the pore opening aid remaining in the porous membrane precursor is decomposed and removed by washing the porous membrane precursor with a specific hypochlorite aqueous solution.

次亜塩素酸塩としては、次亜塩素酸のナトリウム塩、カリウム塩、カルシウム塩などが挙げられる。これらの中でも、次亜塩素酸ナトリウムが好ましい。
次亜塩素酸塩水溶液の濃度は、1.0〜13.0質量%が好ましく、6.0〜12.0質量%がより好ましい。次亜塩素酸塩水溶液の濃度が、1.0質量%以上であれば所望の洗浄効果が短時間で得られやすくなり、13.0質量%以下であればコストを抑えることができる。
Examples of hypochlorite include sodium salt, potassium salt, calcium salt of hypochlorous acid. Among these, sodium hypochlorite is preferable.
The concentration of the hypochlorite aqueous solution is preferably 1.0 to 13.0% by mass, and more preferably 6.0 to 12.0% by mass. If the concentration of the hypochlorite aqueous solution is 1.0% by mass or more, a desired cleaning effect can be easily obtained in a short time, and if it is 13.0% by mass or less, the cost can be suppressed.

多孔質膜前駆体の洗浄中における次亜塩素酸塩の分解を抑止するために、分解工程中における次亜塩素酸塩水溶液のpHを9.5以上に維持する。ここで、「pHを9.5以上に維持する」とは、洗浄中の次亜塩素酸塩水溶液のpHを25℃にて測定したならば、常に9.5以上であることを意味する。
分解工程中に、次亜塩素酸塩水溶液のpHが9.5以上を維持されなくなると、次亜塩素酸塩の分解が顕著となり、充分な洗浄効果が得られなくなる。
In order to suppress the decomposition of hypochlorite during the cleaning of the porous membrane precursor, the pH of the hypochlorite aqueous solution during the decomposition step is maintained at 9.5 or higher. Here, “maintaining the pH at 9.5 or higher” means that if the pH of the hypochlorite aqueous solution being washed is measured at 25 ° C., it is always 9.5 or higher.
If the pH of the hypochlorite aqueous solution is not maintained at 9.5 or higher during the decomposition step, the decomposition of hypochlorite becomes significant and a sufficient cleaning effect cannot be obtained.

また、分解工程中における次亜塩素酸塩水溶液は、pHを13.2以下に維持されることが好ましい。次亜塩素酸塩水溶液のpHを13.2以下に維持すれば、ポリフッ化ビニリデン等のフッ素樹脂の脱フッ化水素反応による中空糸膜の着色を抑止できる。ここで、「pHを13.2以下に維持する」とは、洗浄中の次亜塩素酸塩水溶液のpHを25℃にて測定したならば、常に13.2以下であることを意味する。
次亜塩素酸塩水溶液は、pHを10.0〜13.0に維持されることが好ましい。
Moreover, it is preferable that pH of the hypochlorite aqueous solution in a decomposition process is maintained at 13.2 or less. If the pH of the hypochlorite aqueous solution is maintained at 13.2 or less, coloring of the hollow fiber membrane due to the dehydrofluorination reaction of a fluororesin such as polyvinylidene fluoride can be suppressed. Here, “maintaining the pH at 13.2 or lower” means that if the pH of the aqueous hypochlorite solution being washed is measured at 25 ° C., it is always 13.2 or lower.
The hypochlorite aqueous solution is preferably maintained at a pH of 10.0 to 13.0.

次亜塩素酸塩水溶液のpHを9.5以上に維持するために、分解工程の途中で次亜塩素酸塩水溶液に塩基を供給することが好ましい。
塩基としては、水酸化物、アルカリ金属塩、アルカリ土類金属塩、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩などが挙げられる。これらの中でも、次亜塩素酸塩の失活抑制効果が高い点から水酸化物が好ましい。
水酸化物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウムなどが挙げられる。これら水酸化物は1種を単独で用いてもよいし、2種以上を併用してもよい。
In order to maintain the pH of the hypochlorite aqueous solution at 9.5 or higher, it is preferable to supply a base to the hypochlorite aqueous solution during the decomposition step.
Examples of the base include hydroxides, alkali metal salts, alkaline earth metal salts, alkali metal carbonates, alkaline earth metal carbonates, and the like. Among these, a hydroxide is preferable from the viewpoint that the deactivation suppression effect of hypochlorite is high.
Examples of the hydroxide include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like. These hydroxides may be used individually by 1 type, and may use 2 or more types together.

また、上述したように、次亜塩素酸塩水溶液のpHが13.2を超えると中空糸膜が着色しやすくなる。着色防止の観点からは、塩基として難溶性の強塩基を用いることが好ましい。難溶性の強塩基は、過剰に供給しても次亜塩素酸塩水溶液のpHが高くなりすぎるのを抑制でき、しかも次亜塩素酸塩の失活抑制効果が高い。
難溶性の強塩基としては、水酸化カルシウム、水酸化マグネシウム等が挙げられ、水酸化カルシウムが好ましい。
ここで、「難溶性」とは、使用温度における溶解度が0.5[g/100g−水]以下のものを指す。
Moreover, as above-mentioned, when the pH of hypochlorite aqueous solution exceeds 13.2, a hollow fiber membrane will become easy to color. From the viewpoint of preventing coloration, it is preferable to use a poorly soluble strong base as the base. The poorly soluble strong base can suppress the pH of the hypochlorite aqueous solution from becoming too high even when supplied in excess, and has a high effect of suppressing the deactivation of hypochlorite.
Examples of the hardly soluble strong base include calcium hydroxide and magnesium hydroxide, and calcium hydroxide is preferable.
Here, “slightly soluble” refers to those having a solubility at the use temperature of 0.5 [g / 100 g-water] or less.

一方、塩基として水酸化ナトリウム、水酸化カリウム等の水溶性の強塩基を用いる場合、着色防止の観点からは、次亜塩素酸塩水溶液のpHが高くなりすぎないように監視しながら次亜塩素酸塩水溶液に供給することが好ましい。この際、水溶性の強塩基を次亜塩素酸塩水溶液に供給した後、速やかに均一分散させるために、強塩基の水溶液を次亜塩素酸塩水溶液に供給してもよい。また、強塩基の水溶液の供給により次亜塩素酸塩水溶液が希釈されて濃度が低下することを防ぐために、強塩基を次亜塩素酸塩水溶液に溶解させた溶液を、次亜塩素酸塩水溶液に供給することもできる。   On the other hand, when a water-soluble strong base such as sodium hydroxide or potassium hydroxide is used as the base, from the viewpoint of preventing coloring, hypochlorite is monitored while monitoring so that the pH of the hypochlorite aqueous solution does not become too high. It is preferable to supply to the aqueous acid salt solution. In this case, after supplying a water-soluble strong base to the hypochlorite aqueous solution, an aqueous solution of a strong base may be supplied to the hypochlorite aqueous solution in order to rapidly disperse uniformly. In order to prevent the concentration of the hypochlorite aqueous solution from diluting due to the supply of the strong base aqueous solution, the solution in which the strong base is dissolved in the hypochlorite aqueous solution is used as a hypochlorite aqueous solution. Can also be supplied.

なお、過剰に供給しても次亜塩素酸塩水溶液のpHが高くなりすぎないという点では、強塩基と弱酸の塩とを組み合わせて用いることもできるが、分解工程中でのpHの低下を抑制するためには大量に投入する必要がある。上述した水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の強塩基であれば、少量でも次亜塩素酸塩水溶液のpHを9.5以上に維持でき、コスト面においても優れる。特に、水酸化ナトリウム、水酸化カルシウムは、安価に入手できる点で好ましい。   It should be noted that a strong base and a weak acid salt can be used in combination in that the pH of the hypochlorite aqueous solution does not become excessively high even if supplied in excess, but the pH is lowered during the decomposition step. In order to suppress it, it is necessary to input a large amount. If it is a strong base such as sodium hydroxide, potassium hydroxide, or calcium hydroxide described above, the pH of the hypochlorite aqueous solution can be maintained at 9.5 or higher even in a small amount, and the cost is excellent. In particular, sodium hydroxide and calcium hydroxide are preferable in that they can be obtained at low cost.

次亜塩素酸塩水溶液のpHを9.5以上に維持するためには、塩基を供給してから次亜塩素酸塩水溶液のpHに反映されるまでの時間を考慮して、次亜塩素酸塩水溶液のpHが10.5以下となった時に塩基を供給することが好ましい。   In order to maintain the pH of the hypochlorite aqueous solution at 9.5 or higher, hypochlorous acid is considered in consideration of the time from the supply of the base to the reflection of the pH of the hypochlorite aqueous solution. It is preferable to supply the base when the pH of the aqueous salt solution becomes 10.5 or less.

ところで、上述したように、初期の次亜塩素酸塩水溶液のpHを調整しても、走行する多孔質膜前駆体を連続して処理するなどの場合は、開孔助剤の分解中に開孔助剤が次第に次亜塩素酸塩水溶液に溶出してpHが低下し、pHが9.5未満になってしまい、次亜塩素酸塩が分解してしまうという問題があった。次亜塩素酸塩水溶液のpHを9.5以上に維持するために、初期の次亜塩素酸塩水溶液のpHを予め高くしておくことも考えられるが、pHが13.2を超えると中空糸膜が着色しやすくなる傾向にある。
そこで、本発明では分解工程中における次亜塩素酸塩水溶液のpHを9.5〜13.2に維持することが好ましく、こうすることで中空糸膜の着色を防ぎつつ、開孔助剤が次亜塩素酸塩水溶液に溶出して次亜塩素酸塩が分解するのを抑制できる。特に、分解工程の途中で塩基を供給すれば、具体的には次亜塩素酸塩水溶液のpHが10.5以下となった時に塩基を供給すれば、次亜塩素酸塩水溶液のpHを9.5〜13.2に容易に維持できる。
塩基の供給は、次亜塩素酸塩水溶液のpHが13.2を超えないように、種類、濃度、供給量等を調整して行うことが好ましい。また、次亜塩素酸塩水溶液のpHは、開孔助剤の溶出により次第に低下する傾向にある。そのため、次亜塩素酸塩水溶液のpHは13.2以下に維持されやすいが、塩基の供給等によりpHが13.2を超えるようなことがある場合は、塩酸、酢酸等の酸を供給してpHが9.5〜13.2(好ましくは10.5〜13.2)の範囲内となるように調整することが好ましい。
By the way, as described above, even when the pH of the initial hypochlorite aqueous solution is adjusted, in the case where the traveling porous membrane precursor is continuously treated, it is opened during the decomposition of the pore opening aid. There was a problem that the pore assistant gradually eluted into the hypochlorite aqueous solution and the pH was lowered, the pH became less than 9.5, and the hypochlorite was decomposed. In order to maintain the pH of the hypochlorite aqueous solution at 9.5 or higher, it is conceivable to increase the pH of the initial hypochlorite aqueous solution in advance, but if the pH exceeds 13.2, the pH will be hollow. The yarn film tends to be easily colored.
Therefore, in the present invention, it is preferable to maintain the pH of the hypochlorite aqueous solution during the decomposition step at 9.5 to 13.2, thereby preventing the hollow fiber membrane from being colored, Elution into a hypochlorite aqueous solution can suppress the decomposition of hypochlorite. In particular, if a base is supplied during the decomposition step, specifically, if a base is supplied when the pH of the hypochlorite aqueous solution is 10.5 or less, the pH of the hypochlorite aqueous solution is 9 .5 to 13.2 can be easily maintained.
The base is preferably supplied by adjusting the type, concentration, supply amount, etc. so that the pH of the hypochlorite aqueous solution does not exceed 13.2. Further, the pH of the hypochlorite aqueous solution tends to gradually decrease due to elution of the pore opening aid. Therefore, the pH of the hypochlorite aqueous solution is easily maintained at 13.2 or lower. However, when the pH may exceed 13.2 due to supply of a base, an acid such as hydrochloric acid or acetic acid is supplied. The pH is preferably adjusted to be in the range of 9.5 to 13.2 (preferably 10.5 to 13.2).

次亜塩素酸塩水溶液中の開孔助剤の濃度が高くなるとpHを維持するために供給する塩基の量が増えることから、次亜塩素酸塩水溶液中の開孔助剤の濃度は20.0質量%以下が好ましく、10.0質量%以下がより好ましい。次亜塩素酸塩水溶液中の開孔助剤の濃度が20.0質量%を超えた場合には、次亜塩素酸塩水溶液を新しいものと交換するのが好ましい。   As the concentration of the pore opening aid in the hypochlorite aqueous solution increases, the amount of base supplied to maintain the pH increases, so the concentration of the pore opening aid in the hypochlorite aqueous solution is 20. 0 mass% or less is preferable and 10.0 mass% or less is more preferable. When the concentration of the pore opening aid in the hypochlorite aqueous solution exceeds 20.0% by mass, it is preferable to replace the hypochlorite aqueous solution with a new one.

また、次亜塩素酸塩水溶液中にポリビニルピロリドン等の開孔助剤が存在していると、初期の次亜塩素酸塩水溶液のpHを調整しただけでは、開孔助剤の分解洗浄中に次亜塩素酸塩水溶液のpHが低下し、次亜塩素酸塩が分解して失活してしまう。
しかし、本発明であれば、分解工程中における次亜塩素酸塩水溶液のpHを9.5以上に維持するので、次亜塩素酸塩水溶液中に開孔助剤が存在していても(すなわち、次亜塩素酸塩水溶液中の開孔助剤の濃度が0.1質量%以上であっても)、次亜塩素酸塩が失活するのを抑制でき、充分な洗浄効果が得られる。
In addition, if a pore opening assistant such as polyvinylpyrrolidone is present in the hypochlorite aqueous solution, it is necessary to adjust the pH of the initial hypochlorite aqueous solution during the decomposition and cleaning of the pore opening assistant. The pH of the aqueous hypochlorite solution is lowered, and hypochlorite is decomposed and deactivated.
However, according to the present invention, since the pH of the hypochlorite aqueous solution during the decomposition step is maintained at 9.5 or higher, even if a pore opening aid is present in the hypochlorite aqueous solution (that is, Further, even if the concentration of the pore opening aid in the hypochlorite aqueous solution is 0.1% by mass or more), it is possible to suppress the deactivation of the hypochlorite and to obtain a sufficient cleaning effect.

次亜塩素酸塩水溶液によるポリビニルピロリドン等の開孔助剤の分解洗浄は、好ましくは80〜100℃、より好ましくは90〜100℃で行われる。80℃以上で分解洗浄を行えば、充分なポリビニルピロリドンの分解速度が得られるので、所望の時間内に分解洗浄を終えることができる。一方、100℃以下で分解洗浄を行えば、加熱部を1気圧以上に保持する必要がないため、連続処理する際にシール部を設ける等の装置の煩雑化を防げる。また、コストを抑えることができる。また、次亜塩素酸塩の失活をより抑制できる。   Decomposition and cleaning of the pore opening assistant such as polyvinylpyrrolidone with an aqueous hypochlorite solution is preferably performed at 80 to 100 ° C, more preferably 90 to 100 ° C. If the decomposition cleaning is performed at 80 ° C. or higher, a sufficient decomposition rate of polyvinylpyrrolidone can be obtained, so that the decomposition cleaning can be completed within a desired time. On the other hand, if the decomposition cleaning is performed at 100 ° C. or lower, it is not necessary to keep the heating part at 1 atm or higher, so that it is possible to prevent complication of the apparatus such as providing a seal part during continuous processing. Moreover, cost can be suppressed. Moreover, the deactivation of hypochlorite can be suppressed more.

分解工程は、例えば図1の分解装置10を用いて行われる。
図1に示す分解装置10は、分解槽11と、中空糸膜前駆体30を走行させる走行ロール12a〜12dと、中空糸膜前駆体30に対して薬液(次亜塩素酸塩水溶液)を接触させる薬液槽13と、薬液槽13に塩基を供給する塩基添加手段14とを備える。また、分解装置10は、開孔助剤の分解洗浄を所望の温度で行うために、水蒸気を分解槽11に供給して分解槽11の内部を加熱する加熱手段(図示略)を備える。
The decomposition process is performed using, for example, the decomposition apparatus 10 of FIG.
The decomposition apparatus 10 shown in FIG. 1 contacts a chemical solution (hypochlorite aqueous solution) with respect to the decomposition tank 11, traveling rolls 12 a to 12 d for traveling the hollow fiber membrane precursor 30, and the hollow fiber membrane precursor 30. And a base addition means 14 for supplying a base to the chemical tank 13. In addition, the decomposition apparatus 10 includes heating means (not shown) that supplies steam to the decomposition tank 11 and heats the inside of the decomposition tank 11 in order to perform decomposition cleaning of the opening assistant at a desired temperature.

分解槽11の底部には、ドレン排出口15が設けられている。
分解槽11内には薬液槽13および塩基添加手段14が設けられ、分解槽11の上方に設けられた塩基供給手段18から、塩基添加手段14を介して薬液槽13へ塩基の供給が行われるようになっている。
A drain discharge port 15 is provided at the bottom of the decomposition tank 11.
The chemical tank 13 and the base addition means 14 are provided in the decomposition tank 11, and the base is supplied from the base supply means 18 provided above the decomposition tank 11 to the chemical liquid tank 13 through the base addition means 14. It is like that.

薬液槽13には、オーバーフロー用の仕切り板21と薬液排出口22が設けられている。薬液排出口22の下流にはpH測定計器20が設置されている。   The chemical tank 13 is provided with a partition plate 21 for overflow and a chemical discharge port 22. A pH measuring instrument 20 is installed downstream of the chemical solution outlet 22.

薬液槽13は、走行ロール12b、12cが薬液槽13に浸漬するように配置されている。これにより、中空糸膜前駆体30が薬液槽13中を走行し、その結果、中空糸膜前駆体30に次亜塩素酸塩水溶液が接触するようになっている。
薬液槽13は、分解槽11外に設けられた薬液供給手段16から薬液槽13への次亜塩素酸塩水溶液の供給と、薬液槽13からの次亜塩素酸塩水溶液の排出とが連続的に行われるようになっている。薬液槽13からの排出液は、仕切り板21をオーバーフローした後、薬液排出口22から排出される。
The chemical tank 13 is disposed so that the traveling rolls 12 b and 12 c are immersed in the chemical tank 13. Thereby, the hollow fiber membrane precursor 30 travels in the chemical solution tank 13, and as a result, the hypochlorite aqueous solution comes into contact with the hollow fiber membrane precursor 30.
In the chemical tank 13, the supply of the hypochlorite aqueous solution from the chemical liquid supply means 16 provided outside the decomposition tank 11 to the chemical liquid tank 13 and the discharge of the hypochlorite aqueous solution from the chemical liquid tank 13 are continuous. To be done. The liquid discharged from the chemical liquid tank 13 overflows the partition plate 21 and is then discharged from the chemical liquid discharge port 22.

分解槽11、走行ロール12a〜12d、薬液槽13、塩基添加手段14、ドレン排出口15、仕切り板21、薬液排出口22の材質は、耐酸化剤性と耐熱性を有したものであれば特に限定されないが、例えばチタン、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン(PEEK)、セラミックなどが挙げられる。また、特殊な素材形態としては、ステンレスやアルミニウムなどの耐酸化材性の乏しい素材に上記に例示した材質で、分解槽11、薬液槽13、ドレン排出口15、薬液排出口22に対しては内面をライニングしたもの、走行ロール12a〜12d、仕切り板21に対しては外面をコーティングしたもの、なども例示することができる。   The material of the decomposition tank 11, the traveling rolls 12 a to 12 d, the chemical solution tank 13, the base addition means 14, the drain discharge port 15, the partition plate 21, and the chemical solution discharge port 22 may be those having oxidation resistance and heat resistance. Although it does not specifically limit, For example, titanium, polytetrafluoroethylene, polyetheretherketone (PEEK), a ceramic, etc. are mentioned. Moreover, as a special material form, it is the material illustrated above to materials with poor oxidation resistance such as stainless steel and aluminum, and for the decomposition tank 11, the chemical liquid tank 13, the drain outlet 15, and the chemical outlet 22 Examples of the inner surface lining, the traveling rolls 12a to 12d, and the partition plate 21 coated on the outer surface can also be exemplified.

図1の分解装置10を用いた分解工程では、まず、分解槽11内に常圧の飽和水蒸気を連続的に供給し、分解槽11内を飽和水蒸気で満たして加熱する。ここで分解槽11内の温度は、理想的には、常圧の飽和水蒸気温度である約100℃であるが、それよりも低温(80℃程度)であってもよい。一方、分解槽11内に配置された薬液槽13には、供給ポンプ17により、薬液供給手段16から次亜塩素酸塩水溶液を供給する。ここで、分解槽11外における、供給ポンプ17と薬液槽13の間には、図示略のヒータを設けて、薬液を分解槽11外で加熱してから、薬液槽13に供給するようにしてもよい。   In the decomposition step using the decomposition apparatus 10 of FIG. 1, first, saturated steam at normal pressure is continuously supplied into the decomposition tank 11, and the decomposition tank 11 is filled with saturated steam and heated. Here, the temperature in the decomposition tank 11 is ideally about 100 ° C., which is a saturated steam temperature at normal pressure, but may be lower than that (about 80 ° C.). On the other hand, the hypochlorite aqueous solution is supplied from the chemical liquid supply means 16 to the chemical liquid tank 13 disposed in the decomposition tank 11 by the supply pump 17. Here, a heater (not shown) is provided between the supply pump 17 and the chemical solution tank 13 outside the decomposition tank 11 so that the chemical solution is heated outside the decomposition tank 11 and then supplied to the chemical solution tank 13. Also good.

ついで、薬液槽13内の次亜塩素酸塩水溶液が定常温度になったのを確認した後に、中空糸膜前駆体30を分解槽11内に導入する。中空糸膜前駆体30の分解槽11内における走行速度は、例えば4〜50m/分が好ましい。   Next, after confirming that the hypochlorite aqueous solution in the chemical solution tank 13 has reached a steady temperature, the hollow fiber membrane precursor 30 is introduced into the decomposition tank 11. The traveling speed of the hollow fiber membrane precursor 30 in the decomposition tank 11 is preferably 4 to 50 m / min, for example.

分解槽11内に導入された中空糸膜前駆体30は、走行ロール12aを通り、分解槽11内を満たす飽和水蒸気により加熱される。走行ロール12b、12cには、薬液槽13が配置されているため、中空糸膜前駆体30が走行ロール12b、12cを通過する間に、飽和水蒸気により加熱された次亜塩素酸塩水溶液が中空糸膜前駆体30と接触することで、中空糸膜前駆体30が洗浄され、中空糸膜前駆体30に含まれる開孔助剤が分解除去される。   The hollow fiber membrane precursor 30 introduced into the decomposition tank 11 passes through the traveling roll 12a and is heated by saturated steam filling the decomposition tank 11. Since the chemical | medical solution tank 13 is arrange | positioned at the traveling rolls 12b and 12c, while the hollow fiber membrane precursor 30 passes the traveling rolls 12b and 12c, the hypochlorite aqueous solution heated by saturated steam is hollow. By contacting with the thread membrane precursor 30, the hollow fiber membrane precursor 30 is washed, and the opening aid contained in the hollow fiber membrane precursor 30 is decomposed and removed.

ついで、中空糸膜前駆体30は、走行ロール12dを経て分解槽11外へと導出される。   Next, the hollow fiber membrane precursor 30 is led out of the decomposition tank 11 through the traveling roll 12d.

分解槽11内では、中空糸膜前駆体30はまず飽和水蒸気により加熱される。その後、加熱した中空糸膜前駆体30には、薬液槽13において加熱された次亜塩素酸塩水溶液が接触する。中空糸膜前駆体30に接触した次亜塩素酸塩水溶液は中空糸膜前駆体30に直ちに浸透する。また、次亜塩素酸塩水溶液が接触、浸透した中空糸膜前駆体30は、分解槽11内を走行することにより飽和水蒸気で保温されるため、接触、浸透した次亜塩素酸塩水溶液による開孔助剤の分解も、次亜塩素酸塩水溶液の浸透とほぼ同時に開始、進行する。
飽和水蒸気の凝縮水はドレン排出口15から排出される。
In the decomposition tank 11, the hollow fiber membrane precursor 30 is first heated by saturated steam. Thereafter, the heated hollow fiber membrane precursor 30 is brought into contact with the hypochlorite aqueous solution heated in the chemical bath 13. The aqueous hypochlorite solution in contact with the hollow fiber membrane precursor 30 immediately penetrates into the hollow fiber membrane precursor 30. Further, since the hollow fiber membrane precursor 30 contacted and permeated with the hypochlorite aqueous solution is kept warm with saturated water vapor by traveling in the decomposition tank 11, it is opened by the contacted and permeated hypochlorite aqueous solution. The decomposition of the pore assistant also starts and proceeds almost simultaneously with the penetration of the hypochlorite aqueous solution.
The condensed water of saturated water vapor is discharged from the drain discharge port 15.

薬液槽13における中空糸膜前駆体30の滞在時間には特に制限はないが、次亜塩素酸塩水溶液が中空糸膜前駆体30に充分に接触、保持した状態となる滞在時間を設定する。   Although there is no restriction | limiting in particular in the residence time of the hollow fiber membrane precursor 30 in the chemical | medical solution tank 13, The residence time from which a hypochlorite aqueous solution will fully contact and hold | maintain the hollow fiber membrane precursor 30 is set.

薬液排出口22から排出された次亜塩素酸塩水溶液は、pH測定計器20でpH測定される。この時、次亜塩素酸塩水溶液のpHが所定の範囲に入っていない場合は、次亜塩素酸塩の失活を抑制するために、薬液槽13内の次亜塩素酸塩水溶液に対して、分解工程の途中で塩基を供給して、薬液槽13中の次亜塩素酸塩水溶液のpHが9.5以上(好ましくはpHが9.5〜13.2)を維持するように制御する。
ここで、pH測定計器20における次亜塩素酸塩水溶液のpHが9.5以上であれば、「薬液槽13中の次亜塩素酸塩水溶液のpHを9.5以上に維持できた」とみなす。
The pH of the hypochlorite aqueous solution discharged from the chemical solution discharge port 22 is measured by the pH measuring instrument 20. At this time, when the pH of the hypochlorite aqueous solution is not within the predetermined range, in order to suppress the deactivation of hypochlorite, the hypochlorite aqueous solution in the chemical tank 13 The base is supplied in the middle of the decomposition step, and the pH of the hypochlorite aqueous solution in the chemical bath 13 is controlled to be maintained at 9.5 or higher (preferably the pH is 9.5 to 13.2). .
Here, if the pH of the hypochlorite aqueous solution in the pH measuring instrument 20 is 9.5 or higher, “the pH of the hypochlorite aqueous solution in the chemical bath 13 can be maintained at 9.5 or higher”. I reckon.

薬液槽13の次亜塩素酸塩水溶液への塩基の供給は、薬液槽13中の次亜塩素酸塩水溶液のpHをpH測定計器20で監視しながら、塩基供給ポンプ19により、分解槽11外に設けられた塩基供給手段18から、分解槽11内に設けられた塩基添加手段14を介して適宜供給する。この際、フィードバック制御などを組み込んで自動制御することもできる。
分解槽11外における、塩基供給ポンプ19と薬液槽13の間には、図示略のヒータを設けて、塩基を分解槽11外で加熱してから、薬液槽13に供給するようにしてもよい。供給する塩基の濃度が低すぎればpH維持に多くの塩基水溶液を添加することとなり次亜塩素酸ナトリウム塩濃度を下げてしまい分解能が下がる。また、供給する塩基の濃度が高すぎる場合、水溶液が混ざる前に局所的に塩基が濃厚な部分が発生し前述したように膜の着色に繋がる。そのため供給する塩基濃度は例えば1〜10mol/Lが好ましい。
なお、本明細書中に示すpHは25℃において測定した値である。薬液排出口22とpH測定計器20の間に、図示略の冷却器を設けて、排出後の薬液の温度を25℃にしてから測定する。
Supply of the base to the hypochlorite aqueous solution in the chemical tank 13 is performed by the base supply pump 19 while monitoring the pH of the hypochlorite aqueous solution in the chemical tank 13 outside the decomposition tank 11. From the base supply means 18 provided in, the base is suitably supplied via the base addition means 14 provided in the decomposition tank 11. At this time, feedback control or the like can be incorporated for automatic control.
A heater (not shown) may be provided between the base supply pump 19 and the chemical solution tank 13 outside the decomposition tank 11 so that the base is heated outside the decomposition tank 11 and then supplied to the chemical solution tank 13. . If the concentration of the supplied base is too low, a large amount of base aqueous solution is added to maintain the pH, and the sodium hypochlorite concentration is lowered and the resolution is lowered. In addition, when the concentration of the supplied base is too high, a portion where the base is concentrated locally is generated before the aqueous solution is mixed, leading to the coloring of the film as described above. Therefore, the base concentration to be supplied is preferably 1 to 10 mol / L, for example.
In addition, pH shown in this specification is the value measured in 25 degreeC. A cooler (not shown) is provided between the chemical solution outlet 22 and the pH measuring instrument 20, and the temperature of the discharged chemical solution is set to 25 ° C. and then measured.

薬液槽13内での次亜塩素酸塩の濃度や流量は、次亜塩素酸塩水溶液のpHが9.5以上(好ましくはpHが9.5〜13.2)になるように制御できる範囲で設定することが好ましい。具体的には、中空糸膜前駆体30中の開孔助剤の残存状態や、次亜塩素酸塩と塩基の使用効率の観点から、適宜設定する。   The concentration and flow rate of hypochlorite in the chemical bath 13 can be controlled so that the pH of the hypochlorite aqueous solution is 9.5 or more (preferably the pH is 9.5 to 13.2). It is preferable to set by. Specifically, it is appropriately set from the viewpoint of the remaining state of the pore opening aid in the hollow fiber membrane precursor 30 and the use efficiency of hypochlorite and base.

このように、図示例の分解装置10を用いた分解工程によれば、加熱した次亜塩素酸塩水溶液を中空糸膜前駆体30に接触させて中空糸膜前駆体30を洗浄する。次亜塩素酸塩水溶液が中空糸膜前駆体30に接触すると、中空糸膜前駆体30への次亜塩素酸塩水溶液の浸透と、次亜塩素酸塩水溶液に含まれる次亜塩素酸塩による開孔助剤の分解とがほぼ同時に進行する。また、次亜塩素酸塩水溶液のpHを9.5以上に維持するので、次亜塩素酸塩の分解や失活も抑制することができる。その結果、短時間で、酸化剤(次亜塩素酸塩)の使用量を抑えつつ、中空糸膜前駆体30に残存する開孔助剤を分解できる。また、次亜塩素酸塩水溶液のpHを13.2以下に維持すれば、得られる中空糸膜の着色を防止できる。   Thus, according to the decomposition process using the decomposition apparatus 10 of the illustrated example, the heated hypochlorite aqueous solution is brought into contact with the hollow fiber membrane precursor 30 to wash the hollow fiber membrane precursor 30. When the hypochlorite aqueous solution comes into contact with the hollow fiber membrane precursor 30, penetration of the hypochlorite aqueous solution into the hollow fiber membrane precursor 30 and the hypochlorite contained in the hypochlorite aqueous solution Decomposition of the pore opening aid proceeds almost simultaneously. Moreover, since the pH of the hypochlorite aqueous solution is maintained at 9.5 or higher, the decomposition and deactivation of hypochlorite can be suppressed. As a result, the opening aid remaining in the hollow fiber membrane precursor 30 can be decomposed in a short time while suppressing the amount of oxidant (hypochlorite) used. Further, if the pH of the hypochlorite aqueous solution is maintained at 13.2 or less, the resulting hollow fiber membrane can be prevented from being colored.

<水洗工程>
水洗工程は、分解工程後の多孔質膜前駆体を水で洗浄する工程である。
水洗方法としては特に制限されず、水に浸漬する方法などが挙げられる。また、水洗工程として、例えば特開2008−161755号公報に記載された減圧工程−洗浄液供給工程の2工程や、減圧工程−洗浄液供給工程−減圧工程の3工程を実施してもよい。
水洗時間は特に制限されないが、通常、水に浸漬する方法の場合は10分以上であり、特開2008−161755号公報に記載された前記2工程や3工程の場合は1分程度である。
<Washing process>
The water washing step is a step of washing the porous membrane precursor after the decomposition step with water.
The washing method is not particularly limited, and examples include a method of immersing in water. Further, as the water washing step, for example, two steps of a decompression step-cleaning liquid supply step and a decompression step-cleaning liquid supply step-depressurization step described in JP-A-2008-161755 may be performed.
Although the water washing time is not particularly limited, it is usually 10 minutes or more in the case of the method of immersing in water, and it is about 1 minute in the case of the two or three steps described in JP-A-2008-161755.

<乾燥工程>
乾燥工程は、水洗工程により得られた多孔質膜を乾燥する工程である。
乾燥方法としては特に制限されず、多孔質膜を熱風乾燥機などの乾燥装置に導入する方法などが挙げられる。
<Drying process>
A drying process is a process of drying the porous membrane obtained by the water washing process.
The drying method is not particularly limited, and examples thereof include a method of introducing the porous membrane into a drying device such as a hot air dryer.

<作用効果>
以上説明した本発明の多孔質膜の製造方法によれば、製膜工程により得られた多孔質膜前駆体を次亜塩素酸塩水溶液で洗浄するので、多孔質膜前駆体に残存する開孔助剤を分解できる。しかも、本発明では、次亜塩素酸塩水溶液のpHを9.5以上に維持する。よって、分解工程中に次亜塩素酸塩が分解したり失活したりするのを抑制できるので、短時間で、酸化剤(次亜塩素酸塩)の使用量を抑えつつ、開孔助剤を分解できる。特に、次亜塩素酸塩水溶液のpHを13.2以下に維持すれば、多孔質膜の着色も防止できる。
分解工程中における次亜塩素酸塩水溶液に塩基を分解工程の途中で供給すれば、分解工程中における次亜塩素酸塩水溶液のpHを9.5以上に容易に維持できる。
<Effect>
According to the method for producing a porous membrane of the present invention described above, the porous membrane precursor obtained by the membrane-forming process is washed with a hypochlorite aqueous solution, so that the remaining pores in the porous membrane precursor Auxiliary agents can be decomposed. Moreover, in the present invention, the pH of the hypochlorite aqueous solution is maintained at 9.5 or higher. Therefore, it is possible to prevent the hypochlorite from being decomposed or deactivated during the decomposition process, and in a short time, while reducing the amount of oxidizing agent (hypochlorite) used, the pore opening aid Can be disassembled. In particular, if the pH of the hypochlorite aqueous solution is maintained at 13.2 or less, coloring of the porous membrane can be prevented.
If a base is supplied to the hypochlorite aqueous solution in the decomposition step in the middle of the decomposition step, the pH of the hypochlorite aqueous solution in the decomposition step can be easily maintained at 9.5 or more.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

[例1]
表1に示す質量比となるように、ポリフッ化ビニリデンA(アルケマ社製、商品名カイナー761A、質量平均分子量:72万)、ポリビニルピロリドンB(日本触媒社製、商品名K−79、質量平均分子量:90万、K値:79)、N,N−ジメチルアセトアミド(サムソンファインケミカル社製)を混合し、60℃で攪拌溶解し、製膜原液(1)および製膜原液(2)を調製した。
別途、次亜塩素酸ナトリウム水溶液(伸友社製)を濃度が11.5質量%になるように水で希釈した。希釈した次亜塩素酸ナトリウム水溶液のpHは13.0であった。
[Example 1]
Polyvinylidene fluoride A (trade name Kyner 761A, mass average molecular weight: 720,000), polyvinylpyrrolidone B (Nippon Shokubai Co., Ltd., trade name K-79, mass average) so as to have the mass ratio shown in Table 1. Molecular weight: 900,000, K value: 79), N, N-dimethylacetamide (manufactured by Samsung Fine Chemical Co., Ltd.) were mixed and dissolved by stirring at 60 ° C. to prepare a film-forming stock solution (1) and a film-forming stock solution (2). .
Separately, a sodium hypochlorite aqueous solution (manufactured by Shintomo Co., Ltd.) was diluted with water so as to have a concentration of 11.5% by mass. The pH of the diluted aqueous sodium hypochlorite solution was 13.0.

Figure 2018143930
Figure 2018143930

ついで、中心に中空部が形成され、その外側に、2種類の製膜原液を塗布・積層できるように環状の吐出口が三重に順次形成されたノズルを用意し、これを30℃に保温した状態で、中空部には多孔質基材としてポリエステル製マルチフィラメント単繊編紐(マルチフィラメント;420T/180F)を導入するとともに、その外周に製膜原液(2)、製膜原液(1)を内側から順次塗布し、75℃に保温した凝固液(N,N−ジメチルアセトアミド8質量部と水92質量部との混合液)中で凝固させ、中空糸膜前駆体を得た(製膜工程)。
得られた中空糸膜前駆体について、25℃、ゲージ圧0.1MPaの純水を中空糸膜前駆体の外側から内側に透水させることによって透過水量を測定した。また、中空糸膜前駆体の色を目視にて確認した。これらの結果を表2に示す。
Next, a nozzle having a hollow portion formed at the center and an annular discharge port formed in order so that two types of film-forming stock solutions can be applied and laminated on the outside is prepared and kept at 30 ° C. In the state, a polyester multifilament single filament braid (multifilament; 420T / 180F) is introduced into the hollow portion as a porous base material, and a film-forming solution (2) and a film-forming solution (1) are provided on the outer periphery thereof. The hollow fiber membrane precursor was obtained by coating from the inside and coagulating in a coagulating liquid (mixed solution of 8 parts by mass of N, N-dimethylacetamide and 92 parts by mass of water) kept at 75 ° C. (film forming process) ).
With respect to the obtained hollow fiber membrane precursor, the amount of permeated water was measured by allowing pure water having a temperature of 25 ° C. and a gauge pressure of 0.1 MPa to pass from the outside to the inside of the hollow fiber membrane precursor. Moreover, the color of the hollow fiber membrane precursor was confirmed visually. These results are shown in Table 2.

次に、次亜塩素酸ナトリウム水溶液200gを100℃に加熱した。ついで、100℃に加熱した状態で濃度20質量%のポリビニルピロリドンBの水溶液7.6gを添加し、ポリビニルピロリドンを1.4質量%含有する次亜塩素酸ナトリウム水溶液を調製した。
上述したように、開孔助剤の分解中に開孔助剤が次亜塩素酸塩水溶液に溶出してしまう。そこで、例1および以下の例2では、予め次亜塩素酸ナトリウム水溶液にポリビニルピロリドンを含有させておくことで、次亜塩素酸ナトリウム水溶液が中空糸膜前駆体に接触している状態(すなわち、分解工程中の次亜塩素酸ナトリウム水溶液の状態)を再現した。
Next, 200 g of an aqueous sodium hypochlorite solution was heated to 100 ° C. Subsequently, 7.6 g of an aqueous solution of polyvinyl pyrrolidone B having a concentration of 20% by mass in a state heated to 100 ° C. was added to prepare an aqueous sodium hypochlorite solution containing 1.4% by mass of polyvinyl pyrrolidone.
As described above, the pore opening assistant is eluted into the hypochlorite aqueous solution during the decomposition of the hole opening assistant. Therefore, in Example 1 and Example 2 below, polyvinyl pyrrolidone is contained in the sodium hypochlorite aqueous solution in advance so that the sodium hypochlorite aqueous solution is in contact with the hollow fiber membrane precursor (ie, The state of the aqueous sodium hypochlorite solution during the decomposition process) was reproduced.

ポリビニルピロリドンを添加した直後(経過時間0分)の次亜塩素酸ナトリウム水溶液の濃度とpHを測定した。これらの結果を表2に示す。
なお、次亜塩素酸ナトリウム水溶液の濃度の測定は、以下のようにして行った。
採取した次亜塩素酸ナトリウム水溶液を0℃のアイスバスで急冷して次亜塩素酸ナトリウムの分解を停止した後、液温を25℃にしてから、柴田科学株式会社製のハンディ水質計「AQUAB AQ−101」を用いて次亜塩素酸ナトリウム水溶液の濃度を測定した。
また、次亜塩素酸ナトリウム水溶液のpHの測定は、東亜ディーケーケー社製のマルチ水質計「MM−60R」、及びpH複合電極「GST−5731C」を用いて測定した。
The concentration and pH of the aqueous sodium hypochlorite solution immediately after the addition of polyvinylpyrrolidone (elapsed time 0 minutes) were measured. These results are shown in Table 2.
The concentration of the sodium hypochlorite aqueous solution was measured as follows.
The collected sodium hypochlorite aqueous solution is rapidly cooled in an ice bath at 0 ° C. to stop the decomposition of sodium hypochlorite, and then the temperature of the solution is lowered to 25 ° C., then the handy water quality meter “AQUAB” manufactured by Shibata Kagaku Co., Ltd. The concentration of the sodium hypochlorite aqueous solution was measured using “AQ-101”.
Moreover, the pH of the sodium hypochlorite aqueous solution was measured using a multi-water quality meter “MM-60R” manufactured by Toa DKK Corporation and a pH composite electrode “GST-5731C”.

ポリビニルピロリドンを添加した次亜塩素酸ナトリウム水溶液は、時間の経過に伴い液のpHが低下する。次亜塩素酸ナトリウム水溶液のpHを測定、監視し、次亜塩素酸ナトリウム水溶液のpHが9.5以上を維持するように、適宜、途中で濃度1mol/Lの水酸化ナトリウム水溶液を供給した。   The sodium hypochlorite aqueous solution to which polyvinyl pyrrolidone is added has the pH of the liquid lowered with time. The pH of the sodium hypochlorite aqueous solution was measured and monitored, and a sodium hydroxide aqueous solution having a concentration of 1 mol / L was appropriately supplied midway so that the pH of the sodium hypochlorite aqueous solution was maintained at 9.5 or higher.

ポリビニルピロリドンを添加してから1分経過したタイミングで、次亜塩素酸ナトリウム水溶液に製膜工程により得られた中空糸膜前駆体1.0gを浸漬させ、100℃で2分間洗浄した後、中空糸膜前駆体を取り出した。
ついで、取り出した中空糸膜前駆体を25℃の純水で10分間洗浄し、中空糸膜を得た。得られた中空糸膜について、25℃、ゲージ圧0.1MPaの純水を中空糸膜の外側から内側に透水させることによって透過水量を測定した。また、中空糸膜の色を目視にて確認した。これらの結果を表2に示す。
引き続き、ポリビニルピロリドンを添加してから5分、10分、15分経過した各タイミングでも、1分経過したときと同様にして次亜塩素酸ナトリウム水溶液に製膜工程により得られた中空糸膜前駆体1.0gを浸漬させ、中空糸膜を得た。得られた中空糸膜について、同様にして透過水量を測定した。また、中空糸膜の色を目視にて確認した。これらの結果を表2に示す。
また、上記の中空糸膜前駆体の洗浄と並行して、ポリビニルピロリドンを添加してから1分、5分、10分、15分経過した各タイミングにおいて、次亜塩素酸ナトリウム水溶液の濃度を測定した。これらの結果を表2に示す。
また、ポリビニルピロリドンを添加してから1分、5分、10分、15分経過した各タイミングにおけるpH測定結果を表2に示す。
ポリビニルピロリドンを添加してから17分間の間に、次亜塩素酸ナトリウム水溶液のpHを10.0以上に維持するために滴下した濃度1mol/L水酸化ナトリウム水溶液の総量は、35.5gであった。
なお、例1は実施例に相当し、例2は比較例に相当する。
At the timing when 1 minute has passed since the addition of polyvinylpyrrolidone, 1.0 g of the hollow fiber membrane precursor obtained by the film-forming step was immersed in an aqueous sodium hypochlorite solution, washed at 100 ° C. for 2 minutes, and then hollow. The thread membrane precursor was taken out.
Subsequently, the taken out hollow fiber membrane precursor was washed with pure water at 25 ° C. for 10 minutes to obtain a hollow fiber membrane. About the obtained hollow fiber membrane, the amount of permeated water was measured by allowing pure water having a temperature of 25 ° C. and a gauge pressure of 0.1 MPa to pass from the outside to the inside of the hollow fiber membrane. Moreover, the color of the hollow fiber membrane was confirmed visually. These results are shown in Table 2.
Subsequently, the hollow fiber membrane precursor obtained in the sodium hypochlorite aqueous solution by the film-forming process in the same manner as when 1 minute had passed at each timing of 5 minutes, 10 minutes, and 15 minutes after the addition of polyvinylpyrrolidone. 1.0 g of the body was immersed to obtain a hollow fiber membrane. The amount of permeated water was measured in the same manner for the obtained hollow fiber membrane. Moreover, the color of the hollow fiber membrane was confirmed visually. These results are shown in Table 2.
In parallel with the washing of the hollow fiber membrane precursor, the concentration of the sodium hypochlorite aqueous solution was measured at each timing of 1 minute, 5 minutes, 10 minutes, and 15 minutes after the addition of polyvinylpyrrolidone. did. These results are shown in Table 2.
Table 2 shows the pH measurement results at each timing when 1 minute, 5 minutes, 10 minutes, and 15 minutes had elapsed since the addition of polyvinylpyrrolidone.
The total amount of 1 mol / L aqueous sodium hydroxide solution added dropwise to maintain the pH of the aqueous sodium hypochlorite solution at 10.0 or higher during the 17 minutes after the addition of polyvinylpyrrolidone was 35.5 g. It was.
Note that Example 1 corresponds to an example, and Example 2 corresponds to a comparative example.

「例2」
次亜塩素酸ナトリウム水溶液に、途中で濃度1mol/L水酸化ナトリウム水溶液を供給しなかった以外は、例1と同様にした。結果を表3に示す。
"Example 2"
The same procedure as in Example 1 was conducted except that the sodium hypochlorite aqueous solution was not supplied with a 1 mol / L sodium hydroxide aqueous solution. The results are shown in Table 3.

Figure 2018143930
Figure 2018143930

Figure 2018143930
Figure 2018143930

表2、3中、「PVP添加後経過時間」とは、次亜塩素酸ナトリウム水溶液にポリビニルピロリドンを添加してからの経過時間(分)である。   In Tables 2 and 3, “elapsed time after addition of PVP” is the elapsed time (minutes) from the addition of polyvinylpyrrolidone to the sodium hypochlorite aqueous solution.

表2の結果から明らかなように、例1では、次亜塩素酸ナトリウム水溶液にポリビニルピロリドンを添加してから15分経過しても、次亜塩素酸ナトリウム水溶液の濃度が3.9質量%以上であり、次亜塩素酸ナトリウムの分解が抑制されていた。この結果より、次亜塩素酸ナトリウム水溶液に、途中で水酸化ナトリウム等の塩基を供給することで、分解工程中における次亜塩素酸ナトリウム水溶液のpHを9.5以上に維持しながら、中空糸膜前駆体を次亜塩素酸ナトリウム水溶液で洗浄できることが示された。   As is apparent from the results in Table 2, in Example 1, the concentration of the aqueous sodium hypochlorite solution was 3.9% by mass or more even after 15 minutes had elapsed since the addition of polyvinylpyrrolidone to the aqueous sodium hypochlorite solution. And decomposition of sodium hypochlorite was suppressed. From this result, by supplying a base such as sodium hydroxide to the sodium hypochlorite aqueous solution on the way, while maintaining the pH of the sodium hypochlorite aqueous solution at 9.5 or higher during the decomposition step, the hollow fiber It was shown that the membrane precursor can be washed with an aqueous sodium hypochlorite solution.

また、次亜塩素酸ナトリウム水溶液にポリビニルピロリドンを添加してから各時間経過した後の次亜塩素酸ナトリウム水溶液を用いて中空糸膜前駆体を洗浄して得られた中空糸膜は、いずれも透過水量が高く、透水性能が高く保たれていた。また、得られた中空糸膜は白色を維持しており、着色が抑制されていた。   The hollow fiber membranes obtained by washing the hollow fiber membrane precursor with the aqueous sodium hypochlorite solution after each time had elapsed after adding polyvinyl pyrrolidone to the aqueous sodium hypochlorite solution, The amount of permeated water was high, and the water permeation performance was kept high. Moreover, the obtained hollow fiber membrane maintained white and coloring was suppressed.

なお、例1と同様の方法で調製した次亜塩素酸ナトリウム水溶液に、ポリビニルピロリドンを添加せずに、中空糸膜前駆体1.0gを浸漬させ、100℃で2分間洗浄した後、中空糸膜前駆体を取り出し、これを25℃の純水で10分間洗浄して得られた中空糸膜について、透過水量を測定したところ22.3g/cm/分であり、膜色は白であった。
この結果より、中空糸膜前駆体を浸漬する次亜塩素酸ナトリウム水溶液のpHを9.5以上に維持した例1は、ポリビニルピロリドンを添加したにもかかわらず、ポリビニルピロリドンを添加していない場合と、同程度の透過水量を有する中空糸膜が得られたことが分かった。
In addition, 1.0 g of hollow fiber membrane precursors were immersed in an aqueous sodium hypochlorite solution prepared in the same manner as in Example 1 without adding polyvinylpyrrolidone, washed at 100 ° C. for 2 minutes, and then hollow fiber. The hollow fiber membrane obtained by taking out the membrane precursor and washing it with pure water at 25 ° C. for 10 minutes was measured for the amount of permeated water and found to be 22.3 g / cm 2 / min and the membrane color was white. It was.
From this result, Example 1 in which the pH of the sodium hypochlorite aqueous solution in which the hollow fiber membrane precursor was immersed was maintained at 9.5 or higher was obtained when polyvinyl pyrrolidone was not added even though polyvinyl pyrrolidone was added. It was found that a hollow fiber membrane having the same permeated water amount was obtained.

一方、表3の結果から明らかなように、例2では、次亜塩素酸ナトリウム水溶液に塩基を途中で供給しなかったため、初期の次亜塩素酸ナトリウム水溶液の初期pHは13.0と高いものの、時間の経過とともに次亜塩素酸ナトリウム水溶液のpHが9.5を下回るとともに、次亜塩素酸ナトリウムの濃度が著しく低下した。また、時間の経過とともに中空糸膜の透過水量も低下し、透水性能を保つことはできなかった。   On the other hand, as is clear from the results in Table 3, in Example 2, the base was not supplied to the sodium hypochlorite aqueous solution halfway, so the initial pH of the initial sodium hypochlorite aqueous solution was as high as 13.0. As time passed, the pH of the sodium hypochlorite aqueous solution fell below 9.5, and the concentration of sodium hypochlorite significantly decreased. Moreover, the amount of permeated water of the hollow fiber membrane decreased with the passage of time, and the water permeation performance could not be maintained.

10 分解装置
11 分解槽
12a 走行ロール
12b 走行ロール
12c 走行ロール
12d 走行ロール
13 薬液槽
14 塩基添加手段
15 ドレン排出口
16 薬液供給手段
17 供給ポンプ
18 塩基供給手段
19 塩基供給ポンプ
20 pH測定計器
21 仕切り板
22 薬液排出口
30 中空糸膜前駆体
DESCRIPTION OF SYMBOLS 10 Decomposition | disassembly apparatus 11 Decomposition tank 12a Traveling roll 12b Traveling roll 12c Traveling roll 12d Traveling roll 13 Chemical solution tank 14 Base addition means 15 Drain discharge port 16 Chemical supply means 17 Supply pump 18 Base supply means 19 Base supply pump 20 pH measuring instrument 21 Partition Plate 22 Chemical solution outlet 30 Hollow fiber membrane precursor

Claims (10)

フッ素樹脂と開孔助剤とを含む製膜原液を凝固液で凝固させて多孔質膜前駆体を形成する製膜工程と、
次亜塩素酸塩水溶液で前記多孔質膜前駆体に残存する開孔助剤を分解除去する分解工程とを有し、
前記分解工程における次亜塩素酸塩水溶液のpH(測定温度:25℃)を9.5以上に維持する、多孔質膜の製造方法。
A film forming step of coagulating a film forming stock solution containing a fluororesin and an opening aid with a coagulating liquid to form a porous film precursor;
A decomposition step of decomposing and removing the pore opening aid remaining in the porous membrane precursor with a hypochlorite aqueous solution,
A method for producing a porous membrane, wherein the pH (measurement temperature: 25 ° C.) of the hypochlorite aqueous solution in the decomposition step is maintained at 9.5 or higher.
前記分解工程において次亜塩素酸塩水溶液に塩基を供給してpH(測定温度:25℃)を9.5以上に維持する、請求項1に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1, wherein a base is supplied to the hypochlorite aqueous solution in the decomposition step to maintain the pH (measurement temperature: 25 ° C) at 9.5 or higher. 前記塩基が、水酸化ナトリウムおよび水酸化カルシウムの少なくとも一方である、請求項2に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 2, wherein the base is at least one of sodium hydroxide and calcium hydroxide. 前記分解工程における次亜塩素酸塩水溶液のpH(測定温度:25℃)が10.5以下となった時に塩基を供給する、請求項2または3に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 2 or 3, wherein a base is supplied when the pH (measurement temperature: 25 ° C) of the hypochlorite aqueous solution in the decomposition step becomes 10.5 or less. 前記分解工程における次亜塩素酸塩水溶液の濃度が1.0質量%以上である、請求項1〜4のいずれか一項に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane as described in any one of Claims 1-4 whose density | concentration of the hypochlorite aqueous solution in the said decomposition | disassembly process is 1.0 mass% or more. 前記フッ素樹脂がポリフッ化ビニリデンである、請求項1〜5のいずれか一項に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane as described in any one of Claims 1-5 whose said fluororesin is polyvinylidene fluoride. 前記開孔助剤が親水性ポリマーである、請求項1〜6のいずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to any one of claims 1 to 6, wherein the pore opening aid is a hydrophilic polymer. 前記親水性ポリマーが、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールからなる群より選ばれる少なくとも1種である、請求項7に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 7, wherein the hydrophilic polymer is at least one selected from the group consisting of polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. 前記分解工程における次亜塩素酸塩水溶液中の開孔助剤の濃度が0.1〜20.0質量%である、請求項1〜8のいずれか一項に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane as described in any one of Claims 1-8 whose density | concentration of the pore opening aid in the hypochlorite aqueous solution in the said decomposition | disassembly process is 0.1-20.0 mass%. . 前記分解工程における次亜塩素酸塩水溶液の温度が80〜100℃である、請求項1〜9のいずれか一項に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane as described in any one of Claims 1-9 whose temperature of the hypochlorite aqueous solution in the said decomposition | disassembly process is 80-100 degreeC.
JP2017039498A 2017-03-02 2017-03-02 Method for producing porous membrane Pending JP2018143930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039498A JP2018143930A (en) 2017-03-02 2017-03-02 Method for producing porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039498A JP2018143930A (en) 2017-03-02 2017-03-02 Method for producing porous membrane

Publications (1)

Publication Number Publication Date
JP2018143930A true JP2018143930A (en) 2018-09-20

Family

ID=63588553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039498A Pending JP2018143930A (en) 2017-03-02 2017-03-02 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP2018143930A (en)

Similar Documents

Publication Publication Date Title
JP5633576B2 (en) Method for producing porous hollow fiber membrane
JP5076320B2 (en) Method for producing polyvinylidene fluoride hollow fiber type microporous membrane
JP4951332B2 (en) Method for producing hollow fiber membrane
JP5424145B1 (en) Polymer porous flat membrane sheet
CN105722585A (en) Porous hollow fiber membrane and method for manufacturing same
JP5609116B2 (en) Hollow fiber ultrafiltration membrane with excellent fouling resistance
JP6303910B2 (en) Hollow fiber membrane for ultrafiltration
JP5617930B2 (en) Porous membrane manufacturing method and manufacturing apparatus
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP6638276B2 (en) Method for producing porous hollow fiber membrane
JP2018143930A (en) Method for producing porous membrane
JP4803697B2 (en) Method for producing porous membrane
JP2008168224A (en) Hollow fiber porous membrane and its manufacturing method
JP5549955B2 (en) Porous membrane manufacturing method and manufacturing apparatus
JP4724914B2 (en) Dry / wet spinning method of porous hollow fiber membrane
JP6048180B2 (en) Porous membrane manufacturing method and manufacturing apparatus
WO1998058728A1 (en) Polyacrylonitrile-base hollow-fiber filtration membrane
JP5558155B2 (en) Porous membrane manufacturing method and porous membrane
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP5569393B2 (en) Method for producing porous membrane
JP2004033854A (en) Method for manufacturing porous film
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JP5473215B2 (en) Method for producing porous membrane for water treatment
JPH0929078A (en) Production of hollow yarn membrane

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803