JP2004353142A - Treatment method for drying hollow fiber membrane - Google Patents

Treatment method for drying hollow fiber membrane Download PDF

Info

Publication number
JP2004353142A
JP2004353142A JP2003154852A JP2003154852A JP2004353142A JP 2004353142 A JP2004353142 A JP 2004353142A JP 2003154852 A JP2003154852 A JP 2003154852A JP 2003154852 A JP2003154852 A JP 2003154852A JP 2004353142 A JP2004353142 A JP 2004353142A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
drying
membrane
pvp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154852A
Other languages
Japanese (ja)
Inventor
Junsuke Morita
純輔 森田
Koyo Mabuchi
公洋 馬淵
Noriaki Kato
典昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003154852A priority Critical patent/JP2004353142A/en
Publication of JP2004353142A publication Critical patent/JP2004353142A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and inexpensively provide hollow fiber membrane that causes minimized occurrence of eluate in the blood treatment or the like by suppressing the decomposition of polyvinylpyrrolidone (PVP) on drying, when a membrane having poor heat resistance and poor oxidation resistance, particularly polysulfone membrane including PVP that is a hydrophilic macromolecule is dried. <P>SOLUTION: In the production of hollow fiber membrane comprising a hydrophilic polymer and a hydrophobic polymer, it has been found the thermal decomposition and the oxidative decomposition of a hydrophilic polymer, particularly PVP can be suppressed by using a gas of which oxygen content is ≤10 vol.% as a carrier gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば人工臓器として血液浄化等に用いられる中空糸膜の乾燥処理方法に関するものである。
【0002】
【従来の技術】
一般に、製膜、洗浄後の中空糸膜は、その後の取り扱いの簡便さのために、乾燥処理する必要がある。そこで、こういった製膜、洗浄後の、湿潤状態の中空糸膜の乾燥処理方法として、紡糸中に乾燥塔内を通過させる方法や、紡糸後適当な長さの束として乾燥器内で通気させる方法が広く採用されている。従来、この種の乾燥処理には乾燥キャリアガスとして空気が用いられており、中空糸膜と空気を接触させることにより、水分の除去および乾燥を行っている。
【0003】
例えば、切り揃えられた中空糸膜の束を通気筒内に挿入し、乾燥用空気を通気させることにより、中空糸膜の乾燥を行う方法が開示されている(例えば、特許文献1参照)。しかしながら、この方法では、乾燥キャリアガスとして酸素を含んだ空気を用いているため、乾燥プロセス中に膜の酸化を促進してしまう可能性があり、結果として、乾燥処理して得られた中空糸膜が酸化分解の影響を受け、親水性高分子の溶出や膜自体の強度の低下など、実用上深刻な問題を引き起こす可能性があった。
【0004】
乾燥の効率を上げる手法としては、例えば、中空糸膜にマイクロ波を照射するとともに水蒸気による湿熱処理を行うことで、中空糸膜の変性や潰れを生じさせることなく、大量の中空糸膜を乾燥させる技術が開示されている(例えば、特許文献2参照)。この方法では、短時間で十分な効果を得ることができるが、マイクロ波の制御だけでなく、高温蒸気の出力コントロールや安全管理などに煩雑な装置が必要となり、乾燥処理にかかるコストの上昇が避けられない。
【0005】
また、親水性高分子の溶出を抑制する手法として、これまでは水あるいは熱水への溶出量抑制方法が提案されてきたが、中空糸膜中から脱落しやすい低分子量体のみを精製除去することにより、血液あるいは血漿への溶出量の指標とされる40%エタノール水溶液への溶出量を抑制する手法が開示されている(例えば、特許文献3参照)。しかしながら、再沈殿法による親水性高分子の精製の必要性など、工業的にはデメリットも多い。
【0006】
【特許文献1】
特許3219445号公報(1頁〜2頁)
【特許文献2】
特開平11−332980号公報(1頁〜4頁)
【特許文献3】
特開2000−300663号公報(2頁〜4頁)
【0007】
【発明が解決しようとする課題】
耐熱性や耐酸化性が低い膜、特に親水性高分子であるポリビニルピロリドン(以降PVPと表記)を含有するポリスルホン系膜を乾燥する際、乾燥時のPVPの分解を抑制することによって、血液処理等において溶出物の発生が少ない中空糸膜を、簡便にかつ効率よく提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、乾燥雰囲気中に存在する酸素が中空糸膜に含有されるPVPを酸化分解することを見出し、本発明に到った。すなわち、本願発明は以下のものである。
(1)製膜、洗浄後の、湿潤状態の中空糸膜の乾燥処理方法において、乾燥キャリアガスとして酸素濃度が10vol%未満の気体を用いることを特徴とする中空糸膜の乾燥処理方法。
(2)前記乾燥キャリアガスの流量が中空糸膜1本あたり0.5〜10.0cc/minである(1)記載の中空糸膜の乾燥処理方法。
(3)乾燥温度が40℃以上である(1)または(2)記載の中空糸膜の乾燥処理方法。
【0009】
この発明によれば、乾燥すべき中空糸膜がPVPを含有するものであっても、分解、溶出の危険性を低減することができるので、従来よりも乾燥温度を高く設定でき、乾燥時間の短縮が可能となる。
【0010】
【発明の実施の形態】
製膜、洗浄後の、湿潤状態の中空糸膜の乾燥処理方法において、乾燥キャリアガスとして酸素濃度が10vol%未満の気体を用いることを特徴とする中空糸膜の乾燥処理方法である。
【0011】
乾燥キャリアガスとして酸素濃度が10vol%未満の気体を用いることにより、前記課題を解決できることが検討の結果より見出された。これは、熱および酸化分解の原因となる酸素濃度を下げることにより、乾燥温度を高く設定しても、PVPなどの分解を抑制できるためと考えられる。
【0012】
本発明において乾燥キャリアガスの酸素濃度は10vol%未満である。10vol%以上となると、酸素による分解作用を抑制することができなくなる場合がある。また、酸素濃度は低いほうが酸素による分解作用に対する抑制効果が大きくなるため好ましく、5vol%未満がより好ましく、1vol%未満が特に好ましい。
【0013】
乾燥キャリアガスとして用いる気体は、酸素濃度を10vol%未満とすれば、他の成分は特に限定されるものではないが、好ましい気体の種類としては、毒性が少なく不燃性の窒素、二酸化炭素、アルゴン、ヘリウムなどの不活性気体が好ましいが、コスト面から窒素、二酸化炭素がより好ましく、取り扱い性、入手の容易さから特に窒素が好ましい。
【0014】
中空糸膜の素材は特に限定されないが、セルロース、セルロースアセテート、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリスルホン、ポリエーテルスルホン、ポリアミドなどが挙げられるが、耐熱性、耐酸化性が低いPVPを含有する中空糸膜が本発明の効果が高く、ポリスルホン、ポリエーテルスルホンなどのポリスルホン系ポリマーやポリアミドなどとPVPからなる中空糸膜が好適に使用できる。
【0015】
本発明の中空糸膜の用途は特に限定されず、限外ろ過(UF)や細菌・微粒子の除去フィルターなどが挙げられるが、溶出物規格のある医療用途において好適に使用でき、人工臓器として血液浄化に用いる中空糸膜として、血液透析膜や血液濾過膜、血液透析濾過膜、血漿分離膜に対して特に好適に使用できる。
【0016】
本発明が適用される中空糸膜の内径は特に限定されないが、50〜5000μmが好適である。内径が50μm未満では乾燥キャリアガスが中空部に入りにくく、乾燥時間が短縮できないことがある。また、中空糸膜の膜厚についても特に制限はなく、膜厚が10〜300μmのものであれば本発明の効果が得られやすく好ましい。
【0017】
本発明の乾燥方法は、特に限定されず、例えば、紡糸中で走行中の中空糸膜を酸素濃度10vol%未満の窒素雰囲気下の乾燥塔内を通過させたり、通風乾燥機内の雰囲気を窒素としたり、バンドル状の中空糸膜に窒素を送風することなどが考えられる。バンドル状の中空糸膜を乾燥する場合、乾燥時間短縮のため中空部に乾燥キャリアガスが入るように工夫することが好ましい。
【0018】
乾燥温度は特に限定されないが、酸素濃度を低くすることにより、乾燥時の酸化による劣化を抑制できるため、キャリアガスとして空気を用いた場合より、乾燥温度を高くすることができる。室温より高く設定することで乾燥時間が短縮できるため好ましく、40℃以上とすることが特に好ましい。ただし、あまり高く設定しすぎると、分解や劣化、および変質等により、中空糸膜性能や品質に悪影響を与える可能性がある。中空糸膜の素材により異なるが、例えば、PVPを含有する中空糸膜では、PVPが分解を始める130℃以下に設定する必要があり、120℃以下が好ましい。なお、加熱装置と温度制御装置を備えることが、乾燥ロット間の品質を合わせる上で好ましい。
【0019】
乾燥キャリアガスの流量は特に規定されることはないが、乾燥すべき中空糸膜の形態や強度、重量、水分率などによって調整することが望ましく、品質のばらつきを減らすために圧力や流量を調節し、一定に保つことが好ましい。ただし、あまり流量が大きいと、中空糸膜の性能、品質、形状に害を与えるため好ましくなく、また逆に流量が小さすぎると乾燥効率が低下し、乾燥処理にかかる時間が長くかかるため好ましくない。乾燥の形態により異なるが、例えば、バンドル状とした中空糸内部に通気させる場合、中空糸1本当たり0.5cc/min〜10cc/minとするのが好ましい。
【0020】
本発明の乾燥方法により得られた中空糸膜の乾燥後の水分率は10wt%以下が好ましく、5 wt%以下が特に好ましい。これは、水分率が高いと、中空糸膜モジュール作製時に樹脂が発泡するなどの接着不良が起こることがある。
【0021】
本発明を、PVPを含有する中空糸膜の乾燥に使用した場合、透析型人工腎臓承認基準試験における溶出物紫外吸光度は0.3以下が好ましく、特に医療用透析膜として使用する場合は0.1以下とする必要がある。
【0022】
(透析型人工腎臓承認基準試験による溶出物の測定法)
中空糸膜束から任意に中空糸膜を取り出し、乾燥状態で1gをはかりとる。これに100mLのRO水を加え、70℃で1時間抽出を行う。得られた抽出液の220−350nmにおける最大吸光度を測定する。
【0023】
(中空糸膜の水分率の測定法)
中空糸膜の水分率は、以下の式により計算する。
水分率%=100×(Ww−Wd)/Ww
ここで、Wwは中空糸膜重量(g)、Wdは、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の中空糸膜重量(g)である。ここで、Wwは1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上重量変化がない)にすることができる。
【0024】
【実施例】
以下、実施例にて本発明の好ましい実施態様を説明する。
【0025】
(実施例1)
紡糸原液として、ポリエーテルスルホン(住友化学工業社製 スミカエクセル4800P)18wt%、ジメチルアセトアミド75.5wt%、ポリビニルピロリドン(BASF社製)3.5wt%、水3.0wt%を50℃にて混合溶解したものを用いた。得られた紡糸原液を2重管構造の紡糸用口金から垂直下方に向け吐出した。同時に内側の管にはジメチルアセトアミド50wt%の水溶液を供給し、中空糸膜を形成した。
この中空糸膜は50mmの蒸気雰囲気中を通過後、凝固浴、水洗浴を経て、湿潤状態でかせによって巻き取られた。巻き取られた中空糸膜10100本の束をポリエチレンフィルムで包装し、長さ方向と垂直に切断することにより、外径35mm、長さ280mmのバンドル(中空糸膜の束)とした。
得られたバンドルを乾燥装置にセットし、装置を密閉した後、温度を40℃、流量を中空糸膜1本当り1.2cc/minに調整した純窒素をバンドルの一方向から12時間通風することにより、乾燥処理を行った。
乾燥後の中空糸膜の水分率は0.6wt%であり、透析型人工腎臓装置承認基準試験に従い、浴比100で70℃、1時間抽出後の溶出物紫外吸光度(以下、UVと表記)は0.05であった。
【0026】
(比較例1)
上記実施例1で示した方法により得られたバンドルを乾燥装置にセットし、装置を密閉した後、温度を40℃、流量を中空糸膜1本当り1.2cc/minに調整した空気をバンドルの一方向から12時間通風することにより、乾燥処理を行った。
乾燥後の中空糸膜の水分率は0.9wt%であり、上記実施例と同様にUVを測定したところ、0.13であった。
【0027】
(実施例2)
紡糸原液として、ポリスルホン(アモコ社製P−3500)18wt%、ジメチルアセトアミド71.0wt%、ポリビニルピロリドン(BASF社製K90)9.0wt%、水2.0wt%を50℃にて混合溶解したものを用いた。得られた紡糸原液と芯液として60wt%のジメチルアセトアミド水溶液を2重管構造の紡糸用口金から垂直下方に向け同時に吐出した。
この紡糸原液は700mmの乾式部を通過後、凝固浴、水洗浴を経て、湿潤状態のまま、かせによって巻き取られた。巻き取られた中空糸膜10100本の束をポリエチレンフィルムで包装し、長さ方向と垂直に切断することにより、外径35mm、長さ280mmのバンドル(中空糸膜の束)とした。
得られたバンドルを乾燥装置にセットし、温度60℃、流量を中空糸膜1本当り2.5cc/minに調整した純窒素をバンドルの一方向から8時間通風することにより、乾燥処理を行った。
乾燥後の中空糸膜の水分率は0.8wt%であり、透析型人工腎臓装置承認基準試験に従い、浴比100で70℃、1時間抽出後の溶出物紫外吸光度(以下、UVと表記)は0.07であった。
【0028】
(実施例3)
実施例1と同様の方法にて湿潤中空糸膜束を得た。得られた10100本の中空糸膜束をポリエチレンフィルムで包装し、長さ方向と垂直に切断することにより、外径35mm、長さ280mmのバンドル(中空糸膜の束)とした。
得られたバンドルを乾燥装置にセットし、装置を密閉した後、温度を80℃、流量を中空糸膜1本当り4.0cc/minに調整した純窒素を一方向から6時間通風することにより、乾燥処理を行った。
乾燥後の中空糸膜の水分率は0.4wt%であり、透析型人工腎臓装置承認基準試験に従い、浴比100で70℃、1時間抽出後の溶出物紫外吸光度(以下、UVと表記)は0.07であった。
【0029】
(比較例2)
実施例1と同様の方法により製造した湿潤状態の中空糸バンドルを乾燥装置にセットし、装置を密閉した後、温度を140℃、窒素ガス流量を中空糸膜1本当り1.2cc/minに調整した空気をバンドルの一方向から8時間通風することにより、乾燥処理を行った。
乾燥後の中空糸膜の水分率は0.5wt%であり、上記実施例と同様にUVを測定したところ、0.21であった。
【0030】
実施例と比較例の結果をあわせて表1に示す。
【表1】

Figure 2004353142
【0031】
【発明の効果】
本発明によれば、中空糸膜が、特に耐熱性や耐酸化性が低いPVPを含有するポリスルホン系膜であっても、乾燥時のPVPの分解や溶出を低減することができ、UVの上昇を大きく抑制することができる。また、これにより、従来よりも乾燥温度を高く設定でき、乾燥時間の短縮が可能となり、簡便かつ効率的な乾燥処理を実施できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for drying a hollow fiber membrane used as an artificial organ for blood purification or the like.
[0002]
[Prior art]
Generally, the hollow fiber membrane after membrane formation and washing needs to be subjected to a drying treatment in order to facilitate subsequent handling. Therefore, as a method of drying the wet hollow fiber membrane after such film formation and washing, a method of passing the inside of the drying tower during spinning, or a method of passing a bundle of an appropriate length after spinning in a dryer as a bundle. The method of making it widely used is adopted. Conventionally, air is used as a dry carrier gas in this type of drying treatment, and moisture is removed and dried by bringing the hollow fiber membrane into contact with air.
[0003]
For example, there is disclosed a method of drying a hollow fiber membrane by inserting a bundle of trimmed hollow fiber membranes into a ventilation tube and aerating drying air (for example, see Patent Document 1). However, in this method, since air containing oxygen is used as a drying carrier gas, there is a possibility that the oxidation of the film is accelerated during the drying process, and as a result, the hollow fiber obtained by the drying treatment is obtained. The membrane was affected by oxidative decomposition, which could cause serious practical problems such as elution of the hydrophilic polymer and a decrease in the strength of the membrane itself.
[0004]
As a method of increasing the drying efficiency, for example, by irradiating the hollow fiber membrane with microwaves and performing a wet heat treatment with water vapor, a large amount of the hollow fiber membrane is dried without denaturation or collapse of the hollow fiber membrane. There is disclosed a technique for causing the above to occur (see, for example, Patent Document 2). With this method, sufficient effects can be obtained in a short time, but complicated devices are required not only for microwave control but also for high-temperature steam output control and safety management, and the cost for drying treatment is increased. Inevitable.
[0005]
In addition, as a method for suppressing elution of a hydrophilic polymer, a method for suppressing the amount of elution into water or hot water has been proposed so far, but only a low molecular weight substance which easily falls off from the hollow fiber membrane is purified and removed. Thus, a method of suppressing the amount of elution in a 40% aqueous ethanol solution, which is an index of the amount of elution into blood or plasma, is disclosed (for example, see Patent Document 3). However, there are many industrial disadvantages such as the necessity of purifying a hydrophilic polymer by a reprecipitation method.
[0006]
[Patent Document 1]
Japanese Patent No. 3219445 (pages 1 to 2)
[Patent Document 2]
JP-A-11-332980 (pages 1 to 4)
[Patent Document 3]
JP-A-2000-300663 (pages 2 to 4)
[0007]
[Problems to be solved by the invention]
When drying a membrane having low heat resistance and oxidation resistance, particularly a polysulfone-based membrane containing polyvinylpyrrolidone (hereinafter referred to as PVP), which is a hydrophilic polymer, the decomposition of PVP during drying is suppressed, so that blood treatment is performed. It is an object of the present invention to provide a hollow fiber membrane with little generation of eluted substances in a simple and efficient manner.
[0008]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, the present inventors have found that oxygen present in a dry atmosphere oxidizes and decomposes PVP contained in a hollow fiber membrane, and arrived at the present invention. That is, the present invention is as follows.
(1) A method for drying a hollow fiber membrane in a wet state after film formation and washing, wherein a gas having an oxygen concentration of less than 10 vol% is used as a dry carrier gas.
(2) The method for drying a hollow fiber membrane according to (1), wherein the flow rate of the dry carrier gas is 0.5 to 10.0 cc / min per hollow fiber membrane.
(3) The method for drying a hollow fiber membrane according to (1) or (2), wherein the drying temperature is 40 ° C. or higher.
[0009]
According to the present invention, even if the hollow fiber membrane to be dried contains PVP, the risk of decomposition and elution can be reduced, so that the drying temperature can be set higher than before, and the drying time can be reduced. Shortening is possible.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for drying a hollow fiber membrane in a wet state after film formation and washing, wherein a gas having an oxygen concentration of less than 10 vol% is used as a dry carrier gas.
[0011]
As a result of investigation, it has been found that the above problem can be solved by using a gas having an oxygen concentration of less than 10 vol% as a dry carrier gas. This is presumably because the decomposition of PVP and the like can be suppressed even when the drying temperature is set high by lowering the concentration of oxygen that causes heat and oxidative decomposition.
[0012]
In the present invention, the oxygen concentration of the dry carrier gas is less than 10 vol%. If the content is 10 vol% or more, it may not be possible to suppress the decomposition effect of oxygen. Further, the lower the oxygen concentration, the greater the effect of suppressing the decomposition action by oxygen, so that it is preferably less than 5 vol%, more preferably less than 1 vol%.
[0013]
As for the gas used as the dry carrier gas, other components are not particularly limited as long as the oxygen concentration is less than 10 vol%, but preferred types of gas include non-flammable, non-flammable nitrogen, carbon dioxide, and argon. And an inert gas such as helium, but nitrogen and carbon dioxide are more preferable in terms of cost, and nitrogen is particularly preferable in terms of handleability and availability.
[0014]
The material of the hollow fiber membrane is not particularly limited, but includes cellulose, cellulose acetate, polymethyl methacrylate, ethylene vinyl alcohol copolymer, polysulfone, polyether sulfone, polyamide, etc., and PVP having low heat resistance and low oxidation resistance. The contained hollow fiber membrane has a high effect of the present invention, and a hollow fiber membrane composed of PVP and a polysulfone-based polymer such as polysulfone or polyethersulfone or a polyamide can be suitably used.
[0015]
The use of the hollow fiber membrane of the present invention is not particularly limited, and examples thereof include ultrafiltration (UF) and a filter for removing bacteria and fine particles. As a hollow fiber membrane used for purification, it can be particularly suitably used for a hemodialysis membrane, a blood filtration membrane, a hemodiafiltration membrane, and a plasma separation membrane.
[0016]
The inner diameter of the hollow fiber membrane to which the present invention is applied is not particularly limited, but is preferably 50 to 5000 μm. When the inner diameter is less than 50 μm, the dry carrier gas is difficult to enter the hollow portion, and the drying time may not be reduced. The thickness of the hollow fiber membrane is not particularly limited, and a thickness of 10 to 300 μm is preferable because the effects of the present invention can be easily obtained.
[0017]
The drying method of the present invention is not particularly limited. For example, the hollow fiber membrane running during spinning may be passed through a drying tower under a nitrogen atmosphere having an oxygen concentration of less than 10 vol%, or the atmosphere in the ventilation dryer may be changed to nitrogen. Or blowing nitrogen into the bundle-shaped hollow fiber membrane. When drying the bundle-shaped hollow fiber membrane, it is preferable to devise so that the dry carrier gas enters the hollow portion in order to shorten the drying time.
[0018]
The drying temperature is not particularly limited. However, by lowering the oxygen concentration, deterioration due to oxidation during drying can be suppressed, so that the drying temperature can be higher than when air is used as the carrier gas. It is preferable to set the temperature higher than the room temperature because the drying time can be shortened, and it is particularly preferable to set the temperature to 40 ° C. or higher. However, if it is set too high, the performance and quality of the hollow fiber membrane may be adversely affected due to decomposition, deterioration, and alteration. Although it depends on the material of the hollow fiber membrane, for example, in the case of a hollow fiber membrane containing PVP, it is necessary to set the temperature to 130 ° C. or less at which PVP starts to decompose, and preferably 120 ° C. or less. In addition, it is preferable to provide a heating device and a temperature control device in order to match the quality between drying lots.
[0019]
Although the flow rate of the dry carrier gas is not particularly limited, it is desirable to adjust the flow rate according to the form, strength, weight, and moisture content of the hollow fiber membrane to be dried. However, it is preferable to keep it constant. However, if the flow rate is too large, it is not preferable because it harms the performance, quality, and shape of the hollow fiber membrane. Conversely, if the flow rate is too low, the drying efficiency decreases, and the drying process takes a long time, which is not preferable. . Although it depends on the form of drying, for example, when ventilating the inside of the bundled hollow fiber, the flow rate is preferably 0.5 cc / min to 10 cc / min per hollow fiber.
[0020]
The moisture content of the hollow fiber membrane obtained by the drying method of the present invention after drying is preferably 10% by weight or less, particularly preferably 5% by weight or less. If the moisture content is high, poor adhesion such as foaming of resin may occur at the time of manufacturing the hollow fiber membrane module.
[0021]
When the present invention is used for drying hollow fiber membranes containing PVP, the ultraviolet absorbance of the eluate in the dialysis type artificial kidney approval standard test is preferably 0.3 or less, and especially when it is used as a medical dialysis membrane. It must be 1 or less.
[0022]
(Measurement method of eluate by dialysis type artificial kidney approval standard test)
The hollow fiber membrane is arbitrarily taken out of the hollow fiber membrane bundle, and 1 g is weighed in a dry state. 100 mL of RO water is added thereto, and extraction is performed at 70 ° C. for 1 hour. The maximum absorbance at 220 to 350 nm of the obtained extract is measured.
[0023]
(Method of measuring moisture content of hollow fiber membrane)
The moisture content of the hollow fiber membrane is calculated by the following equation.
Moisture% = 100 × (Ww−Wd) / Ww
Here, Ww is the weight (g) of the hollow fiber membrane, and Wd is the weight (g) of the hollow fiber membrane after drying in a dry heat oven at 120 ° C. for 2 hours (after absolute drying). Here, by setting Ww to be in the range of 1 to 2 g, a completely dry state (no further weight change) can be obtained after 2 hours.
[0024]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to Examples.
[0025]
(Example 1)
As a spinning solution, 18 wt% of polyether sulfone (Sumika Excel 4800P manufactured by Sumitomo Chemical Co., Ltd.), 75.5 wt% of dimethylacetamide, 3.5 wt% of polyvinylpyrrolidone (manufactured by BASF), and 3.0 wt% of water were mixed at 50 ° C. The dissolved one was used. The obtained spinning dope was discharged vertically downward from a spinneret having a double tube structure. At the same time, a 50 wt% aqueous solution of dimethylacetamide was supplied to the inner tube to form a hollow fiber membrane.
This hollow fiber membrane was passed through a 50 mm steam atmosphere, then passed through a coagulation bath and a washing bath, and wound up in a wet state by a skein. A bundle of 10100 wound hollow fiber membranes was wrapped with a polyethylene film and cut perpendicular to the length direction to form a bundle (a bundle of hollow fiber membranes) having an outer diameter of 35 mm and a length of 280 mm.
The obtained bundle is set in a drying device, and after the device is closed, pure nitrogen adjusted to a temperature of 40 ° C. and a flow rate of 1.2 cc / min per hollow fiber membrane is passed through one direction of the bundle for 12 hours. As a result, a drying process was performed.
The moisture content of the hollow fiber membrane after drying is 0.6 wt%, and the ultraviolet absorption (hereinafter, referred to as UV) of the eluate after extraction for 1 hour at 70 ° C. at a bath ratio of 100 according to the dialysis type artificial kidney apparatus approval standard test. Was 0.05.
[0026]
(Comparative Example 1)
The bundle obtained by the method described in Example 1 was set in a drying device, the device was sealed, and air adjusted to a temperature of 40 ° C. and a flow rate of 1.2 cc / min per hollow fiber membrane was bundled. The drying process was performed by ventilating from one direction for 12 hours.
The water content of the dried hollow fiber membrane was 0.9 wt%, and the UV was measured in the same manner as in the above example. As a result, it was 0.13.
[0027]
(Example 2)
18 wt% of polysulfone (P-3500 manufactured by Amoco), 71.0 wt% of dimethylacetamide, 9.0 wt% of polyvinylpyrrolidone (K90 manufactured by BASF), and 2.0 wt% of water mixed and dissolved at 50 ° C. as a spinning solution. Was used. The obtained spinning dope and a 60 wt% aqueous solution of dimethylacetamide as a core liquid were simultaneously discharged vertically downward from a spinneret having a double-tube structure.
After passing through a dry section of 700 mm, this spinning stock solution was passed through a coagulation bath and a washing bath, and was wound up by a skein in a wet state. A bundle of 10100 wound hollow fiber membranes was wrapped with a polyethylene film and cut perpendicular to the length direction to form a bundle (a bundle of hollow fiber membranes) having an outer diameter of 35 mm and a length of 280 mm.
The obtained bundle is set in a drying apparatus, and a drying treatment is performed by passing pure nitrogen having a temperature of 60 ° C. and a flow rate adjusted to 2.5 cc / min per hollow fiber membrane from one direction of the bundle for 8 hours. Was.
The moisture content of the hollow fiber membrane after drying is 0.8 wt%, and according to the dialysis type artificial kidney apparatus approval standard test, the eluate UV absorption after extraction at 70 ° C. for 1 hour at a bath ratio of 100 (hereinafter, referred to as UV) Was 0.07.
[0028]
(Example 3)
A wet hollow fiber membrane bundle was obtained in the same manner as in Example 1. The obtained 10,100 hollow fiber membrane bundles were wrapped with a polyethylene film and cut perpendicularly to the length direction to form a bundle (a bundle of hollow fiber membranes) having an outer diameter of 35 mm and a length of 280 mm.
The obtained bundle was set in a drying apparatus, and after the apparatus was sealed, pure nitrogen adjusted to a temperature of 80 ° C. and a flow rate of 4.0 cc / min per hollow fiber membrane was blown from one direction for 6 hours. And a drying treatment.
The moisture content of the dried hollow fiber membrane is 0.4 wt%, and the eluate UV absorbance (hereinafter referred to as UV) after extraction at 70 ° C. for 1 hour at a bath ratio of 100 in accordance with the dialysis type artificial kidney apparatus approval standard test. Was 0.07.
[0029]
(Comparative Example 2)
The hollow fiber bundle in a wet state produced by the same method as in Example 1 was set in a drying device, and after the device was closed, the temperature was set to 140 ° C. and the nitrogen gas flow rate was set to 1.2 cc / min per hollow fiber membrane. Drying was performed by passing the adjusted air through one direction of the bundle for 8 hours.
The moisture content of the dried hollow fiber membrane was 0.5% by weight, and the UV was measured in the same manner as in the above example.
[0030]
Table 1 shows the results of Examples and Comparative Examples.
[Table 1]
Figure 2004353142
[0031]
【The invention's effect】
According to the present invention, even if the hollow fiber membrane is a polysulfone-based membrane containing PVP having particularly low heat resistance and low oxidation resistance, decomposition and elution of PVP during drying can be reduced, and UV rise Can be greatly suppressed. In addition, this makes it possible to set the drying temperature higher than in the past, shorten the drying time, and perform a simple and efficient drying process.

Claims (3)

製膜、洗浄後の、湿潤状態の中空糸膜の乾燥処理において、乾燥キャリアガスとして酸素濃度が10vol%未満の気体を用いることを特徴とする中空糸膜の乾燥処理方法。A method for drying a hollow fiber membrane, comprising using a gas having an oxygen concentration of less than 10 vol% as a dry carrier gas in the drying of the wet hollow fiber membrane after film formation and washing. 前記乾燥キャリアガスの流量が中空糸膜1本あたり0.5〜10.0cc/minである請求項1記載の中空糸膜の乾燥処理方法。The method for drying a hollow fiber membrane according to claim 1, wherein the flow rate of the dry carrier gas is 0.5 to 10.0 cc / min per one hollow fiber membrane. 乾燥温度が40℃以上である請求項1または2記載の中空糸膜の乾燥処理方法。The method for drying a hollow fiber membrane according to claim 1 or 2, wherein the drying temperature is 40 ° C or higher.
JP2003154852A 2003-05-30 2003-05-30 Treatment method for drying hollow fiber membrane Pending JP2004353142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154852A JP2004353142A (en) 2003-05-30 2003-05-30 Treatment method for drying hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154852A JP2004353142A (en) 2003-05-30 2003-05-30 Treatment method for drying hollow fiber membrane

Publications (1)

Publication Number Publication Date
JP2004353142A true JP2004353142A (en) 2004-12-16

Family

ID=34049396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154852A Pending JP2004353142A (en) 2003-05-30 2003-05-30 Treatment method for drying hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2004353142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149044A (en) * 2008-12-25 2010-07-08 Mitsubishi Rayon Co Ltd Method of manufacturing hollow fiber membrane and dryer for hollow fiber membrane
US9151538B2 (en) 2010-07-07 2015-10-06 Mitsubishi Rayon Co., Ltd. Drying device and drying method for hollow fiber membranes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149044A (en) * 2008-12-25 2010-07-08 Mitsubishi Rayon Co Ltd Method of manufacturing hollow fiber membrane and dryer for hollow fiber membrane
US9151538B2 (en) 2010-07-07 2015-10-06 Mitsubishi Rayon Co., Ltd. Drying device and drying method for hollow fiber membranes

Similar Documents

Publication Publication Date Title
JP3097149B2 (en) Medical dialysis module and method of manufacturing the same
KR102144703B1 (en) Hollow-fiber membrane module, process for producing hollow-fiber membrane, and process for producing hollow-fiber membrane module
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
JP6538058B2 (en) Permselective asymmetric membrane
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
RU2648027C1 (en) Hollow fiber membrane blood purification device
CA2921827C (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
EP3141296A1 (en) Hollow fiber membrane module and manufacturing method thereof
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP3928910B2 (en) Polysulfone blood treatment module
US5641450A (en) Process of making a module including a polysulphonic hollow fiber membrane
JP2000135421A (en) Polysulfone-base blood purifying membrane
JP2004353142A (en) Treatment method for drying hollow fiber membrane
JP6558063B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP2003175320A (en) Method for manufacturing hollow fiber membrane
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP3992186B2 (en) Method for producing hollow fiber membrane
JP2001038170A (en) Hollow fiber membrane
JP3659256B1 (en) Polysulfone-based permselective hollow fiber membrane bundle and drying method thereof
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP4748350B2 (en) Method for producing polysulfone-based hollow fiber membrane
JP4748348B2 (en) Polysulfone-based permselective hollow fiber membrane bundle
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane