JPH11223580A - Analytical method for strength of structure - Google Patents

Analytical method for strength of structure

Info

Publication number
JPH11223580A
JPH11223580A JP2472998A JP2472998A JPH11223580A JP H11223580 A JPH11223580 A JP H11223580A JP 2472998 A JP2472998 A JP 2472998A JP 2472998 A JP2472998 A JP 2472998A JP H11223580 A JPH11223580 A JP H11223580A
Authority
JP
Japan
Prior art keywords
hardness
measured
strength
thickness
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2472998A
Other languages
Japanese (ja)
Other versions
JP3609600B2 (en
Inventor
Yoshiaki Nakazawa
嘉明 中澤
Masaki Ueno
正樹 上野
Seiichi Ando
誠一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Nippon Steel Corp
Original Assignee
Mazda Motor Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Sumitomo Metal Industries Ltd filed Critical Mazda Motor Corp
Priority to JP02472998A priority Critical patent/JP3609600B2/en
Publication of JPH11223580A publication Critical patent/JPH11223580A/en
Application granted granted Critical
Publication of JP3609600B2 publication Critical patent/JP3609600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an analytical method in which the strength of a structure can be analyzed surely and easily by taking into consideration a change in a material due to a working operation by referring to the previously found relationship between the strain amount and the hardness in every part of the measured structure according to the measured hardness in every part of the structure. SOLUTION: Regarding a material whose kind is identical to that of a material constituting a structure, the relationship between its strain amount and its hardness is found in advance. Then, the hardness in every part of the structure is measured, the strain amount in every part of the structure is estimated by referring to the previously found relationship between the strain amount and the hardness according to the measured hardness. On the basis of the estimated strain amount, the thickness of the material in every part of the structure is computed, and the strength of the structure is analyzed on the basis of the computed thickness of the material. For example, the cross section of a front-side frame for an automobile is divided into nine regions in its planes and its corner parts, the mean value in every region is computed regarding Vickers hardness measured values which are measured at intervals of about 5 mm in the circumferential direction of the cross section. The Vickers hardness measured values indicate higher measured values the harder the material is.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造体の強度解析
方法に関し、例えば、自動車等の車両を構成する構造体
としての各種部材の強度解析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of analyzing the strength of a structure, for example, a method of analyzing the strength of various members as a structure constituting a vehicle such as an automobile.

【0002】[0002]

【従来の技術】従来より、例えば、自動車等の車両の設
計・解析においては、コンピュータシミュレーション等
により、その車両の衝突や強度等に対する各種性能が解
析されている。また、本願出願人は、車両の強度解析技
術の一例として、例えば特許法30条第1項の規定の適
用を受けて特願平9−263294号を提案している。
2. Description of the Related Art Conventionally, in the design and analysis of a vehicle such as an automobile, for example, various performances such as a collision and strength of the vehicle are analyzed by computer simulation or the like. Further, the applicant of the present application has proposed Japanese Patent Application No. 9-263294 as an example of a vehicle strength analysis technique under the application of the provisions of Article 30, Paragraph 1 of the Patent Act, for example.

【0003】このような車両の強度解析技術において
は、実際の材料特性に可能な限り近いパラメータを使用
することが、正確な解析を行う上で重要となる。
In such a vehicle strength analysis technique, it is important to use parameters as close as possible to actual material characteristics in order to perform an accurate analysis.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実際に
製造する構造体(被加工物)は、プレス加工等により成
形されることにより、原材料が単一材料(素材)であっ
ても部位によって材料特性や材料の厚さが様々に変化し
ている。
However, the structure (workpiece) to be actually manufactured is formed by press working or the like, so that even if the raw material is a single material (raw material), the material characteristics depend on the part. And the thickness of the material varies in various ways.

【0005】図1は、一般的なプレス加工及びその加工
による鋼板の変形を示す図である。車体部品の多くは、
同図に示すようなプレス加工によって成形される。その
際、素材である鋼板には、加工硬化や板厚変化が発生
し、単一材料であっても部位によって材料特性や板厚が
異なった状態となる。
[0005] FIG. 1 is a diagram showing a general press working and deformation of a steel plate by the working. Many of the body parts are
It is formed by press working as shown in FIG. At that time, work hardening and a change in the thickness of the steel sheet as a raw material occur, and even if the material is a single material, the material properties and the thickness of the steel sheet are different depending on parts.

【0006】そこで従来は、解析の対象となる構造物か
ら、JIS(日本工業規格)5号試験片に見られるよう
な試験片を切り出し、その試験片を使用して引張り試験
等の材料試験を行うことより、解析に使用するパラメー
タを入手している。
Therefore, conventionally, a test piece such as a JIS (Japanese Industrial Standard) No. 5 test piece is cut out from a structure to be analyzed, and a material test such as a tensile test is performed using the test piece. By doing so, the parameters used for analysis are obtained.

【0007】しかしながら、上記の試験片を切り出すた
めには、ある程度の広さを持った平面部が必要であり、
例えば、衝突圧潰特性に寄与が大きいとされる部材綾線
部のように、面積が小さかったり、曲率が大きい箇所に
おいては、材料特性の把握が困難である。
[0007] However, in order to cut out the test piece, a flat part having a certain width is required.
For example, it is difficult to grasp the material properties in a place where the area is small or the curvature is large, such as a member twill line portion that is considered to have a large contribution to the collision crushing property.

【0008】また、解析対象となる構造物の多くの箇所
から試験片を切り出し、引張り試験を実施するには多く
の時間を必要とするため、正確な解析業務を行おうとす
るほど、コンピュータによって実際に解析を行うまでの
リードタイムの長さが問題となる。
[0008] Further, since it takes a lot of time to cut out test specimens from many parts of a structure to be analyzed and to carry out a tensile test, the more accurate analysis work is performed, the more the computer is used. The length of the lead time until the analysis is performed becomes a problem.

【0009】そこで本発明は、加工による材料の変化を
考慮し、強度解析を正確且つ容易に行う構造体の強度解
析方法の提供を目的とする。
Accordingly, an object of the present invention is to provide a method for analyzing the strength of a structure which accurately and easily performs a strength analysis in consideration of a change in material due to processing.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る構造体の強度解析方法は、以下の構成
を特徴とする。
In order to achieve the above object, a structural strength analysis method according to the present invention is characterized by the following constitution.

【0011】即ち、加工により成形された構造体の強度
解析方法であって、前記構造体を構成する材料と同じ種
類の材料について、予め歪み量と硬度との関係を求め、
前記構造体の各部の硬度を計測し、その計測した硬度に
応じて前記歪み量と硬度との関係を参照することによ
り、前記構造体の各部の歪み量を推定し、その推定した
歪み量に基づいて、前記構造体の各部における材料の厚
さを算出し、その算出した材料の厚さに基づいて、前記
構造体の強度を解析することを特徴とする。これによ
り、加工による材料の変化を考慮し、正確且つ容易に構
造体の強度解析を行う。
That is, in a method for analyzing the strength of a structure formed by processing, a relationship between the amount of strain and hardness is determined in advance for a material of the same type as a material constituting the structure.
The hardness of each part of the structure is measured, and by referring to the relationship between the strain and the hardness according to the measured hardness, the strain of each part of the structure is estimated, and the estimated strain is calculated. The thickness of the material in each part of the structure is calculated based on the calculated thickness of the material, and the strength of the structure is analyzed based on the calculated thickness of the material. Thus, the strength analysis of the structure is accurately and easily performed in consideration of the change in the material due to the processing.

【0012】また、例えば、前記構造体の強度を解析す
るに際して、更に、所定材料の応力・歪み特性を、前記
推定した前記構造体の各部の歪み量に応じて変更した特
性を用いることにより、更に解析精度をする。
Further, for example, when analyzing the strength of the structure, by further using a characteristic obtained by changing the stress / strain characteristic of the predetermined material in accordance with the estimated strain amount of each part of the structure, Further increase the analysis accuracy.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る構造体の強度
解析方法の一実施形態を、図面を参照して詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for analyzing the strength of a structure according to the present invention will be described below in detail with reference to the drawings.

【0014】本実施形態では、構造体の一例として、正
面衝突時の主要なエネルギー吸収部材であるところの自
動車のフロントサイドフレームを対象として、生産加工
段階で発生する加工硬化及び板厚変化を推定し、その推
定した加工硬化及び板厚変化が、部材(フロントサイド
フレーム)の衝突圧潰特性に与える影響を計算解析手法
を用いて分析する。
In the present embodiment, as an example of a structure, a work hardening and a change in sheet thickness occurring in a production processing stage are estimated for a front side frame of an automobile, which is a main energy absorbing member at the time of a frontal collision. Then, the influence of the estimated work hardening and the change in plate thickness on the impact crushing characteristics of the member (front side frame) is analyzed using a calculation analysis method.

【0015】はじめに、検討対象であるフロントサイド
フレームについて説明する。
First, the front side frame to be studied will be described.

【0016】図2は、検討対象であるフロントサイドフ
レームの全体を示す斜視図である。同図に示すフロント
サイドフレームは、プレス加工で製作した試作品であ
り、フレーム先端部付近に衝突時の変形挙動を安定化さ
せるためのビードがあるのが特徴である。本実施形態で
は、一例として、当該フロントサイドフレーム(以下、
フレームと称する)の材質を、図3に示した何れも板厚
1.6mmの3種類の鋼板(TRIP,SAPH400,SPHC)にて
製作した。
FIG. 2 is a perspective view showing the entire front side frame to be examined. The front side frame shown in the figure is a prototype manufactured by press working, and is characterized by having a bead near the end of the frame for stabilizing the deformation behavior at the time of collision. In the present embodiment, as an example, the front side frame (hereinafter, referred to as the front side frame)
3 were manufactured from three types of steel plates (TRIP, SAPH400, SPHC) each having a thickness of 1.6 mm shown in FIG.

【0017】<ステップ1:ビッカース硬さ分布の計測
>成型時に部材に生じる歪み量を調べる方法としては、
スクライブドサークル法がよく使われているが、この手
法では角部のような局所的な歪み量を調べることができ
ない。そこで、本実施形態では、フレームの複数の断面
におけるビッカース硬さの分布を計測し、その計測値に
基づいて部材各部に生じる材料特性変化及び板厚変化を
推定する。
<Step 1: Measurement of Vickers Hardness Distribution> As a method of examining the amount of strain generated in a member during molding,
Although the scribed circle method is often used, this method cannot examine a local distortion amount such as a corner. Thus, in the present embodiment, the distribution of Vickers hardness in a plurality of cross sections of the frame is measured, and a change in material properties and a change in plate thickness occurring in each part of the member are estimated based on the measured values.

【0018】ビッカース硬さの分布の計測箇所として
は、図2に矢印で示したように、フレームのビード部及
び基本断面部を選び、断面周方向に約5mm間隔で計測
する。
As shown by arrows in FIG. 2, the measurement of the distribution of Vickers hardness is performed by selecting a bead portion and a basic cross-sectional portion of the frame, and measuring at intervals of about 5 mm in the cross-sectional circumferential direction.

【0019】次に、図4に示すように、フレーム断面を
平面部と角部とでからの9領域に分割し、断面周方
向に約5mm間隔で計測したビッカース硬さの計測値
を、該領域毎に平均値を算出する。この結果を、図5か
ら図7に材質毎に示す。
Next, as shown in FIG. 4, the frame cross section was divided into nine regions consisting of a plane portion and a corner portion, and the measured values of Vickers hardness measured at intervals of about 5 mm in the cross section circumferential direction were obtained. An average value is calculated for each area. The results are shown in FIGS. 5 to 7 for each material.

【0020】図5から図7は、本発明の一実施形態とし
てのフレーム断面領域毎のビッカース硬さ分布を示す図
である。
FIG. 5 to FIG. 7 are diagrams showing Vickers hardness distribution for each frame cross-sectional area as one embodiment of the present invention.

【0021】同図から判るように、ビッカース硬さは、
高強度材ほど高い計測値を示している。また、断面部に
おけるビッカース硬さは、何れの材質も同様な分布であ
り、フレーム垂直面()と比較して角部(,,
,)及び水平面(,)の硬度が高く、これらの
部位により多くの加工硬化が生じていることが判る。
As can be seen from the figure, the Vickers hardness is
Higher strength materials show higher measured values. In addition, the Vickers hardness in the cross section has the same distribution for all the materials, and the corners (,,,
,) And the horizontal planes (,) have high hardness, indicating that more work hardening occurs at these sites.

【0022】また、最も母材硬度に近いと思われる垂直
面の硬度を基準として、各材質の硬度増加率を比較する
と、C材(SPH)のビッカース硬さが最も高く、角部で
33%、水平面で27%の硬度増加が見られる。次に硬
さ増加率が大きいのはA材(TRIP)であり、B材(SAPH
400)が最も小さい結果となった。
When the hardness increase rates of the respective materials are compared based on the hardness of the vertical surface which is considered to be closest to the base material hardness, the Vickers hardness of the C material (SPH) is the highest, and 33% at the corner. And a 27% increase in hardness in the horizontal plane. The material with the next largest increase in hardness is material A (TRIP) and material B (SAPH).
400) was the smallest result.

【0023】以上、ステップ1では、フレーム断面の各
部のビッカース硬さの分布を計測した。
As described above, in step 1, the distribution of Vickers hardness of each part of the frame cross section was measured.

【0024】<ステップ2:材料特性変化の推定>次
に、ステップ1で計測した各材料のビッカース硬さ分布
に基づいて、フレーム各部に生じている塑性変形量を推
定する。
<Step 2: Estimation of Material Property Change> Next, based on the Vickers hardness distribution of each material measured in Step 1, the amount of plastic deformation occurring in each part of the frame is estimated.

【0025】具体的には、塑性変形量を推定に先立っ
て、まず、JIS5号試験片を用いて、歪み量の異なる
引っ張り試験を行い、その試験により生じた各歪み量に
応じて評点間のビッカース硬さがどのように変化するか
を計測し、塑性歪みとビッカース硬さとの関係を調べ
た。
Specifically, prior to estimating the amount of plastic deformation, first, a tensile test with a different amount of strain was performed using a JIS No. 5 test piece, and a score between scores was determined in accordance with each amount of strain generated by the test. The change in Vickers hardness was measured, and the relationship between plastic strain and Vickers hardness was examined.

【0026】図8は、本発明の一実施形態としての各材
質の塑性歪みとビッカース硬さとの関係を示す図であ
る。同図に示すように、高強度の材質ほどビッカース硬
さも高い値を示しており、また、何れの材質も塑性歪み
の増加に伴ってビッカース硬さが増加する傾向が見られ
る。ビッカース硬さは、歪みの小さい領域で急激に増加
するが、その歪みの増加に伴って、ビッカース硬さの増
加の傾きが緩やかになっている。また、歪み0時の硬度
を規準にビッカース硬さの増加率を比較すると、A材及
びC材が大きく、逆にB材が小さい傾向が見られる。
FIG. 8 is a diagram showing the relationship between the plastic strain of each material and Vickers hardness as one embodiment of the present invention. As shown in the figure, the higher the strength of the material, the higher the value of Vickers hardness, and any material tends to increase in Vickers hardness with an increase in plastic strain. The Vickers hardness sharply increases in a region where the distortion is small, but with the increase in the distortion, the inclination of the increase in the Vickers hardness becomes gentle. Further, when comparing the increase rates of Vickers hardness based on the hardness at the time of zero strain, there is a tendency that the A material and the C material are large and the B material is small.

【0027】上述した各材質の塑性歪みとビッカース硬
さとの関係(図8)は、予めコンピュータの記憶装置等
に、参照可能なデータベースとして格納しておけばよ
い。
The relationship between the plastic strain and Vickers hardness of each material described above (FIG. 8) may be stored in a storage device of a computer or the like in advance as a referenceable database.

【0028】次に、上記の各材質の塑性歪みとビッカー
ス硬さとの関係を用いて、ビッカース硬さ分布から部材
各部の塑性歪み(塑性変形量)を、材質Aの材料につい
て推定した結果を図9に示す。図9において、塑性歪み
は、ビッカース硬さと同様に、垂直面で低く、角部(特
にフランジ付け根部分)及び水平面において高い値を示
している。角部の歪みが高いことは容易に想像できる
が、水平面でも略同程度の塑性歪みが発生していること
が判る。また、塑性歪みは、垂直面で1〜2%程度、角
部(フランジ付け根)及び水平面で10%程度と推定さ
れる。
Next, using the above relationship between the plastic strain of each material and the Vickers hardness, the results of estimating the plastic strain (the amount of plastic deformation) of each part of the member from the Vickers hardness distribution for the material A are shown. It is shown in FIG. In FIG. 9, similar to the Vickers hardness, the plastic strain shows a low value in the vertical plane and a high value in the corners (particularly at the root of the flange) and in the horizontal plane. It is easy to imagine that the distortion of the corners is high, but it can be seen that approximately the same degree of plastic distortion occurs in the horizontal plane. The plastic strain is estimated to be about 1 to 2% on the vertical plane, and about 10% on the corner (flange root) and the horizontal plane.

【0029】以上、ステップ2では、ステップ1で計測
したビッカース硬さの分布に基づいて、部材各部に生じ
ている材料特性変化として、塑性歪みを推定した。この
塑性歪みは、加工硬化に相当する。
As described above, in step 2, based on the Vickers hardness distribution measured in step 1, plastic strain was estimated as a change in material properties occurring in each part of the member. This plastic strain corresponds to work hardening.

【0030】<ステップ3:板厚変化の推定>次に、材
料の板厚の変化については、ビッカース硬さ分布から推
定した部材各部の塑性歪み(図9)に基づいて、以下の
ような手法で推定する。本実施形態では、図10に示す
a×b、板厚tの板の引っ張り動作を考える。
<Step 3: Estimation of Change in Sheet Thickness> Next, the change in the sheet thickness of the material is determined by the following method based on the plastic strain (FIG. 9) of each part estimated from the Vickers hardness distribution. Estimate by In the present embodiment, a pulling operation of a plate having an a × b thickness t shown in FIG. 10 is considered.

【0031】塑性歪みをεp、ポアソン比をνとする
と、長さaは(1+εp)×a、長さbは(1−νεp)
×bと置くことができる。
If the plastic strain is εp and the Poisson's ratio is ν, the length a is (1 + εp) × a and the length b is (1−νεp)
× b.

【0032】引っ張り動作の前後で鋼板の体積が変化し
ないとすると、変形後の板厚t’は以下の式で与えられ
る。
Assuming that the volume of the steel sheet does not change before and after the pulling operation, the thickness t ′ after deformation is given by the following equation.

【0033】 t’=t/{(1+εp)×(1−νεp)} ・・・・・・・・(1) 上記の(1)式に基づいて、材質Aの材料について算出
した板厚分布の推定結果を図11に示す。同図から判る
ように、フレームの角部や水平面のように、塑性歪みの
大きい箇所ほど板厚減少が大きくなっている。また、●
印は、実際にフレームを切断して計測した実測値であ
り、これらの実測値は、(1)によって塑性歪みから推
定した値と略一致しており、本推定法が妥当であること
が判る。
T ′ = t / {(1 + εp) × (1−νεp)} (1) Sheet thickness distribution calculated for material A based on the above equation (1) Is shown in FIG. As can be seen from the figure, a portion having a larger plastic strain, such as a corner of a frame or a horizontal plane, has a greater reduction in plate thickness. Also, ●
The marks are actually measured values obtained by actually cutting the frame, and these measured values substantially coincide with the values estimated from the plastic strain according to (1), indicating that the present estimation method is valid. .

【0034】以上、ステップ3では、ステップ2で推定
した塑性歪み(図9)に基づいて、部材各部に生じてい
る板厚変化を推定した。
As described above, in step 3, the thickness change occurring in each part of the member was estimated based on the plastic strain (FIG. 9) estimated in step 2.

【0035】<ステップ4:計算解析によるフレーム単
体の衝突解析(強度解析)>次に、上述したステップ2
によって得られた「塑性歪み」、そしてステップ3によ
って得られた「板厚分布」の推定結果に基づいて、計算
解析を用いてフレーム単体の強度解析として、所謂、衝
突圧潰解析を行うことにより、加工硬化と板厚変化とが
部材圧解特性に及ぼす影響を調べる。尚、本実施形態で
は、解析に所謂、動的陽解法FEM(PAM−CRAS
H)を用いるが、これに限られるものではない。
<Step 4: Collision analysis of frame alone by calculation analysis (strength analysis)> Next, step 2 described above
By performing a so-called collision crush analysis as a strength analysis of a single frame using computational analysis based on the “plastic strain” obtained by and the estimation result of the “plate thickness distribution” obtained in Step 3, The effect of work hardening and thickness change on the material decompression characteristics is investigated. In the present embodiment, a so-called dynamic explicit method FEM (PAM-CRAS) is used for analysis.
H) is used, but is not limited thereto.

【0036】ここで、加工硬化の影響の計算解析は、ま
ず、JIS5号試験片の応力−歪み曲線であるところ
の、ベースとなる材料の応力−歪み曲線(曲線A)を用
意し、その曲線を、図12に示すように、ステップ2に
て推定した塑性歪みの量に応じてスライドさせ、これに
より曲線Bを求める。そして、曲線Bで表わされるよう
な材料特性データをフレーム断面の部位毎に求める。そ
して、それらのデータを計算解析モデルに組み込み、計
算解析を行う。このとき、設定すべき他の解析条件とし
て、本実施形態では、衝突速度は9m/secとし、モ
デル後端に台車に相当する質量を付加した。
Here, in the calculation analysis of the influence of work hardening, first, a stress-strain curve (curve A) of a base material, which is a stress-strain curve of a JIS No. 5 test piece, is prepared, and the curve is obtained. Is slid according to the amount of plastic strain estimated in step 2, as shown in FIG. Then, material characteristic data represented by a curve B is obtained for each part of the frame cross section. Then, the data is incorporated into a calculation analysis model to perform calculation analysis. At this time, as another analysis condition to be set, in the present embodiment, the collision speed is 9 m / sec, and a mass corresponding to the bogie is added to the rear end of the model.

【0037】図13は、本発明の一実施形態として、均
一な特性とした場合の材質Aの材料についての変形モー
ド図である。また、図14は、本発明の一実施形態とし
て、加工硬化と板厚変化とを考慮した場合の材質Aの材
料についての変形モード図である。
FIG. 13 is a deformation mode diagram of the material A when uniform characteristics are set as one embodiment of the present invention. FIG. 14 is a deformation mode diagram of the material A in consideration of work hardening and a change in plate thickness as one embodiment of the present invention.

【0038】図13及び図14において、潰れ前半(潰
れ量150mm付近まで)の変形は、ビードの効果によ
り何れの場合も略一様な軸圧縮モードとなる。また、潰
れ後半は、フレーム中央部(断面収縮部)で曲げ変形が
発生するが、加工硬化と板厚変化とを考慮した場合に
は、全体の潰れ量が減って、折れ曲がり量が減少してい
る様子が判る。尚、図面は省略するが、B材、C材につ
いても変形モードの傾向は略同様である。
In FIGS. 13 and 14, the deformation in the first half of the crushing (up to the vicinity of the crushing amount of 150 mm) becomes a substantially uniform axial compression mode in any case due to the effect of the bead. In the latter half of the collapse, bending deformation occurs at the center of the frame (contracted section), but when work hardening and changes in plate thickness are considered, the overall collapse amount is reduced, and the amount of bending is reduced. You can see how he is. Although the drawings are omitted, the tendency of the deformation mode is substantially the same for the materials B and C.

【0039】図15から図17は、本発明の一実施形態
としての各材質毎のフレーム圧潰荷重と潰れ量との関係
を示す図であり、加工硬化と板厚変化とを考慮している
場合を”Mat.&Thick.change”と、そうでない場合を”U
niform”としている。
FIGS. 15 to 17 are diagrams showing the relationship between the frame crushing load and the amount of crushing for each material according to one embodiment of the present invention, in which work hardening and changes in plate thickness are considered. "Mat. &Thick.change", otherwise "U
niform ”.

【0040】図15から図17に示すように、何れの材
質についても、加工硬化と板厚変化とを考慮することに
より、フレーム全体を均一な特性(以下、単に「均一な
特性」と省略する)で計算した場合と比較して、圧潰荷
重が増加する結果が得られた。特に、n値の高いA材/
C材で顕著な圧潰荷重の増加が見られる(A材で最大
8.5%の平均荷重増加)。また、B材も若干ではある
が圧潰荷重が増加している。
As shown in FIGS. 15 to 17, for all materials, the entire frame has uniform characteristics (hereinafter simply referred to as “uniform characteristics”) by considering work hardening and changes in plate thickness. ), The result that the crushing load increased compared to the case where the calculation was performed in ()) was obtained. In particular, A material with high n value /
A remarkable increase in the crushing load is observed in the C material (the average load increase of 8.5% in the A material). Further, the crushing load of the material B is slightly increased.

【0041】図18は、本発明の一実施形態としての各
材質毎のフレーム圧潰荷重の平均値の比較結果を示す図
であり、この図においても、加工硬化と板厚変化とを考
慮している場合を”Mat.&Thick.change”と、均一な特
性とした場合を”Uniform”としている。
FIG. 18 is a diagram showing a comparison result of the average value of the frame crushing load for each material according to an embodiment of the present invention. Is “Mat. & Thick.change”, and “Uniform” when the characteristics are uniform.

【0042】図18に示すように、変形モードが略一定
である潰れ量150mm区間の平均圧潰荷重を比較する
と、A材:8.5%、C材:6.5%の荷重増加が見ら
れる。また、B材では1.4%と差が少ないが、150
mm付近で圧潰荷重のピークにずれが生じており、変形
モードの影響が生じていることが判る。尚、潰れ量20
0mm区間の平均圧潰荷重としたときには、3.3%の
差となる。
As shown in FIG. 18, when comparing the average crushing load in the 150 mm section where the deformation mode is substantially constant, the load increases by 8.5% for material A and 6.5% for material C. . Further, the difference is small at 1.4% for the material B, but it is 150%.
A shift occurs in the peak of the crushing load in the vicinity of mm, which indicates that the influence of the deformation mode has occurred. In addition, the crush amount 20
When the average crushing load is 0 mm section, the difference is 3.3%.

【0043】<計算解析と試験結果との比較>図19
は、本発明の一実施形態としての計算解析と試作フレー
ムを用いた衝突試験結果との比較結果を説明する図であ
り、潰れ量150mmまでの平均圧潰荷重を比較した結
果を示している。
<Comparison between Calculation Analysis and Test Results> FIG.
FIG. 3 is a diagram for explaining a comparison result between a calculation analysis and an impact test result using a prototype frame according to an embodiment of the present invention, and shows a result of comparing average crush loads up to a crush amount of 150 mm.

【0044】計算結果は、いずれも実験結果(Test)より
平均圧潰荷重が低めにでている。加工硬化と板厚変化と
を考慮した場合(Mat.&Thick.change)のほうが、均一
な特性で計算した場合(Uniform)に対して圧潰荷重が
増加し、実験結果により近い結果が得られた。
In each of the calculation results, the average crushing load is lower than the experimental result (Test). When the work hardening and the thickness change were taken into consideration (Mat. & Thick. Change), the crushing load increased compared to the case of calculating with uniform characteristics (Uniform), and the results were closer to the experimental results.

【0045】また、材質間では、A材/C材の圧潰荷重
の増加が大きく、均一な特性で計算した場合には8〜1
0%であった実験結果との差が、加工硬化と板厚変化と
を考慮した場合には約3%程度まで減少している。一
方、B材は、実験結果に近づく方向にはあるが、潰れ量
150mmまでの平均値で見る限り変化量は8%から7
%への減少に止まっている。尚、潰れ量200mmまで
の平均荷重で比較したときには、実験結果との差は5%
となる。
Further, the crushing load of the material A / C greatly increases between the materials, and is 8 to 1 when calculated with uniform characteristics.
The difference from the experimental result of 0% is reduced to about 3% when the work hardening and the change in the plate thickness are considered. On the other hand, although the material B is in the direction approaching the experimental results, the change amount is 8% to 7% as viewed from the average value up to the crush amount of 150 mm.
It has only been reduced to%. In addition, when compared with the average load up to the crush amount of 200 mm, the difference from the experimental result is 5%.
Becomes

【0046】以上、説明した本実施形態では、自動車の
フロントサイドフレームを対象として、生産加工段階で
発生する加工硬化及び板厚変化を推定し、その推定した
加工硬化と板厚変化とが、部材(フロントサイドフレー
ム)の衝突圧潰特性に与える影響を計算解析手法を用い
て解析した。
In the present embodiment described above, work hardening and sheet thickness change occurring in the production processing stage are estimated for the front side frame of an automobile, and the estimated work hardening and sheet thickness change are used as members. The effect of the (front side frame) on the crash characteristics was analyzed using a computational analysis method.

【0047】上述したように、計算解析と試験結果とを
比較すると、加工硬化と板厚変化とを考慮した場合のほ
うが、均一な特性で計算する場合と比較して、より実験
結果に近い荷重特性が得られる。従って、本実施形態の
解析方法を用いれば、複雑な形状を有する加工後の構造
体に対して計測したビッカース硬さに基づいて、加工硬
化と板厚変化とを容易に推定することができ、従来のよ
うにその構造体を切断等して実際に計測する手間を省略
することができる。また、推定した加工硬化と板厚変化
とは正確なため、推定により得られたパラメータを使用
することにより、より実状(実験結果)に則した構造体
の強度解析を行うことができる。
As described above, when the calculation analysis is compared with the test results, the load when the work hardening and the change in the plate thickness are considered is closer to the experimental result than when the calculation is performed with uniform characteristics. Characteristics are obtained. Therefore, using the analysis method of the present embodiment, it is possible to easily estimate the work hardening and the thickness change based on the Vickers hardness measured for the processed structure having a complicated shape, It is possible to omit the trouble of cutting the structure and performing actual measurement as in the related art. Further, since the estimated work hardening and the change in plate thickness are accurate, by using the parameters obtained by the estimation, it is possible to perform the strength analysis of the structure more in accordance with the actual condition (experimental result).

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
加工による材料の変化を考慮し、強度解析を正確且つ容
易に行う構造体の強度解析方法の提供が実現する。
As described above, according to the present invention,
It is possible to provide a structural strength analysis method for accurately and easily performing a strength analysis in consideration of a change in material due to processing.

【0049】[0049]

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的なプレス加工及びその加工による鋼板の
変形を示す図である。
FIG. 1 is a view showing a general press working and a deformation of a steel plate by the working.

【図2】検討対象であるフロントサイドフレームの全体
を示す斜視図である。
FIG. 2 is a perspective view showing the entire front side frame to be studied.

【図3】本実施形態で検討に使用した材料の機械特性を
示す図である。
FIG. 3 is a diagram showing the mechanical properties of the materials used for the study in the present embodiment.

【図4】複数の領域に分割したフレーム断面を示す図で
ある。
FIG. 4 is a diagram showing a cross section of a frame divided into a plurality of regions.

【図5】本発明の一実施形態としてのフレーム断面領域
毎のビッカース硬さ分布を示す図である(A材:TRI
P)。
FIG. 5 is a diagram showing a Vickers hardness distribution for each frame cross-sectional area as one embodiment of the present invention (A material: TRI)
P).

【図6】本発明の一実施形態としてのフレーム断面領域
毎のビッカース硬さ分布を示す図である(B材:SAPH40
0)。
FIG. 6 is a diagram showing a Vickers hardness distribution for each frame cross-sectional area as one embodiment of the present invention (material B: SAPH40).
0).

【図7】本発明の一実施形態としてのフレーム断面領域
毎のビッカース硬さ分布を示す図である(C材:SPH
C)。
FIG. 7 is a view showing a Vickers hardness distribution for each frame cross-sectional area as one embodiment of the present invention (C material: SPH);
C).

【図8】本発明の一実施形態としての各材質の塑性歪み
とビッカース硬さとの関係を示す図である。
FIG. 8 is a diagram showing a relationship between plastic strain of each material and Vickers hardness as one embodiment of the present invention.

【図9】本発明の一実施形態としてのビッカース硬さ分
布から部材各部の塑性歪みを推定した結果を示す図であ
る(A材:TRIP)。
FIG. 9 is a view showing a result of estimating a plastic strain of each member from a Vickers hardness distribution as one embodiment of the present invention (A material: TRIP).

【図10】材料の板厚変化の推定に利用する平板を示す
図である。
FIG. 10 is a view showing a flat plate used for estimating a change in the thickness of a material.

【図11】本発明の一実施形態としての板厚分布の推定
結果を示す図である(A材:TRIP)。
FIG. 11 is a view showing a result of estimating a plate thickness distribution as one embodiment of the present invention (material A: TRIP).

【図12】本発明の一実施形態としての応力−歪み特性
を示す図である。
FIG. 12 is a diagram showing stress-strain characteristics as one embodiment of the present invention.

【図13】本発明の一実施形態として、均一な特性とし
た場合の材質Aの材料についての変形モード図である。
FIG. 13 is a deformation mode diagram of a material A when uniform characteristics are set as an embodiment of the present invention.

【図14】本発明の一実施形態として、加工硬化と板厚
変化とを考慮した場合の材質Aの材料についての変形モ
ード図である。
FIG. 14 is a deformation mode diagram of a material A in consideration of work hardening and a change in plate thickness as an embodiment of the present invention.

【図15】本発明の一実施形態としての各材質毎のフレ
ーム圧潰荷重と潰れ量との関係を示す図である(A材:
TRIP)。
FIG. 15 is a diagram showing a relationship between a frame crushing load and a crush amount for each material according to an embodiment of the present invention (A material:
TRIP).

【図16】本発明の一実施形態としての各材質毎のフレ
ーム圧潰荷重と潰れ量との関係を示す図である(B材:
SAPH400)。
FIG. 16 is a diagram showing a relationship between a frame crushing load and a crushing amount for each material according to an embodiment of the present invention (material B:
SAPH400).

【図17】本発明の一実施形態としての各材質毎のフレ
ーム圧潰荷重と潰れ量との関係を示す図である(C材:
SPHC)。
FIG. 17 is a view showing a relationship between a frame crushing load and a crushing amount for each material as one embodiment of the present invention (C material:
SPHC).

【図18】本発明の一実施形態としての各材質毎のフレ
ーム圧潰荷重の平均値の比較結果を示す図である。
FIG. 18 is a diagram showing a comparison result of an average value of a frame crushing load for each material as one embodiment of the present invention.

【図19】本発明の一実施形態としての計算解析と試作
フレームを用いた衝突試験結果との比較結果を説明する
図である。
FIG. 19 is a diagram illustrating a result of comparison between calculation analysis and a collision test result using a prototype frame according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 誠一 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Seiichi Ando 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加工により成形された構造体の強度解析
方法であって、 前記構造体を構成する材料と同じ種類の材料について、
予め歪み量と硬度との関係を求め、 前記構造体の各部の硬度を計測し、 その計測した硬度に応じて前記歪み量と硬度との関係を
参照することにより、前記構造体の各部の歪み量を推定
し、 その推定した歪み量に基づいて、前記構造体の各部にお
ける材料の厚さを算出し、 その算出した材料の厚さに基づいて、前記構造体の強度
を解析することを特徴とする構造体の強度解析方法。
1. A method for analyzing the strength of a structure formed by processing, wherein a material of the same type as a material constituting the structure is
The relationship between the amount of strain and the hardness is determined in advance, the hardness of each part of the structure is measured, and the relationship between the amount of strain and the hardness is referred to according to the measured hardness. Estimating the thickness, calculating the thickness of the material in each part of the structure based on the estimated strain amount, and analyzing the strength of the structure based on the calculated thickness of the material. The strength analysis method for the structure.
【請求項2】 前記構造体の強度を解析するに際して、
更に、所定材料の応力・歪み特性を、前記推定した前記
構造体の各部の歪み量に応じて変更した特性を用いるこ
とを特徴とする請求項1記載の構造体の強度解析方法。
2. When analyzing the strength of the structure,
2. The structural strength analysis method according to claim 1, further comprising using a characteristic obtained by changing a stress / strain characteristic of the predetermined material in accordance with the estimated amount of distortion of each part of the structure.
【請求項3】 前記構造体は、プレス加工により成形さ
れた車両部材であることを特徴とする請求項1または請
求項2記載の構造体の強度解析方法。
3. The structural strength analysis method according to claim 1, wherein the structure is a vehicle member formed by press working.
【請求項4】 前記強度解析は、前記車両部材の衝突圧
潰解析であることを特徴とする請求項3記載の構造体の
強度解析方法。
4. The structural strength analysis method according to claim 3, wherein the strength analysis is a crash crush analysis of the vehicle member.
【請求項5】 前記構造体の各部の硬度には、ビッカー
ス硬さ分布を用いることを特徴とする請求項1記載の構
造体の強度解析方法。
5. The strength analysis method for a structure according to claim 1, wherein a Vickers hardness distribution is used as the hardness of each part of the structure.
JP02472998A 1998-02-05 1998-02-05 Structural strength analysis method Expired - Fee Related JP3609600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02472998A JP3609600B2 (en) 1998-02-05 1998-02-05 Structural strength analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02472998A JP3609600B2 (en) 1998-02-05 1998-02-05 Structural strength analysis method

Publications (2)

Publication Number Publication Date
JPH11223580A true JPH11223580A (en) 1999-08-17
JP3609600B2 JP3609600B2 (en) 2005-01-12

Family

ID=12146252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02472998A Expired - Fee Related JP3609600B2 (en) 1998-02-05 1998-02-05 Structural strength analysis method

Country Status (1)

Country Link
JP (1) JP3609600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297670A (en) * 2001-03-30 2002-10-11 Nippon Steel Corp Method and system for designing steel product
CN113218796A (en) * 2021-04-16 2021-08-06 上海交通大学 Method for detecting relation between strain and hardness of material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978092B1 (en) * 2008-05-30 2010-08-25 삼성에스디아이 주식회사 Cap assembly and secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297670A (en) * 2001-03-30 2002-10-11 Nippon Steel Corp Method and system for designing steel product
CN113218796A (en) * 2021-04-16 2021-08-06 上海交通大学 Method for detecting relation between strain and hardness of material
CN113218796B (en) * 2021-04-16 2022-06-10 上海交通大学 Method for detecting relation between strain and hardness of material

Also Published As

Publication number Publication date
JP3609600B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
JP4410833B2 (en) Springback generation cause analysis method, apparatus, program and recording medium
EP3267167B1 (en) Residual stress estimation method and residual stress estimation device
EP2136197B1 (en) Breakage prediction method, calculation processing device, program, and recording medium
US10352836B2 (en) Evaluation method of plastic material and evaluation method of deformation processing of plastic material
WO2010073756A1 (en) Springback occurrence cause analyzing method, springback occurrence cause analyzing device, springback occurrence cause analyzing program, and recording medium
EP3275565A1 (en) Blank shape determining method, blank, press molded product, press molding method, computer program, and recording medium
JP5098901B2 (en) Calculation method of material property parameters
Hu et al. Analytical models of stretch and shrink flanging
JP2001076022A (en) Method for designing formed article made of aluminum alloy plate
JP3609600B2 (en) Structural strength analysis method
JP5131212B2 (en) Material state estimation method
JPH08339396A (en) Processor for numerical simulation result in deformation process of metal plate
JP3979492B2 (en) Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts
JP3979493B2 (en) Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts
JP5765013B2 (en) Springback factor analysis method in multi-process press forming
JP5151652B2 (en) Characteristic analysis by analysis using inverse method
JP2004337980A (en) Channel part and method for deciding shape of the step
JP6501049B1 (en) Evaluation method and apparatus, and recording medium
JP5757224B2 (en) Structural member design method
Balla et al. Incommensurate vibro-acoustic performance due to in-process blank holder force variation during deep drawing process
JP5949719B2 (en) Springback amount evaluation method
JP6493640B1 (en) Evaluation method and apparatus, and recording medium
JP3783746B2 (en) Buckling limit and wrinkle shape prediction method for bending of hollow profile
Nikam et al. EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF NONAXISYMMETRIC STRETCH FLANGING PROCESS USING AA 5052.

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040123

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040319

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Effective date: 20041014

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091022

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101022

LAPS Cancellation because of no payment of annual fees