JPH11221407A - Filtration apparatus for sea water - Google Patents

Filtration apparatus for sea water

Info

Publication number
JPH11221407A
JPH11221407A JP10336063A JP33606398A JPH11221407A JP H11221407 A JPH11221407 A JP H11221407A JP 10336063 A JP10336063 A JP 10336063A JP 33606398 A JP33606398 A JP 33606398A JP H11221407 A JPH11221407 A JP H11221407A
Authority
JP
Japan
Prior art keywords
filtration
sand
stage
filter
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10336063A
Other languages
Japanese (ja)
Inventor
Atsushi Ootsubo
篤示 大坪
Tsuneo Hinatsu
恒雄 日夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON SALT KK
Original Assignee
SHIN NIPPON SALT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON SALT KK filed Critical SHIN NIPPON SALT KK
Priority to JP10336063A priority Critical patent/JPH11221407A/en
Publication of JPH11221407A publication Critical patent/JPH11221407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the performance of a filtration apparatus without using a chemical agent and consequently to prolong the durable operation time of a dialysis apparatus by employing a filtration material having respectively specified effective diameter and zeta potential. SOLUTION: The sea water to be subjected to filtration may include not only salt water taken out of a sea but also water taken out of a salt lake, under ground, or the like and these waters may be diluted with fresh water or concentrated by dissolving a salt. A filtration apparatus for filtering water through a layer filled with a granular material such as sand and actuvated carbon may be employed. The effective mesh diameter of a filtration material is controlled to be not smaller than 0.23 mm and not larger than 0.27 mm. Sand called as Soma siliceous sand derived from a stratum covering Kashima machi, Haramachi city, Odaka machi, and Namie machi of Soma city Fukushima prefecture is preferable and also sand having zeta potential at 34 mV or higher is preferable. The thickness of the layer of the filtration material is sufficient to be about 20 cm or thicker and preferably 50 cm or thicker. Filtration can be carried out at a flow rate as low as about 5 m/h or lower and as high as about 10-30 m/h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換膜法電
気透析装置(以後、透析装置という)の運転期間を延長
するために、透析装置に供給する海水を処理する濾過装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filtration device for treating seawater supplied to a dialysis device in order to extend the operation period of an ion exchange membrane electrodialysis device (hereinafter referred to as a "dialysis device").

【0002】[0002]

【従来の技術】透析装置は海水を濃縮し食塩を得る分
野、海水を脱塩し淡水を得る分野等、種々の分野に利用
されている。この装置は陰、陽の電極間に陰、陽イオン
交換膜を室枠を介して交互に配列し、これら両イオン交
換膜と室枠とによって濃縮室と脱塩室とを交互に形成さ
せる構造となっている。各室は電気抵抗を下げるため間
隔を狭くしなければならないことに加え、間隔を均一に
保ち且つ流動分布を均一に保つためにスペイサーを保有
する構造であることから、海水に懸濁物、コロイド物
質、微生物等の汚染物質が存在すると、運転時間の経過
と共にこれが膜面、スペイサーなどの透析装置内に蓄積
して、流動圧損の増加により脱塩室入口圧力(以後PD
iという)を上昇させ、更に運転を続けると供給量の低
下が起こり、最後には水分解によるスケール析出で膜が
破損してしまう。これを防止するために、PDiが基準
値に達する度に運転を停止し、膜群を解体し内部を洗浄
することを余儀なくされている。しかし、洗浄による運
転稼働率の低下、解体洗浄の人件費、洗浄の際発生する
人為的な膜破損等を考慮すると、透析装置に供給される
海水処理用の濾過装置の能力を向上させることで透析装
置内に蓄積する汚染物質量を低減させ、PDiが基準値
に達するまでの期間すなわち透析装置の運転期間を延長
させることが本質的対策である。
2. Description of the Related Art A dialysis apparatus is used in various fields such as a field of concentrating seawater to obtain salt and a field of desalinating seawater to obtain fresh water. This device has a structure in which an anion and a cation exchange membrane are alternately arranged between a cathode and an anode through a chamber frame, and a concentration chamber and a desalination chamber are formed alternately by the ion exchange membrane and the chamber frame. It has become. Each chamber must be narrow to reduce electrical resistance, and in addition to having a spacer to maintain uniform spacing and uniform flow distribution, suspensions and colloids in seawater When contaminants such as substances and microorganisms are present, they accumulate in a dialysis device such as a membrane surface or a spacer with the elapse of operation time, and the flow pressure loss increases to increase the pressure at the inlet of the desalting chamber (hereinafter referred to as PD
i)), and if the operation is further continued, the supply amount decreases, and finally the film is broken by scale deposition due to water decomposition. In order to prevent this, every time PDi reaches a reference value, the operation is stopped, and it is necessary to disassemble the membrane group and clean the inside. However, considering the decrease in operation rate due to washing, the labor cost of dismantling washing, artificial membrane breakage that occurs during washing, etc., it is possible to improve the capacity of the filtration device for seawater treatment supplied to the dialysis machine. The essential measures are to reduce the amount of contaminants accumulated in the dialyzer and extend the period until the PDi reaches the reference value, that is, the operation period of the dialyzer.

【0003】従来の濾過は、有効径0.4〜0.6mm
の砂を濾材とした2段濾過(特開昭48−74652)
や、同じく2段濾過であるが2段目の濾材を繊維とした
もの(特開昭52−32173)があるが、発明当時は
それなりに効果は認められたものの、その後透析装置の
各室間隔は電力コストを下げるため更に狭くなっており
透析装置内の汚染物質の蓄積量は増加し透析装置の連続
運転期間は反って短くなった。またコスト削減のため透
析装置の連続運転期間を更に延ばしたいとの要望も強
い。
[0003] Conventional filtration has an effective diameter of 0.4 to 0.6 mm.
-Stage filtration using sand of sand as a filter medium (JP-A-48-74652)
There is also a two-stage filtration method in which fibers are used as the second-stage filter medium (Japanese Patent Laid-Open No. 52-32173). In order to reduce the power cost, they have become narrower, the amount of contaminants accumulated in the dialysis machine has increased, and the continuous operation period of the dialysis machine has been shortened. There is also a strong demand for further extending the continuous operation period of the dialysis device in order to reduce costs.

【0004】また、凝集濾過、薬注濾過等の薬剤を添加
する方法も存在するが、食品を製造する場合、原料等に
添加物を添加しないこと、いわゆる無添加であるものが
消費者に好まれている。
There is also a method of adding a chemical such as coagulation filtration and chemical injection filtration. However, in the case of producing food, it is preferable for consumers not to add additives to raw materials and the like, that is, to use a so-called non-additive. It is rare.

【0005】[0005]

【発明が解決しようとする課題】この発明は、透析装置
の運転期間を延長させるため、薬剤等を使用することな
く濾材を特定することにより濾過装置の能力を向上させ
ることを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to improve the performance of a filtration device by specifying a filter medium without using a chemical or the like in order to extend the operation period of the dialysis device.

【0006】尚、濾過水の水質を向上させても、濾過の
圧力損失が大きくなり事実上濾過運転不能であれば意味
がないので、極端な圧力損失の上昇防止も考慮しなけれ
ばならない。
[0006] Even if the quality of the filtered water is improved, it is meaningless if the pressure loss of the filtration becomes large and the filtration operation is practically impossible. Therefore, it is necessary to consider the prevention of an excessive rise in the pressure loss.

【0007】[0007]

【課題を解決するための手段】濾過の機構については、
篩分、濾過材上の沈降、電気的吸着、慣性運動、ファン
デルワールス(Van der Waals)力などの
複合であり更に濾過材汚染の影響などが加わり極めて複
雑になるためこのような濾過に対する理論的取り扱いは
困難である。また濾水の水質スペックを決める上で重要
な透析装置内の汚染物質の蓄積機構も篩分、電気的吸
着、慣性運動、ファンデルワールス力などの複合であり
更に装置内汚染の影響などが加わり極めて複雑になるた
めこのような汚染物質の蓄積に対する理論的取り扱いは
困難である。しかし本発明者は、濾過の圧力損失上昇を
念頭に置きながら濾過能力の向上について鋭意研究を重
ねた結果、特定の濾過装置を用いれば透析装置内の汚染
物質蓄積量が低減し、透析装置の連続運転期間を飛躍的
に延ばしうることを見出し、この知見に基づいて本発明
をなすに至った。
Means for Solving the Problems Regarding the mechanism of filtration,
It is a complex of sieving, sedimentation on filter media, electro-adsorption, inertial motion, Van der Waals force, etc., and it is extremely complicated due to the influence of filter material contamination and so on. It is difficult to handle properly. In addition, the accumulation mechanism of contaminants in the dialysis machine, which is important in determining the water quality specifications of the drainage water, is a complex of sieving, electric adsorption, inertial motion, van der Waals force, etc. The theoretical complexity of such contaminant accumulation is difficult due to the extreme complexity. However, the present inventor has conducted intensive studies on the improvement of filtration performance while keeping in mind the increase in pressure loss of filtration, and as a result, if a specific filtration device is used, the amount of contaminants accumulated in the dialysis device is reduced, and The present inventors have found that the continuous operation period can be greatly extended, and have made the present invention based on this finding.

【0008】すなわち、本発明は、有効径が0.23以
上0.27mm以下であるものを濾材に用いた濾過装置
及び、濾材のゼータ電位が34mV以上である海水用の
濾過装置である。
[0008] That is, the present invention relates to a filtration device using a filter having an effective diameter of 0.23 or more and 0.27 mm or less, and a filtration device for seawater in which the zeta potential of the filter is 34 mV or more.

【0009】ここで有効径とは濾材を篩い分けして、全
体量の10wt%が通過する篩目の大きさに相当する粒
径をいう。具体的には濾材を各目開きの篩で篩い分け、
それぞれの通過率を求める。その結果を縦軸に通過率、
横軸に篩の目開きで方眼紙にとり、粒度加積曲線を描
く。図中の縦軸の10wt%の点から水平線を引き、曲
線との交点から横軸に垂直線をおろし、その交点を求め
る。この値が有効径である。均等係数とは同様の方法で
求めた全体量の60wt%が通過する篩目の大きさに相
当する粒径と有効径との比を言う。比表面積の測定はB
ET法による。
Here, the effective diameter means a particle size corresponding to a size of a sieve through which 10 wt% of the total amount passes through a filter medium. Specifically, the filter medium is sieved with a sieve of each opening,
Find each pass rate. The vertical axis shows the result,
The horizontal axis is drawn on a piece of grid paper with a sieve opening to draw a grain size accumulation curve. A horizontal line is drawn from the 10 wt% point on the vertical axis in the figure, and a vertical line is drawn down from the intersection with the curve to the horizontal axis to determine the intersection. This value is the effective diameter. The uniformity coefficient refers to the ratio between the particle size corresponding to the size of the sieve through which 60 wt% of the total amount obtained by the same method passes and the effective diameter. Measurement of specific surface area is B
According to the ET method.

【0010】濾材として砂、アンスラサイト、活性炭、
ガーネット等の天然物と人造物があるが、好ましくは安
価で耐久性のよい砂が適当である。
[0010] Sand, anthracite, activated carbon,
There are natural products such as garnet and man-made products, but preferably cheap and durable sand is suitable.

【0011】砂としてはどのようなものを用いてもよい
が、好ましくは珪砂がよく、さらに好ましくは相馬硅砂
と呼ばれる福島県の相馬市、鹿島町、原町市、小高町、
浪江町に及ぶ地層から産出される珪砂を使用するとよ
い。
Any kind of sand may be used, but silica sand is preferred, and more preferably Soma, Kashima, Haramachi, Kodaka, Fukushima prefectures, which is called Soma silica sand.
It is good to use quartz sand from the stratum extending to Namie town.

【0012】また、ゼータ電位が34mV以上のものを
濾材として用いると透析装置の運転期間が飛躍的に延び
ることが分かった。懸濁物の多くが負の電荷を帯びてい
るためと思われる。測定方法は流動電位法によって流動
電位及び圧力を測定して以下の式より算出した。
It has also been found that the use of a filter having a zeta potential of 34 mV or more as a filter medium dramatically increases the operation period of the dialysis apparatus. This is probably because most of the suspension has a negative charge. The measuring method was such that a streaming potential and a pressure were measured by a streaming potential method, and calculated by the following formula.

【0013】ゼータ電位=1.15×1010×η/ε×
κ/R×E/P (ただし、η:粘性係数[g/cm・sec] ε:誘電率[−] κ:導電率[1/cm] R:流動液の抵抗[Ω] E:流動電位[mV] P:圧力[g/cm2] ) 流動液は1mMのKCl水溶液、試験温度は21〜22
℃とした。
Zeta potential = 1.15 × 10 10 × η / ε ×
κ / R × E / P (where η: viscosity coefficient [g / cm · sec] ε: dielectric constant [−] κ: conductivity [1 / cm] R: resistance of flowing liquid [Ω] E: flowing potential [MV] P: Pressure [g / cm 2 ]) The fluid is a 1 mM KCl aqueous solution, and the test temperature is 21 to 22.
° C.

【0014】なお、濾過性能を濾水の水質で評価すべき
との意見も多い。一般に濁りの測定と生物の測定が知ら
れており、濁りの測定としてはJIS0102等の乾式
重量法、積分球式光電光度法等の光散乱式、MF値、F
I値等の濾過速度法、生物の測定としてはプランクトン
数、クロロフィル量などがある。濾水の水質と本発明の
目的である透析装置の運転期間の関係は、上述したよう
に透析装置内の汚染物質の蓄積機構が不確かなこともあ
り、濾水の水質が汚かった時代はある程度の相関はあっ
たが、水質がその時より清澄となった現在ははっきりし
た関係がない場合が多い。そこで直接、透析装置の運転
期間を評価方法とし、具体的には運転開始からPDiが
基準値の1.00kgf/cm2になるまでの期間とし
た。
There are many opinions that the filtration performance should be evaluated based on the quality of the filtrate. Generally, the measurement of turbidity and the measurement of living things are known. Examples of the measurement of turbidity include a light scattering method such as a dry weight method such as JIS0102 and an integrating sphere photoelectricity method, an MF value, and an F value.
The filtration rate method such as I value and the measurement of organisms include plankton number and chlorophyll amount. The relationship between the quality of the drainage water and the operation period of the dialysis device, which is the object of the present invention, depends on the fact that the accumulation mechanism of contaminants in the dialysis device is uncertain as described above. However, there is often no clear relationship at present when the water quality became clearer at that time. Therefore, the operation period of the dialysis device was directly used as the evaluation method, specifically, the period from the start of operation until PDi reached the reference value of 1.00 kgf / cm 2 .

【0015】[0015]

【発明の実施の形態】濾過対象である海水は、いわゆる
海から採取した塩水のみならず、塩湖、地下等から採取
したものでも、更にこれらを淡水で希釈したり、塩を溶
解し塩濃度を高くしたものでも構わない。
BEST MODE FOR CARRYING OUT THE INVENTION The seawater to be filtered is not only salt water collected from the so-called sea, but also salt water collected from salt lakes and underground. May be higher.

【0016】濾過装置は砂や活性炭のような粒状物を充
填した層に溶液を通して浄化する方式のものであればよ
い。すなわち、圧力式急速濾過池、重力式急速濾過池等
の海水を供給する方式、上向流濾過池、下向流濾過池、
水平流濾過等の海水を供給する方向、バルブレスフィル
タ、ハーディンジフィルタ、グリーンリーフフィルタ等
の自動運転の方式等を問わない。
The filtration device may be of any type that purifies the solution by passing the solution through a layer filled with particulate matter such as sand or activated carbon. That is, a method of supplying seawater such as a pressure type rapid filtration pond, a gravity type rapid filtration pond, an upward flow filtration pond, a downward flow filtration pond,
There is no limitation on the direction in which seawater is supplied, such as horizontal flow filtration, or the type of automatic operation, such as a valveless filter, harding filter, or green leaf filter.

【0017】濾過の段数、濾層の構成は組み合わせとし
て多々あるが、その一部に本発明の濾材を用いれば良
く、濾材全てがこれである必要はない。濾過の段数、濾
層の構成は処理される海水の性状により適宜決定すると
よい。例えば1段単層濾過で濾材に本発明の濾材を用い
るもののみならず、2段濾過でその2段目にのみ本発明
の濾材を用いるもの、1段多層濾過で粒径の小さい濾材
の層に本発明の濾材を用いるものでもよい。日本沿岸の
海水であれば2段濾過でその2段目に本発明の濾材を用
いるもの又は1段多層濾過で粒径の小さい濾材の層に本
発明の濾材を用いるものがよいであろう。
Although there are many combinations of the number of stages of filtration and the structure of the filter layer, the filter medium of the present invention may be used for a part thereof, and it is not necessary that all of the filter medium be used. The number of filtration stages and the configuration of the filter layer may be appropriately determined depending on the properties of seawater to be treated. For example, one-stage single-layer filtration not only using the filter medium of the present invention as a filter medium, but also two-stage filtration using the filter medium of the present invention only in the second stage, one-stage multi-layer filtration having a small particle size Alternatively, the filter medium of the present invention may be used. In the case of seawater along the coast of Japan, it would be better to use the filter medium of the present invention in the second stage in the two-stage filtration or use the filter medium of the present invention in the layer of the filter medium having a small particle size in the one-stage multilayer filtration.

【0018】濾材は、有効径が0.23以上0.27m
m以下である。相馬硅砂と呼ばれる福島県の相馬市、鹿
島町、原町市、小高町、浪江町に及ぶ地層から産出され
るものが好ましい。また、ゼータ電位が34mV以上の
ものが好ましい。
The filter medium has an effective diameter of 0.23 to 0.27 m.
m or less. Soma silica sand, which is produced from the strata of Soma, Kashima, Haramachi, Kodaka and Namie in Fukushima Prefecture, is preferred. Further, those having a zeta potential of 34 mV or more are preferable.

【0019】濾材の層厚みは、20cm以上あれば良い
が、好ましくは50cm以上が適当である。
The layer thickness of the filter medium may be 20 cm or more, preferably 50 cm or more.

【0020】濾過速度は濾過の種類、濾過量と濾過面積
から決定される。すなわち5m/h以下の低速から10
〜30m/hの高速まで適用できる。
The filtration speed is determined from the type of filtration, the amount of filtration, and the filtration area. That is, from low speed of 5 m / h or less to 10
Applicable to high speeds of up to 30 m / h.

【0021】[0021]

【実施例】次に実施例及び比較例によってこの発明をさ
らに詳細に説明する。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0022】実施例1 2段濾過でその2段目にのみ本発明の濾材を用いるもの
で海水を処理し、電気透析装置に通液した。
Example 1 Seawater was treated using the filter medium of the present invention only in the second stage of the two-stage filtration, and the solution was passed through an electrodialysis apparatus.

【0023】 1段目の濾過器 濾過方式 重力式急速濾過 バルブレスフィルタ 濾過速度 8m/h 濾材 高萩産硅砂 比表面積0.2m2/g 有効径0.45mm、均等係数1.6 粒度分布 710μm通過(wt%) 62.0 600μm通過(wt%) 36.2 425μm通過(wt%) 9.2 層厚500mm (リーク防止等の目的で、 その下に砂利を100mm敷いた) 2段目の濾過器 濾過方式 重力式急速濾過 バルブレスフィルタ 濾過速度 15〜25m/h 濾材 相馬硅砂5号 比表面積1.0m2/g ゼータ電位35mV 成分 Si:42.9%、Al:1.80%、 K :1.53%、Fe:0.188% 有効径0.26mm、均等係数1.9 粒度分布 600μm通過(wt%) 100.0 425μm通過(wt%) 50.1 300μm通過(wt%) 27.7 250μm通過(wt%) 9.8 212μm通過(wt%) 3.6 層厚700mm (リーク防止等の目的等で、 その下に1段目で使用した砂を100mm、 更に下に砂利を100mm敷いた) 透析装置の脱塩室厚み :0.55mm±0.03mm 脱塩室内の濾水供給速度:7.6cm/秒 結果 透析装置の運転開始からPDiが基準値の1.00kg
f/cm2になるまでの期間は、本発明出願時において
未だPDiが基準値に達していないので不明であるが、
500日間運転させたところ、PDi上昇はほぼ0.0
kgf/cm2であった。
First-stage filter Filtration method Gravity-type rapid filtration Valveless filter Filtration speed 8 m / h Filter material Takahagi silica sand Specific surface area 0.2 m 2 / g Effective diameter 0.45 mm, Equivalent coefficient 1.6 Particle size distribution 710 μm 62.0 Passage of 600 μm (wt%) 36.2 Passage of 425 μm (wt%) 9.2 Layer thickness 500 mm (Gravel was spread 100 mm under it for the purpose of leak prevention etc.) Second-stage filter Filtration method Gravity type rapid filtration Valveless filter Filtration speed 15 to 25 m / h Filter material Soma Silica 5 Specific surface area 1.0 m 2 / g Zeta potential 35 mV Component Si: 42.9%, Al: 1.80%, K: 1. 53%, Fe: 0.188% Effective diameter 0.26 mm, Uniformity coefficient 1.9 Particle size distribution 600 μm passage (wt%) 100.0 425 μm passage (wt%) 50.1 300 μm passage (wt 27.7 250 µm pass (wt%) 9.8 212 µm pass (wt%) 3.6 Layer thickness 700mm (For the purpose of leak prevention, etc. (The gravel was spread 100 mm.) Thickness of the desalting chamber of the dialyzer: 0.55 mm ± 0.03 mm Drainage supply rate in the desalting chamber: 7.6 cm / sec.
The period until f / cm 2 is not known because PDi has not yet reached the reference value at the time of filing the present invention,
After 500 days of operation, the PDi rise was almost 0.0
kgf / cm 2 .

【0024】2段目濾過の圧力損失が0.65kgf/
cm2以上になると濾水量が低下し透析装置の運転に支
障をきたすためこの0.65kgf/cm2を2段目濾
過の圧力損失上限値とした。この実施において圧力損失
は最高値で0.4kgf/cm2と上限値を余裕もって
下回った。尚、濾過は15時間毎に洗浄し初圧まで復帰
させた。
The pressure loss of the second stage filtration is 0.65 kgf /
When the pressure exceeds 2 cm 2, the amount of drainage water decreases and the operation of the dialysis apparatus is hindered. Therefore, 0.65 kgf / cm 2 was set as the pressure drop upper limit of the second filtration. In this implementation, the pressure loss was 0.4 kgf / cm 2 at the maximum, which was lower than the upper limit. Note that the filtration was washed every 15 hours and returned to the initial pressure.

【0025】実施例2 2段濾過において、2段目の濾材の粒度が異なるほかは
実施例1と同じ条件で海水の処理を行った。
Example 2 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the particle size of the filter material in the second stage was different.

【0026】 2段目の濾過器 濾材 相馬硅砂5号 有効径0.27mm、均等係数1.6 粒度分布 600μm通過(wt%) 96.4 425μm通過(wt%) 61.6 300μm通過(wt%) 18.5 250μm通過(wt%) 7.7 212μm通過(wt%) 4.5 結果 透析装置の運転開始からPDiが基準値の1.00kg
f/cm2になるまでの期間は、本発明出願時において
未だPDiが基準値に達していないので不明であるが、
200日間運転させたところ、PDi上昇はほぼ0.0
kgf/cm2であった。
Second-stage filter Filter material Soma silica sand No. 5 Effective diameter 0.27 mm, uniformity coefficient 1.6 Particle size distribution 600 μm passage (wt%) 96.4 425 μm passage (wt%) 61.6 300 μm passage (wt%) 18.5 250 μm passage (wt%) 7.7 212 μm passage (wt%) 4.5 Result PDi is 1.00 kg of the reference value from the start of operation of the dialysis device.
The period until f / cm 2 is not known because PDi has not yet reached the reference value at the time of filing the present invention,
After driving for 200 days, the PDi rise was almost 0.0
kgf / cm 2 .

【0027】2段目濾過の圧力損失は最高値で0.4k
gf/cm2と上限値を余裕もって下回った。
[0027] The pressure loss of the second stage filtration is 0.4 k at the maximum value.
gf / cm 2 , which is below the upper limit.

【0028】比較例1 2段濾過において、2段目の濾材の産地、粒度、砂層
厚、リーク防止層厚を変えた以外は実施例1と同じ条件
で海水を通液した。
Comparative Example 1 In the two-stage filtration, seawater was passed under the same conditions as in Example 1 except that the place of origin, the particle size, the thickness of the sand layer, and the thickness of the leak prevention layer of the second-stage filter medium were changed.

【0029】 2段目の濾過器 濾材 高萩産硅砂 比表面積0.2m2/g ゼータ電位33mV 成分 Si:42.7%、Al:1.70%、 K :1.51%、Fe:0.267% 有効径0.45mm、均等係数1.6 粒度分布 710μm通過(wt%) 62.0 600μm通過(wt%) 36.2 425μm通過(wt%) 9.2 層厚500mm (リーク防止等の目的等で、 その下に砂利を100mm敷いた) 結果 透析装置のPDiが基準値の1.00kgf/cm2
達したのは運転開始から30日後であり、実施例1に比
較し極端に短かった。
Filter of the second stage Filter material Silica sand from Takahagi Specific surface area 0.2 m 2 / g Zeta potential 33 mV Component Si: 42.7%, Al: 1.70%, K: 1.51%, Fe: 0. 267% Effective diameter 0.45mm, Uniformity coefficient 1.6 Particle size distribution 710μm passage (wt%) 62.0 600μm passage (wt%) 36.2 425μm passage (wt%) 9.2 Layer thickness 500mm (for leak prevention etc.) Result Gravel was spread 100 mm underneath it.) Result It was 30 days after the start of operation that the PDi of the dialysis device reached the reference value of 1.00 kgf / cm 2 , which was extremely short compared to Example 1. Was.

【0030】比較例2 2段濾過において、2段目の濾材の産地と粒度を変えた
以外は実施例1と同じ条件で海水の処理を行った。
Comparative Example 2 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the production area and the particle size of the second-stage filter medium were changed.

【0031】 2段目の濾過器 濾材 高萩産硅砂 比表面積2.0m2/g 有効径0.15mm、均等係数1.8 粒度分布 300μm通過(wt%) 73.0 250μm通過(wt%) 47.6 212μm通過(wt%) 30.1 150μm通過(wt%) 10.0 125μm通過(wt%) 5.2 結果 運転開始後まもなく、2段目の濾過器の圧損が上限値
0.65kgf/cm2を超えたため透析必要量を濾過
できず、透析装置は運転できなかった。
Second-stage filter Filter material Takahagi silica sand Specific surface area 2.0 m 2 / g Effective diameter 0.15 mm, Equivalent coefficient 1.8 Particle size distribution 300 μm passage (wt%) 73.0 250 μm passage (wt%) 47 2.6 Passage of 212 μm (wt%) 30.1 Passage of 150 μm (wt%) 10.0 Passage of 125 μm (wt%) 5.2 Results Shortly after the start of operation, the upper limit of the pressure loss of the second-stage filter was 0.65 kgf /. The dialysis device could not be operated because the required amount of dialysis could not be filtered because it exceeded cm 2 .

【0032】比較例3 2段濾過において、2段目の濾材の産地と粒度、リーク
層厚を変えた以外は実施例1と同じ条件で海水の処理を
行った。
Comparative Example 3 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the place of origin, the particle size, and the leak layer thickness of the second-stage filter medium were changed.

【0033】 2段目の濾過器 濾材 高萩産硅砂 比表面積2.0m2/g ゼータ電位33mV 有効径0.35mm、均等係数1.6 粒度分布 600μm通過(wt%) 65.2 425μm通過(wt%) 22.5 300μm通過(wt%) 4.6 層厚700mm (リーク防止等の目的等で、 その下に砂利を100mm敷いた) 結果 透析装置のPDiが基準値の1.00kgf/cm2
達したのは運転開始から50日後であり、実施例1に比
較し極端に短かった。
Second-stage filter Filter material Takahagi silica sand Specific surface area 2.0 m 2 / g Zeta potential 33 mV Effective diameter 0.35 mm, uniformity coefficient 1.6 Particle size distribution 600 μm passage (wt%) 65.2 425 μm passage (wt) %) 22.5 Passing through 300 μm (wt%) 4.6 Layer thickness 700 mm (Gravel was spread 100 mm under it for the purpose of preventing leaks, etc.) Result The PDi of the dialysis device was the standard value of 1.00 kgf / cm 2. Reached 50 days after the start of operation, which was extremely short as compared with Example 1.

【0034】比較例4 2段濾過において、2段目の濾材の産地と粒度を変えた
以外は実施例1と同じ条件で海水の処理を行った。
Comparative Example 4 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the production area and the particle size of the second-stage filter medium were changed.

【0035】 2段目の濾過器 濾材 高萩産硅砂 ゼータ電位33mV 有効径0.3mm、均等係数1.6 粒度分布 600μm通過(wt%) 84.0 425μm通過(wt%) 44.0 300μm通過(wt%) 10.0 250μm通過(wt%) 2.8 212μm通過(wt%) 0.6 結果 透析装置のPDiが基準値の1.00kgf/cm2
達したのは運転開始から80日後であり、実施例1に比
較し極端に短かった。
Second-stage filter Filter material Takahagi silica sand Zeta potential 33 mV Effective diameter 0.3 mm, uniformity coefficient 1.6 Particle size distribution 600 μm passage (wt%) 84.0 425 μm passage (wt%) 44.0 300 μm passage (wt%) 10.0 Pass through 250 μm (wt%) 2.8 Pass through 212 μm (wt%) 0.6 Result PDi of the dialysis device reached the reference value of 1.00 kgf / cm 2 after 80 days from the start of operation. Yes, extremely short compared to Example 1.

【0036】比較例5 2段濾過において、2段目の濾材の層厚を変えた以外は
実施例1と同じ条件で海水の処理を行った。
Comparative Example 5 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the layer thickness of the second-stage filter medium was changed.

【0037】 結果 透析装置のPDiが基準値の1.00kgf/cm2
達したのは運転開始から100日後であり、実施例1に
比較し極端に短かった。
[0037] Results It was 100 days after the start of operation that the PDi of the dialysis device reached the reference value of 1.00 kgf / cm 2 , which was extremely short as compared with Example 1.

【0038】比較例6 2段濾過において、2段目の濾材の産地と粒度を変えた
以外は実施例1と同じ条件で海水の処理を行った。
Comparative Example 6 In the two-stage filtration, seawater was treated under the same conditions as in Example 1 except that the production area and the particle size of the second-stage filter medium were changed.

【0039】 2段目の濾過器 濾材 いわき久ノ浜産硅砂 有効径0.22mm、均等係数1.7 粒度分布 600μm通過(wt%) 99.6 425μm通過(wt%) 73.7 250μm通過(wt%) 18.1 212μm通過(wt%) 8.9 結果 運転を開始した直後に、2段目の濾過器の圧損が上限値
0.65kgf/cm2を超えたため透析必要量を濾過
できず、透析装置は運転できなかった。
Second-stage filter Filter material Silica sand from Iwaki Kunohama Effective diameter 0.22 mm, uniformity coefficient 1.7 Particle size distribution 600 μm passage (wt%) 99.6 425 μm passage (wt%) 73.7 250 μm passage (wt%) 18.1 Pass through 212 μm (wt%) 8.9 Result Immediately after starting operation, the required amount of dialysis could not be filtered because the pressure loss of the second stage filter exceeded the upper limit of 0.65 kgf / cm 2. The dialysis machine could not be operated.

【0040】[0040]

【発明の効果】以上、説明したように、本発明の濾過装
置は薬剤等を使用することなく濾材を特定のものにする
だけで、透析装置の運転期間を飛躍的に延ばすことがで
きる。
As described above, the filter device of the present invention can greatly extend the operation period of the dialysis device only by using a specific filter medium without using a chemical or the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有効径が0.23以上0.27mm以下
である濾材を用いることを特徴とする海水用の濾過装
置。
1. A seawater filtration device characterized by using a filter medium having an effective diameter of not less than 0.23 and not more than 0.27 mm.
【請求項2】 濾材のゼータ電位が34mV以上である
請求項1の海水用の濾過装置。
2. The filter for seawater according to claim 1, wherein the zeta potential of the filter medium is 34 mV or more.
JP10336063A 1997-11-28 1998-11-26 Filtration apparatus for sea water Pending JPH11221407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10336063A JPH11221407A (en) 1997-11-28 1998-11-26 Filtration apparatus for sea water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32805997 1997-11-28
JP9-328059 1997-11-28
JP10336063A JPH11221407A (en) 1997-11-28 1998-11-26 Filtration apparatus for sea water

Publications (1)

Publication Number Publication Date
JPH11221407A true JPH11221407A (en) 1999-08-17

Family

ID=26572743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10336063A Pending JPH11221407A (en) 1997-11-28 1998-11-26 Filtration apparatus for sea water

Country Status (1)

Country Link
JP (1) JPH11221407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086992A (en) * 2006-09-08 2008-04-17 Solt Industry Center Of Japan Seawater filter apparatus for salt manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086992A (en) * 2006-09-08 2008-04-17 Solt Industry Center Of Japan Seawater filter apparatus for salt manufacture

Similar Documents

Publication Publication Date Title
Jacangelo et al. Mechanism of Cryptosporidium, Giardia, and MS2 virus removal by MF and UF
TWI446956B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in backwash water treatment
Yiantsios et al. An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by backwashing
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
US3836458A (en) Water purification means
Bai et al. Membrane fouling during ultrafiltration (UF) of surface water: Effects of sludge discharge interval (SDI)
US20220234930A1 (en) Method for Purifying Contaminated Water
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
Yu et al. Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment
CN106587462A (en) Treatment method for nanofiltration membrane central water purification system
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
EP2485981B1 (en) Use of a multi layered particulate filter for reducing the turbidity and sdi of water
US20100147780A1 (en) Filter for filtration and recovery of suspended particles in water, and method for filtration and recovery of suspended particles in water and method for water quality management using the filter
JPWO2017159303A1 (en) Treatment method for high hardness wastewater
JP2007222872A (en) Filter device
CN206915909U (en) central pure water system
JPH11221407A (en) Filtration apparatus for sea water
CN103508532B (en) The processing method and processing unit of the discharge water of cooling water
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
Glucina et al. Assessment of filtration mode for the ultrafiltration membrane process
CN106045156A (en) Nanofiltration membrane central water purification treatment system and treatment method
JP4079082B2 (en) Backwashing method for membrane filtration water treatment equipment
CN106045155A (en) Anti-contamination nanofiltration membrane water purifier
CN205892955U (en) Central water treatment system of filter membrane of receiving
El-Azizi et al. Study of a depth filter (Disruptor™) for the novel application of reducing SWRO membrane fouling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080125