JPH11219781A - Cooling structure for furnace-bottom electrode of direct current arc furnace - Google Patents
Cooling structure for furnace-bottom electrode of direct current arc furnaceInfo
- Publication number
- JPH11219781A JPH11219781A JP3377098A JP3377098A JPH11219781A JP H11219781 A JPH11219781 A JP H11219781A JP 3377098 A JP3377098 A JP 3377098A JP 3377098 A JP3377098 A JP 3377098A JP H11219781 A JPH11219781 A JP H11219781A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- bottom electrode
- electrode
- cooling
- arc furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Discharge Heating (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属材料の溶解、
溶融金属の精錬に利用される直流アーク炉の炉底電極の
冷却構造に関する。The present invention relates to the dissolution of metallic materials,
The present invention relates to a cooling structure for a bottom electrode of a DC arc furnace used for refining molten metal.
【0002】[0002]
【従来の技術】従来、精錬用アーク炉として、炉内に装
入したスクラップや溶融金属の上方に配置した上部電極
と、炉底や側壁等の炉壁に取付けられた電極との間に電
流を流し、溶融金属の精錬を行なう直流アーク炉が知ら
れている。この種の直流アーク炉における炉底電極は、
炉内にある高温の溶融金属からの受熱、供給電流が通過
するときに発生するジュール熱等によって、極めて過酷
な使用雰囲気に曝される。また、この種の炉底電極は、
炉底板(又は炉体鉄皮)との間に絶縁体が配設され、電
気的に絶縁されている。溶融金属中に鉛が存在している
と、その金属を溶解させた際に鉛が炉底の耐火物の上面
から耐火物の目地やクラックの中に浸透し、もし、その
鉛が前記絶縁体に到達すると、炉底電極と炉底板との間
の電気的絶縁を破壊し、スパーク事故を生じる。この絶
縁破壊が炉底電極の寿命の支配要因の一つとなってい
る。2. Description of the Related Art Conventionally, as a refining arc furnace, a current is passed between an upper electrode disposed above a scrap or molten metal charged in the furnace and an electrode mounted on a furnace wall such as a furnace bottom or a side wall. There is known a DC arc furnace for flowing molten metal and refining molten metal. The bottom electrode in this type of DC arc furnace is
The furnace is exposed to an extremely severe use atmosphere due to heat received from a high-temperature molten metal in the furnace, Joule heat generated when a supply current passes, and the like. Also, this kind of hearth electrode,
An insulator is provided between the furnace bottom plate (or furnace shell) and is electrically insulated. If lead is present in the molten metal, when the metal is melted, the lead penetrates into the joints and cracks of the refractory from the upper surface of the refractory at the furnace bottom, and if the lead is contained in the insulator, , The electrical insulation between the bottom electrode and the bottom plate is destroyed, causing a spark accident. This dielectric breakdown is one of the controlling factors of the life of the furnace bottom electrode.
【0003】そこで、特開平3−279781号公報に
記載された炉底電極においては、棒状電極が備えられた
炉底板と炉底電極の間に絶縁体によって電気的に絶縁さ
れた炉底構造において、炉底板の上面に内張りされた耐
火物に該耐火物の上面から絶縁体に向かって浸透する鉛
を凝固させるための冷却部材を配設することが開示され
ている。しかし、この炉底電極においては、絶縁体を冷
却して絶縁破壊を防止することはできても、炉底電極が
一種類の金属導体、即ち鋼棒で構成されているため、発
生するジュール熱が大きくなるにもかかわらず、炉底電
極自体の冷却が充分でなく、炉底電極の溶損による寿命
が短かいという問題があった。特開昭60−4787号
公報に記載された炉底電極においては、炉底電極下部を
導電性及び熱伝導率の高い金属(例えば、銅)で構成
し、上部は精錬される金属と同種の金属(例えば、SS
材:一般構造用圧延鋼材)で構成し、上部棒状電極と下
部棒状電極が隙間を生じない接合方法で接合することに
よって、炉底電極全体の冷却を強化することが開示され
ている。[0003] Therefore, in the furnace bottom electrode described in Japanese Patent Application Laid-Open No. 3-27981, a furnace bottom structure in which an insulator is electrically insulated between a furnace bottom plate provided with a rod-shaped electrode and a furnace bottom electrode. It is disclosed that a cooling member for solidifying lead penetrating from the upper surface of the refractory toward the insulator is provided in the refractory lined on the upper surface of the furnace bottom plate. However, in this furnace bottom electrode, even though the insulator can be cooled to prevent dielectric breakdown, since the furnace bottom electrode is made of one kind of metal conductor, that is, a steel rod, Joule heat generated is generated. However, there is a problem that the furnace bottom electrode itself is not sufficiently cooled, and the life due to melting of the furnace bottom electrode is short. In the furnace bottom electrode described in Japanese Patent Application Laid-Open No. 60-4787, the lower part of the furnace bottom electrode is made of a metal having high conductivity and high thermal conductivity (eg, copper), and the upper part is made of the same kind of metal as the metal to be refined. Metal (for example, SS
It is disclosed that the cooling of the entire bottom electrode is strengthened by joining the upper rod-shaped electrode and the lower rod-shaped electrode by a joining method that does not generate a gap.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、特開昭
60−4787号公報に記載された炉底電極において
は、例えば異常操業等によって炉底電極の溶融面(図1
中の符号17bで示す)の位置が下がり、上部棒状電極
と下部棒状電極の接合面に接近した場合、接合面を含む
接合部が高温となりその結果強度の低下が発生すると共
に、上部棒状電極と下部棒状電極の熱伝導率の違いによ
る大きな熱応力が発生し、その結果接合部において変
形、亀裂が発生するという問題があった。また、操業が
終わり自然冷却されるとき、接合部には凝固による収
縮、及び冷却による収縮によって発生する大きな応力に
よって変形や亀裂が発生し、さらには上、下部棒状電極
間の剥離が発生する恐れがあり、このため炉底電極の再
利用が難しく、炉底電極のコストアップを招いていた。However, in the furnace bottom electrode described in Japanese Patent Application Laid-Open No. 60-4787, the molten surface of the furnace bottom electrode (see FIG.
(Indicated by reference numeral 17b in the drawing) is lowered, and when the joint surface between the upper rod-shaped electrode and the lower rod-shaped electrode is approached, the temperature of the joint including the joint surface becomes high, and as a result, the strength is reduced. There is a problem that a large thermal stress is generated due to a difference in thermal conductivity of the lower rod-shaped electrode, and as a result, a deformation or a crack is generated at a joint. In addition, when the operation is completed and natural cooling is performed, the joint may be deformed or cracked due to the large stress generated by the shrinkage due to solidification and the shrinkage due to the cooling, and furthermore, the separation between the upper and lower rod-shaped electrodes may occur. For this reason, it is difficult to reuse the furnace bottom electrode, resulting in an increase in the cost of the furnace bottom electrode.
【0005】本発明はこのような事情に鑑みてなされた
もので、上部棒状電極と下部棒状電極の接合部における
変形、亀裂の発生が防止でき、炉底電極の寿命を長くで
きる直流アーク炉の炉底電極の冷却構造を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and a DC arc furnace which can prevent deformation and cracking at a joint between an upper rod electrode and a lower rod electrode and can prolong the life of a furnace bottom electrode. An object of the present invention is to provide a cooling structure for a furnace bottom electrode.
【0006】[0006]
【課題を解決するための手段】前記目的に沿う請求項1
記載の直流アーク炉の炉底電極の冷却構造は、炉底板及
び該炉底板上に内張りされた耐火物からなる炉壁を貫通
して、精錬される金属と同種の金属からなる上部棒状電
極と導電性及び熱伝導率が良好な金属からなる下部棒状
電極とを接合して形成された炉底電極が設けられ、該炉
底電極と前記炉底板との間は絶縁体によって電気的に絶
縁されている直流アーク炉の炉底電極の冷却構造におい
て、前記炉底電極の接合面の高さまで側面冷却部材を位
置させて、該接合面を周囲から冷却する。請求項2記載
の直流アーク炉の炉底電極の冷却構造は、請求項1記載
の直流アーク炉の炉底電極の冷却構造において、前記側
面冷却部材を前記絶縁体に近接して設けている。According to the present invention, there is provided a semiconductor device comprising:
The cooling structure of the bottom electrode of the direct current arc furnace described above, penetrates a furnace bottom plate and a furnace wall made of a refractory lined on the furnace bottom plate, and an upper rod-shaped electrode made of the same kind of metal as the metal to be refined. A furnace bottom electrode formed by joining a lower rod-shaped electrode made of a metal having good conductivity and thermal conductivity is provided, and the furnace bottom electrode and the furnace bottom plate are electrically insulated by an insulator. In the cooling structure of the bottom electrode of the DC arc furnace, the side cooling member is positioned up to the height of the bonding surface of the bottom electrode, and the bonding surface is cooled from the surroundings. The cooling structure of the bottom electrode of the DC arc furnace according to the second aspect is the cooling structure of the bottom electrode of the DC arc furnace according to the first aspect, wherein the side surface cooling member is provided close to the insulator.
【0007】請求項3記載の直流アーク炉の炉底電極の
冷却構造は、請求項1記載の直流アーク炉の炉底電極の
冷却構造において、前記側面冷却部材は、前記炉底電極
の外周面に接触する冷却用ジャケットである。請求項4
記載の直流アーク炉の炉底電極の冷却構造は、請求項3
記載の直流アーク炉の炉底電極の冷却構造において、前
記冷却用ジャケットは、冷媒の通路を先端側を狭くし
て、該冷媒の流速を増加する構造としている。請求項5
記載の直流アーク炉の炉底電極の冷却構造は、請求項1
記載の直流アーク炉の炉底電極の冷却構造において、前
記下部棒状電極内に冷媒を循環して、前記接合面付近を
冷却する。According to a third aspect of the present invention, there is provided a cooling structure for a bottom electrode of a DC arc furnace, wherein the side surface cooling member comprises an outer peripheral surface of the bottom electrode. A cooling jacket that comes in contact with the cooling jacket. Claim 4
The cooling structure of the bottom electrode of the DC arc furnace according to claim 3 is a third embodiment.
In the cooling structure of the bottom electrode of the DC arc furnace described above, the cooling jacket has a structure in which a flow path of the refrigerant is narrowed on a tip side to increase a flow velocity of the refrigerant. Claim 5
The cooling structure of the bottom electrode of the DC arc furnace according to claim 1 is characterized in that:
In the cooling structure for a bottom electrode of a DC arc furnace described above, a coolant is circulated in the lower rod-shaped electrode to cool the vicinity of the joint surface.
【0008】[0008]
【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る直流アーク炉の炉底電極の冷却構造の説明図で
ある。本発明の一実施の形態に係る直流アーク炉の炉底
電極の冷却構造10は、図1に示すように、直流アーク
炉の炉底11はパーマ煉瓦12の内側(図1において上
側)に不定形耐火物13がライニングされており、パー
マ煉瓦12の外側(図1において下側)を炉底板(又は
鉄皮)14で支持されている。なお、炉底板14の上面
14aより上方を炉内と呼び、パーマ煉瓦12と不定形
耐火物13とを耐火物と呼ぶ。炉底板14、パーマ煉瓦
12及び不定形耐火物13で構成される炉壁15を貫通
して接合面16を有する、上部棒状電極17と下部棒状
電極18とが接合された炉底電極19が炉底11に装着
されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an explanatory view of a cooling structure of a bottom electrode of a DC arc furnace according to one embodiment of the present invention. As shown in FIG. 1, a cooling structure 10 for a bottom electrode of a DC arc furnace according to an embodiment of the present invention has a furnace bottom 11 of a DC arc furnace which is not located inside a perm brick 12 (upper side in FIG. 1). A fixed refractory 13 is lined, and the outer side (the lower side in FIG. 1) of the perm brick 12 is supported by a furnace bottom plate (or iron shell) 14. The upper side of the upper surface 14a of the furnace bottom plate 14 is referred to as the inside of the furnace, and the perm bricks 12 and the irregular refractory 13 are referred to as refractories. A furnace bottom electrode 19 having a joint surface 16 penetrating a furnace wall 15 composed of a furnace bottom plate 14, a permanent brick 12, and an amorphous refractory 13 and having an upper bar-shaped electrode 17 and a lower bar-shaped electrode 18 joined together is provided. Mounted on the bottom 11.
【0009】接合面16付近及び下部棒状電極18の周
囲には、炉底電極19の外周面26に内周面25が接触
して設けられた、側面冷却部材の一例である冷却用ジャ
ケット20が配置され、冷却用ジャケット20と炉底板
14の間には絶縁体21が配置され、絶縁体21によっ
て冷却用ジャケット20と炉底板14は電気的に絶縁さ
れている。冷却用ジャケット20へ冷媒供給管22から
送り込まれた冷媒の一例である低温の水23は、冷却用
ジャケット20内を通る間に接合面16付近及び下部棒
状電極18の周囲から、さらに絶縁体21の周囲から熱
を奪い、冷媒排出管24から温かい水23となって排出
される。以下、これらについて詳しく説明する。A cooling jacket 20, which is an example of a side cooling member, is provided in the vicinity of the joint surface 16 and around the lower rod-shaped electrode 18, with an inner peripheral surface 25 being in contact with an outer peripheral surface 26 of the furnace bottom electrode 19. The insulator 21 is arranged between the cooling jacket 20 and the furnace bottom plate 14, and the cooling jacket 20 and the furnace bottom plate 14 are electrically insulated by the insulator 21. The low-temperature water 23, which is an example of the refrigerant sent from the refrigerant supply pipe 22 to the cooling jacket 20, is passed through the cooling jacket 20 from the vicinity of the joining surface 16 and around the lower rod-shaped electrode 18, and further from the insulator 21. The heat is removed from the surroundings, and is discharged as warm water 23 from the refrigerant discharge pipe 24. Hereinafter, these will be described in detail.
【0010】炉底電極19の上部を構成する上部棒状電
極17は従来と同様、精錬される金属と同じ種類の金
属、即ちSS材等からなっており、炉底電極19の下部
を構成する下部棒状電極18も従来と同様、導電性及び
熱伝導率が良好な金属の一例である銅からなっており、
上部棒状電極17と下部棒状電極18は隙間を生じない
方法によって、強固な接合面16を有する炉底電極19
に形成される。なお、操業中には、上部棒状電極17は
図に示す位置まで溶融され、溶融金属部17aとなり、
操業終了後、再び凝固して上部棒状電極17を形成する
ことになる。図中の符号17bは溶融金属の溶融面を表
す。The upper bar-like electrode 17 constituting the upper part of the furnace bottom electrode 19 is made of the same kind of metal as the metal to be refined, that is, SS material or the like, as in the prior art. The rod-shaped electrode 18 is also made of copper, which is an example of a metal having good conductivity and thermal conductivity, as in the related art.
The upper bar-shaped electrode 17 and the lower bar-shaped electrode 18 are connected to each other by a method that does not generate a gap, and a furnace bottom electrode 19 having a strong joint surface 16 is provided.
Formed. During operation, the upper bar-shaped electrode 17 is melted to the position shown in the figure and becomes a molten metal portion 17a.
After the operation is completed, the upper electrode 17 is formed again by solidification. Reference numeral 17b in the figure represents the molten surface of the molten metal.
【0011】冷却用ジャケット20は図に示すように、
銅からなる中空コップ形状で、内周面25は上部棒状電
極17の下端部と下部棒状電極18全体の外周面26と
接触するように形成されている。冷却用ジャケット20
の上端面27は、パーマ煉瓦12と不定形耐火物13と
の境界面と同じレベルになるように配置され、中間部の
外周面28には環状のフランジ部29が突出して設けら
れ、フランジ部29、絶縁体21及び炉底板14は図示
しない複数個の絶縁を考慮したボルトによって締結され
ている。また、冷却用ジャケット20の上端部の外周面
28にパーマ煉瓦12の内周面が接触している。従っ
て、この銅製のフランジ部29のフィン効果によって絶
縁体21を含め、絶縁体21の周囲の炉底板14及びパ
ーマ煉瓦12を効果的に冷却できるので、溶融金属中の
鉛がパーマ煉瓦12及び炉底板14を通って絶縁体21
に浸透することを確実に防止することができる。As shown in FIG.
The inner peripheral surface 25 is formed in a hollow cup shape made of copper so as to contact the lower end of the upper bar-shaped electrode 17 and the outer peripheral surface 26 of the entire lower bar-shaped electrode 18. Cooling jacket 20
The upper end surface 27 is arranged so as to be at the same level as the boundary surface between the permanent brick 12 and the refractory 13, and an annular flange portion 29 is provided so as to protrude from an outer peripheral surface 28 of the intermediate portion. The insulator 29, the insulator 21, and the furnace bottom plate 14 are fastened by a plurality of bolts (not shown) in consideration of insulation. The inner peripheral surface of the perm brick 12 is in contact with the outer peripheral surface 28 at the upper end of the cooling jacket 20. Therefore, the furnace bottom plate 14 and the perm brick 12 around the insulator 21 including the insulator 21 can be effectively cooled by the fin effect of the copper flange portion 29, so that the lead in the molten metal can reduce the lead in the perm brick 12 and the furnace. Insulator 21 through bottom plate 14
It can be reliably prevented from penetrating into.
【0012】また、冷却用ジャケット20の外壁30と
内壁31によって形成される中空部32には、水23に
よる冷却を効率的に行なうため、水23の通路33を確
保するように、仕切り片34が螺旋状に設けられると共
に、冷却用ジャケット20の先端部側、即ち上部棒状電
極17の下端部付近での冷却効果を上げるように、水2
3の流速が漸次増加するように、通路33の断面積が小
さくなるように仕切り片34を配置している。そして、
冷却用ジャケット20の下部に接続された冷媒供給管2
2から送り込まれ、冷却用ジャケット20内の次第に絞
られた通路33を上昇旋回しながら速度が増した水23
は、冷却用ジャケット20の上端部に達すると、その速
度を次第に落としながら下降旋回して冷媒排出管24か
ら排出されるような構造となっている。例えば、このよ
うな通路33を形成する構造として、二条ねじの形状に
類似した構成にして、水入側と水出側の通路を形成し、
ねじのピッチを漸次変化させるようにしたものとするこ
とができる。このようにして、炉底電極19の接合面1
6を効果的に冷却することによって、溶融面17bを上
昇させることができ、接合面16を含む接合部の変形、
亀裂を効果的に抑制できる。Further, in the hollow portion 32 formed by the outer wall 30 and the inner wall 31 of the cooling jacket 20, in order to efficiently cool with the water 23, the partition piece 34 is formed so as to secure a passage 33 for the water 23. Are provided spirally, and water 2 is provided so as to enhance the cooling effect on the tip side of the cooling jacket 20, that is, near the lower end of the upper bar-shaped electrode 17.
The partitioning pieces 34 are arranged so that the cross-sectional area of the passage 33 becomes smaller so that the flow velocity of the passage 3 gradually increases. And
Refrigerant supply pipe 2 connected to the lower part of cooling jacket 20
The water 23 which has been sent from the cooling jacket 20 and whose speed has increased while turning upward in the passage 33 gradually narrowed in the cooling jacket 20.
When it reaches the upper end of the cooling jacket 20, it gradually descends while gradually decreasing its speed and is discharged from the refrigerant discharge pipe 24. For example, as a structure for forming such a passage 33, a structure similar to the shape of a double thread is formed, and a water inlet side and a water outlet side passage are formed.
The pitch of the screw may be gradually changed. Thus, the bonding surface 1 of the furnace bottom electrode 19
By effectively cooling 6, the molten surface 17b can be raised, and deformation of the joint including the joint surface 16,
Cracks can be effectively suppressed.
【0013】かかる構成を有する本発明の一実施の形態
に係る直流アーク炉の炉底電極の冷却構造10を備えた
アーク炉を使用した精錬作業について、図1を参照しな
がら説明する。アーク炉の炉底11上に溶解原料である
スクラップが装入され、周知のように図外の上部電極と
炉底電極19との間に電力を供給することによって、ス
クラップが溶解されて溶融金属となると共に、炉底電極
19の上部棒状電極17も図に示すように溶融し、溶融
金属部17aが形成される。A refining operation using an arc furnace having a cooling structure 10 for a bottom electrode of a DC arc furnace according to an embodiment of the present invention having such a configuration will be described with reference to FIG. A scrap, which is a raw material for melting, is loaded on the furnace bottom 11 of the arc furnace, and power is supplied between an upper electrode (not shown) and a furnace bottom electrode 19, as is well known, so that the scrap is melted and the molten metal is melted. At the same time, the upper bar-shaped electrode 17 of the furnace bottom electrode 19 is also melted as shown in the figure, and a molten metal portion 17a is formed.
【0014】操業中においては、溶融金属からの熱が炉
底11に伝達され、不定形耐火物13、パーマ煉瓦12
及び炉底板14の温度が上昇する。このため前記スクラ
ップ中に鉛が混在すると、溶解によって溶融した鉛は不
定形耐火物13の上面35や内周面36から不定形耐火
物13のクラックを通して、さらにパーマ煉瓦12の目
地やクラックを通して浸透してくるが、冷却用ジャケッ
ト20内の通路33に水23を流して、絶縁体21を含
め、絶縁体21の周囲の炉底板14及びパーマ煉瓦12
を効果的に冷却できるので、溶融金属中の鉛がパーマ煉
瓦12及び炉底板14を通って絶縁体21に浸透するこ
とを確実に防止することができる。同時に、冷却用ジャ
ケット20によって炉底電極19の接合面16付近や上
部棒状電極17の下端部を冷却するので、炉底電極19
を効果的に冷却することによって、溶融面17bを上昇
させることができ、接合面16の温度を低く抑えること
ができる。従って、接合面16を含む接合部の強度の低
下を抑制できるので、変形、亀裂さらに上、下部棒状電
極17、18間の剥離を抑制できる。During operation, heat from the molten metal is transmitted to the furnace bottom 11, and the refractory 13, the permanent brick 12
And the temperature of the furnace bottom plate 14 rises. For this reason, when lead is mixed in the scrap, the lead melted by melting penetrates from the upper surface 35 and the inner peripheral surface 36 of the amorphous refractory 13 through the cracks in the amorphous refractory 13 and further through the joints and cracks of the permanent brick 12. However, the water 23 flows through the passage 33 in the cooling jacket 20, and the furnace bottom plate 14 and the perm brick 12 around the insulator 21, including the insulator 21.
Can be effectively cooled, so that the lead in the molten metal can be reliably prevented from penetrating into the insulator 21 through the perm brick 12 and the furnace bottom plate 14. At the same time, the vicinity of the joint surface 16 of the bottom electrode 19 and the lower end of the upper bar electrode 17 are cooled by the cooling jacket 20, so that the bottom electrode 19 is cooled.
Is effectively cooled, the molten surface 17b can be raised, and the temperature of the joint surface 16 can be kept low. Accordingly, since a decrease in the strength of the bonding portion including the bonding surface 16 can be suppressed, deformation, cracking, and separation between the lower bar-shaped electrodes 17 and 18 can be suppressed.
【0015】図2は本発明の他の実施の形態に係る直流
アーク炉の炉底電極の冷却構造10aの説明図である。
なお、同一の構成要素については同一の符号を、また、
類似の構成要素については添字を付して詳しい説明を省
略する。本発明の他の実施の形態に係る直流アーク炉の
炉底電極の冷却構造10aが直流アーク炉の炉底電極の
冷却構造10と異なる点は、下部棒状電極18aを上部
棒状電極17との接合面16を底面とする逆コップ形状
とし、下部棒状電極18aの内部を、図示しない冷媒供
給管及び冷媒排出管を介して水等の冷媒を循環させなが
ら接合面16の近傍を冷却するようにしている。側面冷
却部材の一例である冷却用ジャケット20aは、冷却用
ジャケット20と略同様な配置と構造とし、炉底電極1
9aの外周面26a及びパーマ煉瓦12の内周面に接し
て冷却する構造としている。なお、ここで、34aは均
等配置された2条の仕切り片を示し、これによって各仕
切り片34aの中間部に水入側と水出側を交互に形成し
ている。直流アーク炉の炉底電極の冷却構造10aにお
いても、図に示すように、下部棒状電極18aの内部か
ら接合面16の近傍を冷却するようにしているので、精
錬作業中に溶融金属の溶融面17bを接合面16から遠
ざけることができる。FIG. 2 is an explanatory view of a cooling structure 10a of a bottom electrode of a DC arc furnace according to another embodiment of the present invention.
Note that the same components are denoted by the same reference numerals,
Similar components are appended with subscripts and detailed description is omitted. The difference between the cooling structure 10a of the bottom electrode of the DC arc furnace according to another embodiment of the present invention and the cooling structure 10 of the bottom electrode of the DC arc furnace is that the lower rod-shaped electrode 18a is joined to the upper rod-shaped electrode 17. The inside of the lower rod-shaped electrode 18a is cooled in the vicinity of the joint surface 16 while circulating a coolant such as water through a coolant supply pipe and a coolant discharge pipe (not shown). I have. The cooling jacket 20a, which is an example of the side cooling member, has substantially the same arrangement and structure as the cooling jacket 20.
The outer peripheral surface 26a of 9a and the inner peripheral surface of the perm brick 12 are configured to be cooled. Here, reference numeral 34a denotes two equally-partitioned partition pieces, whereby a water inlet side and a water discharge side are alternately formed at an intermediate portion of each partition piece 34a. Also in the cooling structure 10a of the bottom electrode of the DC arc furnace, as shown in the figure, the vicinity of the joining surface 16 is cooled from the inside of the lower rod-shaped electrode 18a. 17b can be kept away from the joining surface 16.
【0016】図1に示す実施の形態においては、上部棒
状電極17と下部棒状電極18との接合面16の位置が
炉内(炉底板14の上面14aより上方を表す)にある
場合には、接合面16付近の冷却を強力に行なうため
に、側面冷却部材として冷却用ジャケット20に水を送
る構造としたが、接合面16の位置が炉外(炉底板14
の上面14aより下方を表す)にある場合には、必要に
応じて、もっと簡単な側面冷却部材(例えば、一端を炉
体外部に突出させた冷却材を埋め込む)でも可能であ
る。さらに、側面冷却部材として冷却用ジャケット20
を使用したが、冷媒を通すことができるパイプ体を炉内
に埋め込み、パイプ体に冷媒を循環する構造とすること
もできる。図2に示す実施の形態においては、下部棒状
電極18aによる接合面付近の冷却のために、下部棒状
電極18aの内部に円柱状の冷媒循環用の空間を設けて
いるが、この構造に限定されない。In the embodiment shown in FIG. 1, when the position of the joint surface 16 between the upper bar-shaped electrode 17 and the lower bar-shaped electrode 18 is in the furnace (representing above the upper surface 14a of the furnace bottom plate 14), In order to strongly cool the vicinity of the joining surface 16, water is supplied to the cooling jacket 20 as a side cooling member, but the position of the joining surface 16 is outside the furnace (the furnace bottom plate 14).
If necessary, a simpler side cooling member (for example, a coolant having one end protruding outside the furnace body) may be used. Further, the cooling jacket 20 is used as a side cooling member.
Was used, but it is also possible to embed a pipe body through which the refrigerant can pass through in the furnace and circulate the refrigerant through the pipe body. In the embodiment shown in FIG. 2, a columnar coolant circulation space is provided inside the lower rod-shaped electrode 18 a for cooling the vicinity of the joint surface by the lower rod-shaped electrode 18 a, but the present invention is not limited to this structure. .
【0017】[0017]
【発明の効果】請求項1〜5記載の直流アーク炉の炉底
電極の冷却構造においては、炉底電極の接合面の高さま
で側面冷却部材を位置させて、該接合面を周囲から冷却
するので、接合面の強度の低下が抑制され、接合部にお
ける変形、亀裂の発生が防止でき、炉底電極の寿命を長
くできる。特に、請求項2記載の直流アーク炉の炉底電
極の冷却構造においては、側面冷却部材を絶縁体に近接
して設けているので、側面冷却部材によって絶縁体、炉
底板及び該炉底板上に内張りされた耐火物を鉛の融点よ
り低い温度に効果的に冷却でき、その結果溶融金属中に
存在している鉛が耐火物の目地やクラックの中に浸透し
ても、絶縁体に達するまでに凝固でき、炉底電極と炉底
板との間で発生するスパーク事故を防止できる。According to the cooling structure for a bottom electrode of a DC arc furnace according to the first to fifth aspects, the side cooling member is positioned up to the height of the bonding surface of the bottom electrode, and the bonding surface is cooled from the surroundings. Therefore, a decrease in the strength of the bonding surface is suppressed, and deformation and cracking at the bonding portion can be prevented, and the life of the furnace bottom electrode can be extended. In particular, in the cooling structure of the bottom electrode of the DC arc furnace according to the second aspect, since the side cooling member is provided close to the insulator, the side cooling member allows the insulator, the furnace bottom plate and the bottom plate to be placed on the bottom plate. The lined refractory can be effectively cooled to a temperature below the melting point of lead, so that even if the lead present in the molten metal penetrates into the joints and cracks of the refractory, it reaches the insulator. And a spark accident occurring between the bottom electrode and the bottom plate can be prevented.
【0018】請求項3記載の直流アーク炉の炉底電極の
冷却構造においては、側面冷却部材は、炉底電極の外周
面及び絶縁体に接触する冷却用ジャケットであるので、
より効果的に炉底電極の接合面及び絶縁体等を冷却でき
る。請求項4記載の直流アーク炉の炉底電極の冷却構造
においては、冷却用ジャケットは、冷媒の通路を先端側
を狭くして、該冷媒の流速を増加する構造としているの
で、冷却効率を向上できる。請求項5記載の直流アーク
炉の炉底電極の冷却構造においては、下部棒状電極内に
冷媒を循環して、接合面付近を冷却するので、さらに接
合面の強度の低下を抑制できる。In the cooling structure for a bottom electrode of a DC arc furnace according to the third aspect, the side cooling member is a cooling jacket that contacts the outer peripheral surface of the bottom electrode and the insulator.
The joint surface of the furnace bottom electrode and the insulator can be more effectively cooled. In the cooling structure for the bottom electrode of the DC arc furnace according to the fourth aspect, the cooling jacket has a structure in which the front end side of the cooling passage is narrowed to increase the flow velocity of the cooling medium, thereby improving the cooling efficiency. it can. In the cooling structure for the bottom electrode of the DC arc furnace according to the fifth aspect, since the coolant is circulated in the lower rod-shaped electrode to cool the vicinity of the joint surface, a decrease in the strength of the joint surface can be further suppressed.
【図1】本発明の一実施の形態に係る直流アーク炉の炉
底電極の冷却構造の説明図である。FIG. 1 is an explanatory diagram of a cooling structure of a bottom electrode of a DC arc furnace according to one embodiment of the present invention.
【図2】本発明の他の実施の形態に係る直流アーク炉の
炉底電極の冷却構造の説明図である。FIG. 2 is an explanatory view of a cooling structure of a bottom electrode of a DC arc furnace according to another embodiment of the present invention.
10 直流アーク炉の炉底電極の冷却構造 10a 直流アーク炉の炉底電極の冷却構造 11 炉底 12 パーマ煉
瓦 13 不定形耐火物 14 炉底板 14a 上面 15 炉壁 16 接合面 17 上部棒状
電極 17a 溶融金属部 17b 溶融面 18 下部棒状電極 18a 下部棒
状電極 19 炉底電極 19a 炉底電
極 20 冷却用ジャケット(側面冷却部材) 20a 冷却用ジャケット(側面冷却部材) 21 絶縁体 22 冷媒供給
管 23 水(冷媒) 24 冷媒排出
管 25 内周面 26 外周面 26a 外周面 27 上端面 28 外周面 29 フランジ
部 30 外壁 31 内壁 32 中空部 32a 中空部 33 通路 34 仕切り片 34a 仕切り片 35 上面 36 内周面DESCRIPTION OF SYMBOLS 10 Cooling structure of bottom electrode of DC arc furnace 10a Cooling structure of bottom electrode of DC arc furnace 11 Furnace bottom 12 Perm brick 13 Irregular refractory 14 Furnace bottom plate 14a Upper surface 15 Furnace wall 16 Joining surface 17 Upper bar electrode 17a Melting Metal part 17b Fused surface 18 Lower rod electrode 18a Lower rod electrode 19 Furnace bottom electrode 19a Furnace bottom electrode 20 Cooling jacket (side cooling member) 20a Cooling jacket (side cooling member) 21 Insulator 22 Refrigerant supply pipe 23 Water (coolant) ) 24 Refrigerant discharge pipe 25 Inner peripheral surface 26 Outer peripheral surface 26a Outer peripheral surface 27 Upper end surface 28 Outer peripheral surface 29 Flange part 30 Outer wall 31 Inner wall 32 Hollow part 32a Hollow part 33 Passage 34 Partition piece 34a Partition piece 35 Upper face 36 Inner peripheral face
Claims (5)
火物からなる炉壁を貫通して、精錬される金属と同種の
金属からなる上部棒状電極と導電性及び熱伝導率が良好
な金属からなる下部棒状電極とを接合して形成された炉
底電極が設けられ、該炉底電極と前記炉底板との間は絶
縁体によって電気的に絶縁されている直流アーク炉の炉
底電極の冷却構造において、 前記炉底電極の接合面の高さまで側面冷却部材を位置さ
せて、該接合面を周囲から冷却することを特徴とする直
流アーク炉の炉底電極の冷却構造。1. An upper rod-shaped electrode made of a metal of the same kind as a metal to be refined penetrating a furnace wall made of a furnace bottom plate and a refractory lined on the furnace bottom plate and having good conductivity and thermal conductivity. A bottom electrode formed by joining a lower rod-shaped electrode made of metal is provided, and a bottom electrode of a DC arc furnace in which the bottom electrode and the bottom plate are electrically insulated by an insulator. The cooling structure for a bottom electrode of a DC arc furnace, wherein a side cooling member is positioned up to a height of a joint surface of the bottom electrode, and the joint surface is cooled from the periphery.
て設けた請求項1記載の直流アーク炉の炉底電極の冷却
構造。2. The cooling structure for a bottom electrode of a DC arc furnace according to claim 1, wherein said side cooling member is provided close to said insulator.
周面に接触する冷却用ジャケットである請求項1記載の
直流アーク炉の炉底電極の冷却構造。3. The cooling structure for a bottom electrode of a DC arc furnace according to claim 1, wherein the side surface cooling member is a cooling jacket that contacts an outer peripheral surface of the bottom electrode.
先端側を狭くして、該冷媒の流速を増加する構造とした
請求項3記載の直流アーク炉の炉底電極の冷却構造。4. The cooling structure for a bottom electrode of a DC arc furnace according to claim 3, wherein the cooling jacket has a structure in which a flow path of the refrigerant is narrowed at a tip end side to increase a flow velocity of the refrigerant.
前記接合面付近を冷却する請求項1記載の直流アーク炉
の炉底電極の冷却構造。5. A coolant is circulated in the lower rod-shaped electrode,
The cooling structure for a bottom electrode of a DC arc furnace according to claim 1, wherein the vicinity of the joint surface is cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3377098A JPH11219781A (en) | 1998-01-31 | 1998-01-31 | Cooling structure for furnace-bottom electrode of direct current arc furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3377098A JPH11219781A (en) | 1998-01-31 | 1998-01-31 | Cooling structure for furnace-bottom electrode of direct current arc furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11219781A true JPH11219781A (en) | 1999-08-10 |
Family
ID=12395694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3377098A Withdrawn JPH11219781A (en) | 1998-01-31 | 1998-01-31 | Cooling structure for furnace-bottom electrode of direct current arc furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11219781A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030095757A (en) * | 2002-06-14 | 2003-12-24 | 주식회사 포스코 | Lower electrode of dc electric furnace with improved cooling-ability and transmitting-ability |
KR100506389B1 (en) * | 2000-11-14 | 2005-08-10 | 주식회사 포스코 | Lower Electrode Cooling Mold of DC Electric Furnace |
CN103415101A (en) * | 2013-08-09 | 2013-11-27 | 上海森松压力容器有限公司 | Novel electrode structure for resistance furnace |
JP2018503789A (en) * | 2014-11-27 | 2018-02-08 | ダニエリ アンド シー.オフィス メカニケ エスピーエーDanieli&C.Officine Meccaniche Spa | DC arc furnace for metallurgical plant |
CN109099703A (en) * | 2018-08-22 | 2018-12-28 | 申达电气集团有限公司 | A kind of bottomless electrode DC electric arc furnaces |
-
1998
- 1998-01-31 JP JP3377098A patent/JPH11219781A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100506389B1 (en) * | 2000-11-14 | 2005-08-10 | 주식회사 포스코 | Lower Electrode Cooling Mold of DC Electric Furnace |
KR20030095757A (en) * | 2002-06-14 | 2003-12-24 | 주식회사 포스코 | Lower electrode of dc electric furnace with improved cooling-ability and transmitting-ability |
CN103415101A (en) * | 2013-08-09 | 2013-11-27 | 上海森松压力容器有限公司 | Novel electrode structure for resistance furnace |
JP2018503789A (en) * | 2014-11-27 | 2018-02-08 | ダニエリ アンド シー.オフィス メカニケ エスピーエーDanieli&C.Officine Meccaniche Spa | DC arc furnace for metallurgical plant |
CN109099703A (en) * | 2018-08-22 | 2018-12-28 | 申达电气集团有限公司 | A kind of bottomless electrode DC electric arc furnaces |
CN109099703B (en) * | 2018-08-22 | 2023-10-31 | 申达电气集团有限公司 | DC arc furnace without bottom electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6128914B2 (en) | ||
US4125737A (en) | Electric arc furnace hearth connection | |
US4541099A (en) | DC Arc furnace improved hearth construction | |
US4754464A (en) | Bottom electrodes for arc furnaces | |
JP2532343B2 (en) | Bottom electrode for DC arc furnace | |
JPS60159584A (en) | Direct current arc furnace | |
JPH11219781A (en) | Cooling structure for furnace-bottom electrode of direct current arc furnace | |
KR920006600B1 (en) | Wall electrode of a metallurgical vessel | |
US2512206A (en) | Electric salt bath furnace | |
JPH11223464A (en) | Electric furnace | |
US3997712A (en) | Electric arc furnace | |
JPS61116282A (en) | Furnace-wall electrode for metallurgical electric furnace using direct current current | |
JP3240191B2 (en) | Furnace wall electrode of DC electrometallurgical furnace | |
US6137822A (en) | Direct current arc furnace and a method for melting or heating raw material or molten material | |
JP2994475B2 (en) | Metallurgical vessel with at least one electrode penetrating the wall | |
KR101159968B1 (en) | Cooling Panel of Electric Furnace | |
JPS60111880A (en) | Electric furnace | |
RU2112187C1 (en) | Electric furnace hearth electrode | |
RU2285356C2 (en) | Bottom electrode for electric furnace | |
US4532633A (en) | DC arc furnace improved hearth construction | |
US2508004A (en) | Electric salt bath furnace | |
US3108151A (en) | Electric furnace | |
JP2993021B2 (en) | Bottom electrode of DC arc furnace | |
JPH06174382A (en) | Dc arc furnace | |
JP2010038376A (en) | Energization heating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050405 |