JP2962150B2 - Bottom electrode for DC arc furnace - Google Patents

Bottom electrode for DC arc furnace

Info

Publication number
JP2962150B2
JP2962150B2 JP16693194A JP16693194A JP2962150B2 JP 2962150 B2 JP2962150 B2 JP 2962150B2 JP 16693194 A JP16693194 A JP 16693194A JP 16693194 A JP16693194 A JP 16693194A JP 2962150 B2 JP2962150 B2 JP 2962150B2
Authority
JP
Japan
Prior art keywords
electrode
conductor
bottom electrode
repair
arc furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16693194A
Other languages
Japanese (ja)
Other versions
JPH0829062A (en
Inventor
敏道 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP16693194A priority Critical patent/JP2962150B2/en
Publication of JPH0829062A publication Critical patent/JPH0829062A/en
Application granted granted Critical
Publication of JP2962150B2 publication Critical patent/JP2962150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、製鋼用の直流アーク炉
用炉底電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottom electrode for a DC arc furnace for steelmaking.

【0002】[0002]

【従来の技術】図6は従来の直流アーク炉用炉底電極の
構造を示す断面図である。図6において、1は炉底部、
1aは炉底部に敷き詰められた耐火物、2,3は図示さ
れない電源よりの電力を受けて電流を流す導体、4は冷
却空気導入路4aを備えたターミナル、5は基盤、6は
支持基盤、7は支持基盤6を貫通して炉底に頭部を突出
しているコンタクトピン、8はコンタクトピン7の周囲
を不定形耐火物等により充填された電極ブロック、9は
黒鉛電極、11は溶鋼である。図6によって明らかなよ
うに従来の炉底電極の構造は、炉底部1のほぼ中央部に
多数(約200本)のコンタクトピン7とこれらを接合
する基盤5があり、基盤5は導体3及び導体2を介して
電源に連結されている。コンタクトピン7は電極ブロッ
ク8によって周囲を包まれ、この電極ブロック8を支持
基盤6が支えて炉底部1の中央部に設けられている。
2. Description of the Related Art FIG. 6 is a sectional view showing the structure of a conventional bottom electrode for a DC arc furnace. In FIG. 6, 1 is a furnace bottom,
1a is a refractory laid on the bottom of the furnace, 2 and 3 are conductors that receive electric power from a power supply (not shown) and flow current, 4 is a terminal having a cooling air introduction path 4a, 5 is a base, 6 is a support base, 7 is a contact pin penetrating the support base 6 and projecting its head to the furnace bottom, 8 is an electrode block filled with an irregular refractory around the contact pin 7, 9 is a graphite electrode, 11 is molten steel. is there. As is clear from FIG. 6, the structure of the conventional furnace bottom electrode has a large number (about 200) of contact pins 7 and a base 5 for joining them at almost the center of the furnace bottom 1. It is connected to a power supply via a conductor 2. The contact pin 7 is surrounded by an electrode block 8, and the electrode block 8 is supported by a support base 6 and is provided at the center of the furnace bottom 1.

【0003】従来の直流アーク炉底電極は前述した構造
であり、電流は導体2、導体3、ターミナル4、基盤5
からコンタクトピン7を経て黒鉛電極9に流れてアーク
となり、このアーク熱により鉄屑などの原料が溶かされ
て溶鋼11となり精錬操業が行われる。この時、冷却用
の空気は冷却空気導入路4aを抜けて基盤5と支持基盤
6の間を通りコンタクトピン7を冷却する。
[0003] The conventional DC arc furnace bottom electrode has the above-described structure, and current is applied to the conductor 2, the conductor 3, the terminal 4, and the base 5.
Then, it flows to the graphite electrode 9 through the contact pin 7 to form an arc, and the raw material such as iron chips is melted by the heat of the arc to become molten steel 11 and the refining operation is performed. At this time, the cooling air passes through the cooling air introduction passage 4a, passes between the base 5 and the support base 6, and cools the contact pins 7.

【0004】前述した従来の直流アーク炉底電極は次の
ような問題があった。 (1)溶解時間の経過と共に電極ブロック8が損耗し残
厚が一定の厚み以下になると、交換しなければならな
い。このため電極ブロック8の損耗状態が一定程度に達
した時、炉を開放して200本を超える多数のコンタク
トピン7の継ぎ足しの補修が提案されているが、ピン本
数が多く現実的には非常に困難な作業であり、ピン7と
共に電極ブロック8全体の交換を行うのが通常であり電
極の寿命の延長に限界がある。 (2)直流アーク炉においては電気抵抗の変動で電流の
偏流が発生することがあり、偏流が発生すると偏流範囲
に存在するコンタクトピン7に電流が集中して流れるの
で電流密度が異常に高くなり、コンタクトピン7の内で
発生するジュール熱によりコンタクトピン7そのものや
電極ブロック8の損耗を早め、直流アーク炉底電極の寿
命が短くなる原因となる。
[0004] The above-mentioned conventional DC arc furnace bottom electrode has the following problems. (1) If the electrode block 8 wears out with the lapse of the melting time and the remaining thickness becomes less than a certain thickness, it must be replaced. For this reason, it has been proposed to open the furnace when the state of wear of the electrode block 8 reaches a certain level, and to repair the extension of a large number of contact pins 7 exceeding 200. It is usually difficult to replace the entire electrode block 8 together with the pins 7, and there is a limit to extending the life of the electrodes. (2) In a DC arc furnace, current drift may occur due to fluctuations in electric resistance. When drift occurs, current concentrates on the contact pins 7 present in the drift range, so that current density becomes abnormally high. In addition, the Joule heat generated in the contact pins 7 accelerates the wear of the contact pins 7 and the electrode block 8 and shortens the life of the DC arc furnace bottom electrode.

【0005】この問題を解決するための技術として本願
発明に類似するものに、特公昭62−46183号公報
(以下、先行例1という)、特開平2−13785号公
報(以下、先行例2という)が挙げられる。
Techniques similar to the present invention for solving this problem include Japanese Patent Publication No. Sho 62-46183 (hereinafter referred to as Prior Art 1) and Japanese Patent Laid-Open Publication No. Hei 2-13785 (hereinafter referred to as Prior Art 2). ).

【0006】先行例1の技術は、直流アーク炉の炉底に
おいて、耐火性の高いマグネシヤ質耐火煉瓦製の電極ブ
ロック8をスタンプの上面に設置することにより、炉底
の寿命を1ケ月から2〜3ケ月に延長したものである。
In the technique of the first prior art, the life of the hearth is reduced from one month to two months by installing an electrode block 8 made of a highly refractory magnesium refractory brick on the upper surface of the stamp at the hearth of the DC arc furnace. It has been extended to 3 months.

【0007】先行例2の技術は、炉底電極の補修を行う
場合、溶損した炉底電極の上方の凹部に溶鋼を残して置
き、この溶鋼に浸漬させて予め製作しておいた上下に鋼
製ピンを突出した補修用電極部材を溶損した炉底電極の
上に載置し、さらに補修用電極部材の周囲に補修材をス
タンプ施工することにより、炉底電極の交換を不要とと
すると共に、補修時間を短縮するようにしたものであ
る。
In the technique of the prior art example 2, when repairing the bottom electrode, the molten steel is left in the concave portion above the eroded bottom electrode, and is immersed in the molten steel so that the upper and lower parts are prepared in advance. The repair electrode member with the steel pin protruding is placed on the damaged bottom electrode, and the repair material is stamped around the repair electrode member, eliminating the need for replacement of the bottom electrode. In addition, the repair time is shortened.

【0008】[0008]

【発明が解決しようとする課題】先行例1の技術では、
2〜3ケ月毎に炉底を冷却開放してスタンプ上面の電極
ブロックを交換するので、炉底電極の寿命は長くなる
が、炉がそのたびに冷却開放され操業が停止するので、
操業効率を下げる結果となる。
In the technique of the first prior art,
Since the bottom of the furnace is cooled and released every two to three months to replace the electrode block on the top of the stamp, the life of the bottom electrode is prolonged, but since the furnace is cooled and released each time and the operation stops,
This results in lower operating efficiency.

【0009】先行例2の技術は、予め製作しておいた補
修用電極部材を、残留している溶鋼に浸漬させて溶損し
た炉底電極の上に載置するため、補修用電極部材から下
に突出した多数の鋼製ピンと溶損した炉底電極の多数の
鋼製ピンとの間には溶鋼又はスラグが介在することがあ
る。この場合、スラグが介在するピンには電流が流れに
くくなるので、先行例2の方法で補修が行われた場合は
偏流を発生しやすい。その上、このようにしてピンに生
じた電気的偏流は他のピンへ分散することが難しく、偏
流によって発生する過度なジュール熱によりピンは局部
的にも損耗を起こし、更に電極の寿命を短くする原因に
なる。
In the technique of the prior art 2, the repair electrode member manufactured in advance is immersed in the remaining molten steel and is placed on the furnace bottom electrode which has been damaged and damaged. Molten steel or slag may be interposed between the large number of steel pins projecting downward and the large number of steel pins of the melted hearth electrode. In this case, since it becomes difficult for the current to flow through the pin in which the slag is interposed, when the repair is performed by the method of the preceding example 2, drift is likely to occur. In addition, the electric drift generated in the pin in this way is difficult to disperse to other pins, and the pin causes local wear due to excessive Joule heat generated by the drift, further shortening the life of the electrode. Cause you to

【0010】本発明は、かかる問題点を解決するために
なされたもので、電極の補修を容易に行うことが出来る
と共に、電流の偏流をおこすことのない直流アーク炉用
炉底電極を得ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a bottom electrode for a DC arc furnace which can easily repair the electrode and does not cause a current drift. It is intended for.

【0011】[0011]

【課題を解決するための手段】本発明は、直流アーク炉
において、板厚が30〜60mmかつ平均電流密度が
0.5A/mm2 以下になる断面積を有してなる鋼製円
筒を炉底電極下部の支持基盤上に接合し、該鋼製円筒の
内外を耐火物で構成したことを特徴とする直流アーク炉
用炉底電極である。
SUMMARY OF THE INVENTION The present invention relates to a direct current arc furnace, which comprises a steel cylinder having a thickness of 30 to 60 mm and a cross section having an average current density of 0.5 A / mm 2 or less. A bottom electrode for a DC arc furnace, wherein the bottom electrode is joined to a support base below the bottom electrode, and the inside and outside of the steel cylinder are made of a refractory.

【0012】[0012]

【作用】本発明の直流アーク炉用炉底電極においては、
電極導体に流れる平均電流密度が0.50A/mm2
下であるため、電極導体に過度なジュール熱を生じない
ので電極の損耗が少ない。
In the furnace bottom electrode for a DC arc furnace of the present invention,
Since the average current density flowing through the electrode conductor is 0.50 A / mm 2 or less, excessive Joule heat is not generated in the electrode conductor, so that the electrode is less worn.

【0013】また、上部の黒鉛電極と炉底電極導体部と
の間にアークを発生させた際、下部の電極導体は鋼製円
筒型であるため、電流の偏流を生じることが少ない。ま
た、偏流を生じてもアークは円筒電極円周上を水平分散
して移動しやすく局部に留まることがない。このため、
局部的に過度なジュール熱が発生しないので、炉底電極
は局部的損耗を起こすことがない。
When an arc is generated between the upper graphite electrode and the furnace bottom electrode conductor, the lower electrode conductor is of a steel cylindrical type, so that current drift is less likely to occur. Further, even if a drift occurs, the arc is easily dispersed and horizontally moved on the circumference of the cylindrical electrode, and does not remain in a local area. For this reason,
Since there is no local excessive Joule heat, the hearth electrode does not suffer from local wear.

【0014】また、鋼製円筒の板厚を30〜60mmと
したのは、長時間の操業で鋼製円筒電極が消耗し、電極
の上端が周囲の電極ブロックより低くなって溝状に凹ん
で損傷した際、溝の幅が30mm以上とすることで補修
用鋼製円筒を挿入することが極めて容易になる。また、
60mm以下であることにより、スクラップ溶解や電極
導体自体の溶融に伴って発生した溶鋼がこの溝内を流動
しても、この溶鋼流動を低く抑えられ電極ブロックの損
傷が少ない。
Further, the reason why the thickness of the steel cylinder is set to 30 to 60 mm is that the steel cylindrical electrode is consumed by a long operation, and the upper end of the electrode is lower than the surrounding electrode block, so that the electrode is recessed in a groove shape. When the groove is damaged, it is extremely easy to insert the repair steel cylinder by setting the width of the groove to 30 mm or more. Also,
When the thickness is 60 mm or less, even if molten steel generated due to melting of the scrap or melting of the electrode conductor itself flows in the groove, the flow of the molten steel is suppressed low, and damage to the electrode block is reduced.

【0015】更に、電極ブロックの損傷深さに応じて補
修用鋼製円筒電極を上記溝内に挿入して損傷した電極上
に載せ、円筒の内外に不定形耐火物を充填するだけで炉
底電極の補修は完了する。このため、コンタクトピンを
使用した従来型炉底電極に比べ、補修時間も大幅に短縮
される。
Further, a repair steel cylindrical electrode is inserted into the above-mentioned groove according to the damage depth of the electrode block and placed on the damaged electrode. The repair of the electrodes is completed. For this reason, the repair time is greatly reduced as compared with the conventional bottom electrode using contact pins.

【0016】[0016]

【実施例】図1は本発明の一実施例である直流アーク炉
用炉底電極の構造を示す断面図、図2は図1のA−A断
面の平面図、図3は図1のB−B断面の平面図を示す。
これらの図において、符号の1〜9及び11は前記従来
装置の図6と同一のものである。10は併設された基盤
5と支持基盤6とを結ぶ連結柱、5aは冷却空気導入路
4aから流入した冷却空気を有効に流すため基盤5上に
作られた整流板、12は支持基盤6に結合されて一体を
なす鋼製円筒電極で、板厚が30mm〜60mm且つ平
均電流密度が0.5A/mm2 以下となる断面積を有す
るように作られた円筒型炉底電極である。図2に示すよ
うに、この鋼製円筒電極12の内外をマグネシヤ質耐火
物で充填して電極ブロック8で固めた構造となってい
る。
1 is a sectional view showing the structure of a bottom electrode for a DC arc furnace according to an embodiment of the present invention, FIG. 2 is a plan view taken along the line AA in FIG. 1, and FIG. FIG. 3B is a plan view of a cross section.
In these figures, reference numerals 1 to 9 and 11 are the same as those in FIG. 6 of the conventional apparatus. Reference numeral 10 denotes a connecting column connecting the base 5 and the support base 6 provided side by side. Reference numeral 5a denotes a rectifying plate formed on the base 5 for effectively flowing the cooling air flowing from the cooling air introduction passage 4a; The cylindrical bottom electrode is a steel cylindrical electrode that is combined to form an integral unit, and has a plate thickness of 30 mm to 60 mm and a cross-sectional area of an average current density of 0.5 A / mm 2 or less. As shown in FIG. 2, the inside and outside of the steel cylindrical electrode 12 are filled with a refractory material of a magnesium type and are solidified by an electrode block 8.

【0017】この発明の直流アーク炉用炉底電極の構造
は上述の如くであるから、電流は導体2、導体3、ター
ミナル4、基盤5から連結柱10を経て支持基盤6を介
して鋼製円筒電極12に流れ、これが黒鉛電極9との間
にアークを形成し、このアーク熱によりスクラップが溶
かされて溶鋼11となり精錬操業が行われる。この時図
3で示すように、冷却用の空気は冷却空気導入路4aか
ら連結柱10で作られた基盤5と支持基盤6との間隙を
整流板5aに誘導されて通り抜け、支持基盤6を冷却す
ると共に支持基盤6を介して鋼製円筒電極12を冷却す
る。
Since the structure of the bottom electrode for a DC arc furnace according to the present invention is as described above, the current is supplied from the conductor 2, the conductor 3, the terminal 4, and the base 5 to the steel base through the connecting pillar 10 via the support base 6. It flows to the cylindrical electrode 12 and forms an arc between the cylindrical electrode 12 and the graphite electrode 9, and the scrap heat is melted by the heat of the arc to form molten steel 11, and the refining operation is performed. At this time, as shown in FIG. 3, the cooling air is guided from the cooling air introduction path 4a through the gap between the base 5 and the support base 6 formed by the connecting columns 10 by the rectifying plate 5a, and passes through the support base 6. While cooling, the steel cylindrical electrode 12 is cooled via the support base 6.

【0018】図4は、電流密度を0.30〜0.60A
/mm2 の範囲で変化させた場合の円筒型電極導体の温
度を計算したもので、横軸は基盤底面からの電極導体の
高さ(距離)、縦軸はこの高さにおける電極導体の温度
を示す。
FIG. 4 shows that the current density is 0.30 to 0.60 A
/ Mm 2 is calculated by changing the temperature of the cylindrical electrode conductor when it is changed in the range of 2 mm. The horizontal axis is the height (distance) of the electrode conductor from the bottom of the substrate, and the vertical axis is the temperature of the electrode conductor at this height. Is shown.

【0019】伝熱計算の条件として、円筒電極導体の外
径は2000mm、板厚が45mm、高さは1000m
mの鋼製で、円筒電極導体の温度を長手方向の一次元モ
デルで計算した。溶鋼温度は1650℃とし、この溶鋼
温度による電極上方からの溶鋼による熱伝導および電流
によって電極内に発生するジュール熱を考慮し、円筒電
極と耐火物間の熱伝導はないものとし、炉底の基盤は空
冷されている条件で計算した。
As the conditions for the heat transfer calculation, the outer diameter of the cylindrical electrode conductor is 2000 mm, the plate thickness is 45 mm, and the height is 1000 m.
m, and the temperature of the cylindrical electrode conductor was calculated by a one-dimensional model in the longitudinal direction. The temperature of the molten steel is 1650 ° C. Considering the heat conduction by the molten steel from above the electrode due to the molten steel temperature and the Joule heat generated in the electrode due to the current, there is no heat conduction between the cylindrical electrode and the refractory. The base was calculated with air-cooled conditions.

【0020】図4において、曲線Aは電流密度0.30
A/mm2 、曲線Bは0.40A/mm2 、曲線Cは
0.50A/mm2 、曲線Dは0.60A/mm2 の伝
熱計算結果を示す。図4より、電流密度が0.30A/
mm2 では基盤底面からの高さが増大するに従い、ほぼ
直線的に導体温度は上昇しているが、電流密度が0.4
0A/mm2 では、基盤底面からの高さ(距離)の変化
する割合に比べ電極導体温度の増加の割合が大きく、上
記直線関係より少し逸脱している。電流密度が0.50
A/mm2 の曲線Cでは上記傾向は著しくなり、基盤底
面からの高さHが750mm〜950mm範囲の電極導
体上部の温度は溶鋼温度1650℃より僅かに高くなっ
ている。更に、電流密度が0.60A/mm2 の曲線D
においては、基盤底面からの高さが450mm〜950
mmの広い範囲にわたり電極導体上部の温度が溶鋼温度
1650℃より高い。
In FIG. 4, curve A represents a current density of 0.30.
A / mm 2 , curve B shows 0.40 A / mm 2 , curve C shows 0.50 A / mm 2 , and curve D shows the heat transfer result of 0.60 A / mm 2 . FIG. 4 shows that the current density was 0.30 A /
In mm 2 , the conductor temperature rises almost linearly as the height from the base bottom increases, but the current density is 0.4
At 0 A / mm 2 , the rate of increase in the electrode conductor temperature is greater than the rate of change in height (distance) from the bottom surface of the substrate, slightly deviating from the above linear relationship. 0.50 current density
In the curve C of A / mm 2 , the above tendency is remarkable, and the temperature of the upper part of the electrode conductor when the height H from the bottom surface of the base is in the range of 750 mm to 950 mm is slightly higher than the molten steel temperature of 1650 ° C. Further, a curve D having a current density of 0.60 A / mm 2
In the above, the height from the bottom surface of the substrate is 450 mm to 950
The temperature of the upper part of the electrode conductor is higher than the molten steel temperature of 1650 ° C. over a wide range of mm.

【0021】上記伝熱計算結果は、以下の様に理解でき
る。まず、電極導体上端部に近ずく程、溶鋼からの熱影
響が増大するので電極導体温度は増加する。また、電流
密度の増加に従って、電極導体内で発生するジュール熱
も増加するので電極導体温度は増大する。加えて、電気
抵抗は金属導体温度が高い程増大するので、電極導体上
部で発生するジュール熱は増加する。そのため、電極導
体上部の温度は鋼製電極導体の融点(一般には、純鉄の
融点1530℃より低い)を越えているため、アーク溶
解中、電流密度が高くなるほど上部導体は広範囲に溶融
する。
The above heat transfer calculation results can be understood as follows. First, the closer to the upper end of the electrode conductor, the greater the thermal effect from the molten steel, so that the electrode conductor temperature increases. Further, as the current density increases, the Joule heat generated in the electrode conductor also increases, so that the electrode conductor temperature increases. In addition, since the electric resistance increases as the metal conductor temperature increases, Joule heat generated above the electrode conductor increases. Therefore, since the temperature of the upper part of the electrode conductor exceeds the melting point of the steel electrode conductor (generally, the melting point of pure iron is lower than 1530 ° C.), the higher the current density becomes, the more the upper conductor melts during arc melting.

【0022】ここで、曲線Cの電流密度0.50A/m
2 を限度とすれば、電極導体高さと温度とはほぼ直線
関係が保たれており、電極導体上部が広範囲に渡り溶融
することがないので、電極導体内部まで一度に損傷を受
けることがなく電極損耗速度を低く抑えられる。
Here, the current density of the curve C is 0.50 A / m
If the m 2 and limits, is kept substantially linear relationship to the electrode conductor height and temperature, since no electrode conductor upper melts over a wide range, without being damaged at a time until the internal electrode conductor The electrode wear rate can be kept low.

【0023】同時に、平均電流密度が0.50A/mm
2 以下であると、電極導体の内外を構成する耐火物の温
度上昇も低く抑えられるので電極ブロック耐火物の損耗
も低減できる。
At the same time, the average current density is 0.50 A / mm
When it is 2 or less, the temperature rise of the refractory constituting the inside and outside of the electrode conductor can be suppressed to be low, so that the wear of the electrode block refractory can be reduced.

【0024】本発明の効果を確認するため、実機直流ア
ーク炉において平均電流密度が0.3A/mm2 、0.
5A/mm2 、0.6A/mm2 の3水準でスクラップ
を長期間溶解する試験を実施し、溶解時間当たりの平均
電極損傷速度を調査した。ここで、円筒の外径は200
0mm、板厚が45mm、高さは1000mmの鋼製円
筒電極を使用し、円筒内外の耐火物材質としてマグネシ
ア質耐火物を使用した。この結果、0.3A/mm2
場合の損傷速度指数を1.0とすると、0.5A/mm
2 では1.2、0.6A/mm2 では3.0を得た。ま
た、従来のピンタイプの炉底電極で観察された特定のピ
ンに損傷が集中する、いわゆる局部的な損傷は0.3〜
0.6A/mm2 の範囲で認められなかった。
In order to confirm the effect of the present invention, the average current density was 0.3 A / mm 2 , 0.
A test for dissolving scrap for a long time at three levels of 5 A / mm 2 and 0.6 A / mm 2 was conducted, and the average electrode damage rate per dissolution time was investigated. Here, the outer diameter of the cylinder is 200
A steel cylindrical electrode having a thickness of 0 mm, a thickness of 45 mm, and a height of 1000 mm was used, and a magnesia refractory was used as a refractory material inside and outside the cylinder. As a result, if the damage rate index in the case of 0.3 A / mm 2 is 1.0, 0.5 A / mm 2
2 and 1.2 were obtained at 0.6 A / mm 2 , respectively. In addition, the so-called localized damage, in which damage concentrates on a specific pin observed with a conventional pin-type bottom electrode, is 0.3 to
It was not observed in the range of 0.6 A / mm 2 .

【0025】損傷した電極補修方法として、電極ブロッ
クの損傷深さに応じた長さの補修用鋼製円筒電極を溝内
に挿入して損傷した電極上に載せた。その後、円筒の内
外にマグネシア質の不定形耐火物を充填し炉底電極の補
修を完了した。この結果、コンタクトピンを使用した従
来型炉底電極に比べ、補修時間は大幅に短縮できた。
As a method for repairing the damaged electrode, a repair steel cylindrical electrode having a length corresponding to the damage depth of the electrode block was inserted into the groove and mounted on the damaged electrode. After that, the inside and outside of the cylinder were filled with magnesia-based amorphous refractories, and the repair of the furnace bottom electrode was completed. As a result, the repair time was significantly reduced as compared with the conventional furnace bottom electrode using contact pins.

【0026】上記電極補修方法の他に、図5に示すよう
に、溝状損傷を生じた電極ブロック8を鋼製円筒12の
上端が現れるまでなだらかな凹状に削りとり、その後消
耗した高さに合わせて補修用鋼製円筒12aを載置し、
次いで、この補修用鋼製円筒12aを包んで内外に補修
用耐火物8aを充填することによる補修方法を採用して
も良い。この方法によっても補修時間も大幅に短縮でき
る。
In addition to the above-described electrode repair method, as shown in FIG. 5, the electrode block 8 having the groove-shaped damage is scraped into a gentle concave shape until the upper end of the steel cylinder 12 appears, and then the worn height is reduced. In addition, the repair steel cylinder 12a is placed,
Next, a repair method may be adopted in which the repair steel cylinder 12a is wrapped and filled inside and outside with a repair refractory 8a. This method can also greatly reduce repair time.

【0027】[0027]

【発明の効果】この発明は上述したとおり、直流アーク
炉用炉底電極を流れる平均電流密度が0.5A/mm2
以下の断面積を有し、板厚が30mm〜60mmの鋼製
円筒型とすることにより、炉底電極寿命の向上が図れる
と共に、操業中の電流に偏流を起こすこともなく、電極
の補修が極めて容易な直流アーク炉用炉底電極を得るこ
とが出来る。
According to the present invention, as described above, the average current density flowing through the bottom electrode for a DC arc furnace is 0.5 A / mm 2.
By using a steel cylinder having the following cross-sectional area and a plate thickness of 30 mm to 60 mm, the life of the furnace bottom electrode can be improved, and the current can be repaired without causing a current drift during operation. An extremely easy furnace bottom electrode for a DC arc furnace can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である直流アーク炉用炉底電
極の断面図である。
FIG. 1 is a sectional view of a bottom electrode for a DC arc furnace according to one embodiment of the present invention.

【図2】図1のA−A断面の平面図である。FIG. 2 is a plan view of an AA cross section in FIG.

【図3】図1のB−B断面の平面図である。FIG. 3 is a plan view of a BB section of FIG. 1;

【図4】電流密度による電極導体深さと温度との関係を
示す曲線図である。
FIG. 4 is a curve diagram showing a relationship between an electrode conductor depth and a temperature depending on a current density.

【図5】電極継ぎ足し補修過程を示す円筒型炉底電極の
断面図である。
FIG. 5 is a cross-sectional view of a cylindrical hearth electrode showing an electrode replenishment repair process.

【図6】従来の直流アーク炉用炉底電極の構造を示す断
面図である。
FIG. 6 is a sectional view showing the structure of a conventional bottom electrode for a DC arc furnace.

【符号の説明】[Explanation of symbols]

1.炉底部 2.導体 3.導体 4.ターミナル 4a.冷却空気導入路 5.基盤 5a.整流板 6.支持基盤 7.コンタクトピン 8.電極ブロック 8a.補修用耐火物 9.黒鉛電極 10.連結柱 11.溶鋼 12.鋼製円筒電極 12a.補修用鋼製円筒電極 1. Furnace bottom 2. Conductor 3. Conductor 4. Terminal 4a. 4. Cooling air introduction path Base 5a. Current plate 6. Support base 7. 7. Contact pin Electrode block 8a. Refractory for repair 9. Graphite electrode 10. Connecting pillar 11. Molten steel 12. Steel cylindrical electrode 12a. Repair steel cylindrical electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直流アーク炉において、板厚が30〜60
mmかつ平均電流密度が0.5A/mm2 以下になる断
面積を有してなる鋼製円筒を炉底電極下部の支持基盤上
に接合し、該鋼製円筒の内外を耐火物で構成したことを
特徴とする直流アーク炉用炉底電極。
1. A direct current arc furnace having a plate thickness of 30 to 60.
A steel cylinder having a sectional area of 0.5 mm / mm 2 and an average current density of 0.5 A / mm 2 or less was joined on a support base below the furnace bottom electrode, and the inside and outside of the steel cylinder were made of a refractory. A bottom electrode for a DC arc furnace, comprising:
JP16693194A 1994-07-19 1994-07-19 Bottom electrode for DC arc furnace Expired - Fee Related JP2962150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16693194A JP2962150B2 (en) 1994-07-19 1994-07-19 Bottom electrode for DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16693194A JP2962150B2 (en) 1994-07-19 1994-07-19 Bottom electrode for DC arc furnace

Publications (2)

Publication Number Publication Date
JPH0829062A JPH0829062A (en) 1996-02-02
JP2962150B2 true JP2962150B2 (en) 1999-10-12

Family

ID=15840319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16693194A Expired - Fee Related JP2962150B2 (en) 1994-07-19 1994-07-19 Bottom electrode for DC arc furnace

Country Status (1)

Country Link
JP (1) JP2962150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3390648B2 (en) * 1998-01-06 2003-03-24 株式会社タクマ Furnace wall structure of electric melting furnace and furnace body cooling method

Also Published As

Publication number Publication date
JPH0829062A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JPS6128914B2 (en)
JPH0230121Y2 (en)
JP2532343B2 (en) Bottom electrode for DC arc furnace
JP2962150B2 (en) Bottom electrode for DC arc furnace
EP0235340B1 (en) An anode system for plasma heating usable in a tundish
US4468782A (en) Method and device for operating a DC arc furnace
US4592066A (en) Conductive bottom for direct current electric arc furnaces
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
JP4456284B2 (en) Molten steel heating device using plasma torch
EP0682463B1 (en) Cooled bottom electrode for a direct current electric furnace
US4532633A (en) DC arc furnace improved hearth construction
JPS6131876A (en) Method and device for improving reliability of operation of pot furnace
US4783790A (en) Direct-current arc furnace for steelmaking
KR100506389B1 (en) Lower Electrode Cooling Mold of DC Electric Furnace
SU740446A1 (en) Chill mould for electroslag welding
JP2680353B2 (en) How to repair the bottom electrode
JPH10339579A (en) Furnace bottom electrode for direct current arc furnace
JPH073881U (en) Non-consumable nozzle type electroslag welding nozzle
RU2112187C1 (en) Electric furnace hearth electrode
JPH0624157Y2 (en) Bottom electrode of DC electric furnace
CN1011376B (en) Directional electric arc heating device
JPS6020494A (en) Bottom electrode of melting metal vessel
JP2607762B2 (en) Refractory structure of DC electric furnace anode block
JPH0826736A (en) Electric glass melting furnace and electrode for the furnace
RU2285356C2 (en) Bottom electrode for electric furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

LAPS Cancellation because of no payment of annual fees