JPH11219520A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH11219520A
JPH11219520A JP2195798A JP2195798A JPH11219520A JP H11219520 A JPH11219520 A JP H11219520A JP 2195798 A JP2195798 A JP 2195798A JP 2195798 A JP2195798 A JP 2195798A JP H11219520 A JPH11219520 A JP H11219520A
Authority
JP
Japan
Prior art keywords
substrate
medium
magnetic recording
recording medium
terminal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2195798A
Other languages
Japanese (ja)
Inventor
Kiyouhei Inokuchi
郷平 井ノ口
Yasushi Makabe
保志 真壁
Takayuki Kondo
孝行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2195798A priority Critical patent/JPH11219520A/en
Publication of JPH11219520A publication Critical patent/JPH11219520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a magnetic recording medium having the high intra-surface uniformity of an electrolysis quantity. SOLUTION: The process for producing the magnetic recording medium having a stage for subjecting the surface of a substrate or medium to an electrolysis treatment is characterized in that the electrolysis described above is executed by using a pair of approximately disk-shaped terminal electrodes 20 disposed to face the surface of the substrate 21 or medium on the side not facing the other substrate or medium and the bore of the terminal electrodes 20 is larger than the bore of the substrate 2 or the medium and the outside diameter is smaller than the outside diameter of the substrate 2 or the medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体の製造
方法に関する。詳しくは、本発明は、磁気記録媒体の表
面加工処理を行なうことで表面特性を改善して、浮上特
性、潤滑性、及び、耐摩耗性に優れた磁気記録媒体を製
造する方法に関する。
[0001] The present invention relates to a method for manufacturing a magnetic recording medium. More specifically, the present invention relates to a method for manufacturing a magnetic recording medium having excellent flying characteristics, lubricity, and abrasion resistance by improving the surface characteristics of the magnetic recording medium by performing a surface processing treatment.

【0002】[0002]

【従来の技術】近年、コンピュータ等の情報処理技術の
発達に伴い、その外部記憶装置として磁気ディスク等の
磁気記録媒体が用いられている。従来、磁気記録媒体と
しては、アルミニウム合金基板にアルマイト処理やNi
−Pメッキ等の非磁性メッキ処理を施した非磁性基板
に、Cr等の下地層を被覆し、次いで、Co系合金の磁
性薄膜層を被覆し、更に炭素質の保護膜を被覆したもの
が使用されている。
2. Description of the Related Art In recent years, with the development of information processing technology such as computers, magnetic recording media such as magnetic disks have been used as external storage devices. Conventionally, as a magnetic recording medium, an alumite treatment or Ni
A non-magnetic substrate that has been subjected to a non-magnetic plating process such as -P plating is coated with a base layer such as Cr, then coated with a magnetic thin film layer of a Co-based alloy, and further coated with a carbonaceous protective film. in use.

【0003】上記磁気記録媒体(以下、磁気ディスクと
呼ぶ)では、その高密度化に伴い磁気ディスクと磁気ヘ
ッドとの間隔、即ちヘッドの浮上量がますます小さくな
り、最近では0.15μm程度以下となっている。この
ように小さな浮上量では、磁気ディスク面に突起が存在
すると、時にヘッドクラッシュを招いてディスク表面を
傷つけるおそれがある。また、ヘッドクラッシュに至ら
ない微小な突起の存在であっても、情報の読み書きの際
に種々のエラーを引き起こす原因となり得る。
In the above-mentioned magnetic recording medium (hereinafter referred to as a magnetic disk), the distance between the magnetic disk and the magnetic head, that is, the flying height of the head is becoming smaller and smaller in recent years. It has become. With such a small flying height, if a protrusion exists on the surface of the magnetic disk, there is a possibility that a head crash may sometimes occur and the disk surface may be damaged. Also, the presence of minute projections that do not lead to a head crash can cause various errors when reading and writing information.

【0004】一方、磁気ディスクは、その大容量化及び
高密度化と並行して小型化も進められており、スピンド
ル回転用の駆動モータも益々小型化されている。このた
め、駆動モータのトルクが不足する場合があり、磁気ヘ
ッドが磁気ディスク面に固着したまま浮上しないという
現象も生じやすい。上記のような磁気ヘッドのクラッシ
ュや固着を防止するために、従来から、磁気ディスク表
面をポリッシュ加工した後に、更にディスク表面に微細
な溝を形成する表面加工処理(以下、テスクチャ加工と
呼ぶ)が行なわれている。テクスチャ加工は、磁気ヘッ
ドと磁気ディスク表面との接触抵抗を小さくするのに特
に有効である。
On the other hand, magnetic disks are being miniaturized in parallel with their large capacity and high density, and drive motors for rotating spindles are becoming increasingly smaller. For this reason, the torque of the drive motor may be insufficient, and a phenomenon that the magnetic head does not fly while fixed to the magnetic disk surface is likely to occur. Conventionally, in order to prevent the magnetic head from crashing or sticking, a surface processing (hereinafter referred to as texture processing) for forming fine grooves on the disk surface after polishing the surface of the magnetic disk has been conventionally performed. Is being done. Texture processing is particularly effective in reducing the contact resistance between the magnetic head and the surface of the magnetic disk.

【0005】上記の如く、テクスチャ加工により、磁気
ディスクにおけるヘッドの浮上特性の改善が図られてい
るものの、磁気ディスクに要請される性能には未だ充分
に応えてはいない。ところで、特開平4−95221号
公報には、上記要請に応えるために、テクスチャ加工に
引き続き、磁気ディスクの洗浄を行ない、更にケミカル
エッチングを施す表面処理技術が提案されている。
As described above, although the flying characteristics of the head in a magnetic disk have been improved by texture processing, the performance required of the magnetic disk has not yet been sufficiently met. Incidentally, Japanese Patent Application Laid-Open No. Hei 4-95221 proposes a surface treatment technique for cleaning a magnetic disk and performing chemical etching subsequent to texture processing in order to meet the above demand.

【0006】しかし、ケミカルエッチングによる処理で
は、一般に、エッチング条件の選択によって表面状態を
精度よく制御することは困難であり、また、エッチング
後の表面が不均一になりやすいという問題がある。
However, in the treatment by chemical etching, it is generally difficult to control the surface state accurately by selecting the etching conditions, and there is a problem that the surface after etching tends to be non-uniform.

【0007】本出願人は、磁気ディスクにおけるヘッド
の浮上特性を更に改善すべく鋭意検討した結果、基板面
にテクスチャ加工を施した後に、基板表面を電気分解処
理(電解処理)することにより、基板表面が改善される
ことを見出し、これを特開平7−225945号及び特
開平8−171719号にそれぞれ提案した。
The present applicants have conducted intensive studies to further improve the flying characteristics of the head on the magnetic disk. As a result, after subjecting the substrate surface to texturing, the substrate surface is subjected to electrolytic treatment (electrolytic treatment). They have found that the surface is improved, and have proposed this in JP-A-7-225945 and JP-A-8-171719, respectively.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の方法を工業的に実施する際には、それぞれ解決すべき
課題を有している。すなわち、前者(特開平7−225
945号公報)の方法では電解処理に直流電位を印加す
る方法で、基板の両側に対抗電極を配置する必要から工
業的規模で実施する場合には電極コストがかさみ、且
つ、その処理効率が必ずしもよくないという事情があ
る。また、後者(特開平8−171719号公報)の方
法は前者の課題を改善するものであり、電解処理に交流
電位を印加する方法で、基板同志を対向電極として用い
るものであるが、両端の基板が片面しか電解処理でき
ず、そのため両端の基板をその都度反対にして使用する
ことも考えられるが、操作が繁雑であり、必ずしも得策
とは言えない。
However, when these methods are carried out industrially, there are problems to be solved. That is, the former (JP-A-7-225)
No. 945) is a method in which a DC potential is applied to the electrolytic treatment. When the counter electrode is disposed on both sides of the substrate, the cost of the electrode is increased when the method is carried out on an industrial scale, and the treatment efficiency is not necessarily improved. There is a situation that is not good. Further, the latter method (Japanese Patent Laid-Open No. Hei 8-171719) is to improve the former problem. In the method, an AC potential is applied to the electrolytic treatment, and the substrates are used as opposite electrodes. Although only one side of the substrate can be subjected to electrolytic treatment, it is conceivable to use the substrates at both ends in reverse each time, but the operation is complicated and not always advantageous.

【0009】また両端の基板を末端電極として使用する
ことも考えられるが、下地のNi−Pメッキ処理層の膜
厚が薄いために頻繁に取替える必要があり、その操作の
繁雑さ及び基板の損失面から考えて有利な方法とは言え
ない。一方、末端電極として前者に提案されている対向
電極、例えばステンレス電極を用いた場合にはNi−P
層とステンレスとの電気抵抗の違いにより、ステンレス
電極に電流が流れにくく、それによって両端の導電性基
板のステンレス電極との対面側の電解エッチングが不充
分となり、対向電極をそのまま末端電極として用いるこ
とはできない。
It is also conceivable to use the substrates at both ends as terminal electrodes, but they need to be replaced frequently because the thickness of the underlying Ni-P plating layer is thin, which complicates the operation and causes loss of the substrate. It is not an advantageous method from the point of view. On the other hand, when a counter electrode proposed in the former, for example, a stainless steel electrode is used as a terminal electrode, Ni-P
Due to the difference in electrical resistance between the layer and the stainless steel, current does not easily flow through the stainless steel electrode, which results in insufficient electrolytic etching of the conductive substrate at both ends facing the stainless steel electrode. Can not.

【0010】さらに基板のNi−P層と電気抵抗の近接
しているNi金属を末端電極と用いた場合には、Ni電
極に対向した基板面の電解エッチングは他の基板と同等
に行なわれるが、Ni電極自体の電解エッチングによっ
て基板面が汚染されるという問題があることが判明し
た。本発明は、上記した状況に鑑み、磁気記録媒体の基
板のテクスチャ加工の後処理につき、良好な品質の基板
面を得ると共に、工業的規模で、且つ低コストで実施で
きる、磁気記録媒体の製造方法を提供することを目的と
する。
Further, when a Ni metal having an electric resistance close to that of the Ni-P layer of the substrate is used as the terminal electrode, electrolytic etching of the substrate surface facing the Ni electrode is performed in the same manner as other substrates. It has been found that there is a problem that the substrate surface is contaminated by electrolytic etching of the Ni electrode itself. In view of the above situation, the present invention provides a method for manufacturing a magnetic recording medium that can be implemented on an industrial scale and at a low cost while obtaining a good quality substrate surface for post-processing the texture processing of the substrate of the magnetic recording medium. The aim is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記した
磁気記録媒体の製造において、テクスチャ加工後の基板
の電解処理を工業的規模で実施する際の問題点を解決す
べく鋭意検討を重ねた結果、上記した末端電極として特
定の形状で用いることにより、上記問題点が改善され、
上記目的が達成できることを見出し、本発明を完成する
に至った。
Means for Solving the Problems In the manufacture of the above-mentioned magnetic recording medium, the present inventors have made intensive studies to solve the problems in performing electrolytic treatment of a substrate after texture processing on an industrial scale. As a result of the superposition, the above-mentioned problems are improved by using a specific shape as the above-mentioned terminal electrode,
The inventors have found that the above objects can be achieved, and have completed the present invention.

【0012】すなわち、本発明の要旨は、基板若しくは
媒体の表面を電気分解処理する工程を有する磁気記録媒
体の製造方法において、電気分解処理を、基板若しくは
媒体の、他の基板若しくは媒体に対向しない面に対向す
るように設けた一対の略円盤状の末端電極を用いて行
い、かつ末端電極の内径が前記基板若しくは媒体の内径
よりも大きく、外径が前記基板若しくは媒体の外径より
も小さいことを特徴とする磁気記録媒体の製造方法に存
する。
That is, the gist of the present invention is to provide a method for manufacturing a magnetic recording medium having a step of electrolyzing the surface of a substrate or a medium, wherein the electrolysis is not performed on another substrate or medium of the substrate or the medium. Performed using a pair of substantially disc-shaped terminal electrodes provided so as to face the surface, and the inner diameter of the terminal electrode is larger than the inner diameter of the substrate or medium, and the outer diameter is smaller than the outer diameter of the substrate or medium. A method for manufacturing a magnetic recording medium is characterized in that:

【0013】[0013]

【発明の実施の形態】以下、更に、本発明をその好適な
実施の形態に基づいて詳細に説明する。本発明における
磁気記録媒体の基板は、特に制限はなく、アルミニウム
合金、ガラス、カーボン等公知の物が使用できる。ただ
し、電解処理を行う時点では基板表面が金属膜等の導電
体で被覆されていることが必要である。現在は表面にN
i−P合金又はNi−Cu−P合金を無電解メッキ処理
した基板が広く用いられているため、以下はこの基板を
用いた場合を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on preferred embodiments. The substrate of the magnetic recording medium in the present invention is not particularly limited, and a known material such as an aluminum alloy, glass, and carbon can be used. However, at the time of performing the electrolytic treatment, the substrate surface needs to be covered with a conductor such as a metal film. Currently N on the surface
Since a substrate obtained by electroless plating an i-P alloy or a Ni-Cu-P alloy is widely used, a case in which this substrate is used will be described in detail below.

【0014】磁性層等の金属薄膜を形成する前に、メッ
キ層を表面加工処理し、特定の面粗さに仕上げた表面加
工層を形成する。この表面加工処理として、まず、例え
ば表面層にポリッシュ加工を施し、次いでテクスチャ加
工を行う。
Before forming a metal thin film such as a magnetic layer, the plating layer is subjected to surface processing to form a surface processed layer finished to a specific surface roughness. As the surface processing, first, for example, the surface layer is polished, and then the texture processing is performed.

【0015】ここで、ポリッシュ加工としては、例え
ば、表面に遊離砥粒を付着させて染み込ませたポリッシ
ュパッドの間に基板を挟み込み、界面活性剤水溶液等の
研磨液を補給しながら行う。通常、2〜5μm程度のポ
リッシュ加工を行なって基板の表面を平均表面粗さRa
が50Å(オングストローム)以下、望ましくは30Å
以下に鏡面仕上げする。遊離砥粒としては、代表的に
は、アルミナ系スラリーのポリプラ700やポリプラ1
03(共に(株)フジミインコーポレーテッドの登録商
標)、ダイヤモンド系スラリー、SiC系スラリー等が
用いられる。ポリッシュパッドとしては、代表的には、
Surfin100やSurfinXXX−5(共に
(株)フジミインコーポレーテッドの登録商標)等の発
泡ウレタン等が用いられる。
Here, the polishing is carried out, for example, by sandwiching the substrate between polishing pads having free abrasive grains adhered to the surface and impregnating the polishing pad, while supplying a polishing liquid such as a surfactant aqueous solution. Usually, a polishing process of about 2 to 5 μm is performed to make the surface of the substrate have an average surface roughness Ra.
Is less than 50 ° (angstrom), preferably 30 °
Mirror finish below. As the loose abrasive, typically, an alumina slurry polyplastic 700 or polyplastic 1 is used.
03 (both are registered trademarks of Fujimi Incorporated), diamond-based slurries, SiC-based slurries, and the like. As a polish pad, typically,
Urethane foams such as Surfin 100 and SurfinXXX-5 (both are registered trademarks of Fujimi Incorporated) are used.

【0016】また、テクスチャ加工としては、例えば、
2500〜6000#程度のアルミナ砥粒を担持した研
磨テープを使用し、上記ポリッシュ加工を施した基板面
に対してこの研磨テープを加工ローラで押圧して、基板
の円周方向に平均表面粗さRaが20Å以上、望ましく
は30〜300Å、更に望ましくは50〜15Åの範囲
の微細な溝若しくは凹凸を精度よく形成するものであ
り、このテクスチャ加工により、磁気ヘッドと磁気記録
媒体との間での吸着が防止でき、CSS特性が改善さ
れ、更に、磁気記録媒体の磁気異方性が良好となる。
As texture processing, for example,
Using a polishing tape carrying alumina abrasive grains of about 2,500 to 6000 #, the polishing tape is pressed against the polished substrate surface by a processing roller, and the average surface roughness in the circumferential direction of the substrate is obtained. Ra is 20 ° or more, preferably 30 to 300 °, and more preferably 50 to 15 °. Fine grooves or irregularities are formed with high precision. By this texture processing, a gap between the magnetic head and the magnetic recording medium is formed. Adsorption can be prevented, CSS characteristics are improved, and the magnetic anisotropy of the magnetic recording medium is improved.

【0017】本発明における電解処理は、例えばこのテ
キスチャ処理に引き続いて行うことが出来る。本発明に
おいては、電解処理する際に用いる電極に特徴を有す
る。図1は、本発明における電解処理が適用可能な電解
装置を示す図である。図において、末端電極20、21
に挟まれて複数枚の基板1、2がそれぞれ電解液3中に
配置されている。
The electrolytic treatment in the present invention can be performed, for example, following the texturing. The present invention is characterized by an electrode used for performing the electrolytic treatment. FIG. 1 is a diagram showing an electrolysis apparatus to which the electrolysis according to the present invention can be applied. In the figure, the terminal electrodes 20, 21
And a plurality of substrates 1 and 2 are disposed in the electrolyte 3 respectively.

【0018】本図においては、複数枚の基板を電解処理
する際に、基板を基板面と直交方向に順次に並べて電解
液中に配置し、且つ両端の導電性基板の外側に末端電極
を配置し、末端電極から順次奇数番目の導電性基板と偶
数番目の基板との間に交番電圧を印加することにより、
各基板を電解液中で処理する場合を示している。
In this figure, when a plurality of substrates are subjected to electrolytic treatment, the substrates are arranged in the electrolytic solution by sequentially arranging the substrates in a direction perpendicular to the substrate surface, and terminal electrodes are disposed outside the conductive substrates at both ends. By sequentially applying an alternating voltage between the odd-numbered conductive substrate and the even-numbered substrate from the terminal electrode,
The case where each substrate is treated in an electrolytic solution is shown.

【0019】本発明において用いる末端電極は、ドーナ
ツ形状の基板に対して、その内径が該基板より大きく、
且つその外径が基板より小さいものを用いることを特徴
とする。末端電極の形状を図4を用いて更に説明する
と、内径比(末端電極の内径(D2 ′)/基板の内径
(D2 ))が1.05〜1.5の範囲、さらに好ましく
は1.1〜1.4の範囲であり、外径比(該末端電極の
外径(D1 ′)/該基板の外径(D1 ))が0.7〜
0.95の範囲、さらに好ましくは0.8〜0.9の範
囲であることが好ましい。このような末端電極を用いる
ことにより、エッチング量の面内分布が小さくなり、均
一なエッチングが可能となる。
The terminal electrode used in the present invention has an inner diameter larger than that of a donut-shaped substrate.
In addition, a material whose outer diameter is smaller than that of the substrate is used. The shape of the terminal electrode will be further described with reference to FIG. 4. The inner diameter ratio (inner diameter of terminal electrode (D 2 ′) / inner diameter of substrate (D 2 )) is in the range of 1.05 to 1.5, more preferably 1 to 1.5. 0.1 to 1.4, and the outer diameter ratio (outer diameter of the terminal electrode (D 1 ′) / outer diameter of the substrate (D 1 )) is 0.7 to 0.7.
It is preferably in the range of 0.95, more preferably in the range of 0.8 to 0.9. By using such a terminal electrode, the in-plane distribution of the etching amount is reduced, and uniform etching can be performed.

【0020】本発明のメカニズムは次のような物と考え
られる。エッチングのスピードは基板表面へ到達する電
気力線の密度に依存し、また電気力線は末端電極端面や
末端電極の基板と対向しない側の面からも発生する。そ
のため、末端電極の内径(D2 ′)が基板の内径
(D2 )以下の場合や、末端電極の外径(D1 ′)が基
板の外径(D1 )以上の場合には、電気力線の流れが末
端電極の内周側の空間部や外周より外の空間部ににまわ
り込んで対向基板の内周側、外周側にそれぞれに局部的
に接触し、基板の内周部と外周部における電気力線の密
度が増加する。そのため電解エッチング量が増加し、基
板の内周側、外周側に電解エッチング量の面内分布の不
均一が発生と考えられる。
The mechanism of the present invention is considered as follows. The etching speed depends on the density of the electric flux lines reaching the substrate surface, and the electric flux lines are also generated from the end face of the terminal electrode or the surface of the terminal electrode not facing the substrate. Therefore, 'or if is equal to or smaller than the inner diameter of the substrate (D 2), the outer diameter of the terminal electrode (D 1 the inner diameter of the terminal electrode (D 2)' If) is the outer diameter (D 1) or more substrate, electrical The flow of the force line wraps around the inner peripheral space of the terminal electrode and the outer space from the outer periphery and locally contacts the inner peripheral side and the outer peripheral side of the opposing substrate, and The density of lines of electric force at the outer peripheral portion increases. Therefore, it is considered that the amount of electrolytic etching increases, and the in-plane distribution of the amount of electrolytic etching becomes nonuniform on the inner and outer peripheral sides of the substrate.

【0021】本発明においては、末端電極の内径と外径
を基板に対して内径比を大きくし、且つ、外径比を小さ
くして、末端電極の内側と外側からの該電気力線のまわ
り込む面積を広げることにより電解エッチング量の面内
分布を均一にするものである。
In the present invention, the ratio of the inner and outer diameters of the terminal electrode to the substrate is increased by increasing the ratio of the inner diameter to the substrate, and the ratio of the outer diameter is reduced, so that the area around the lines of electric force from the inside and outside of the terminal electrode is reduced. The in-plane distribution of the amount of electrolytic etching is made uniform by increasing the area to be filled.

【0022】また、末端電極の板厚としては基板の板厚
に対してその厚み比(末端電極の板厚(H1 ′)/基板
の板厚(H1 ))が0.5〜2、望ましくは0.8〜
1.1の範囲がエッチング量の均一性の点から好まし
い。
The thickness ratio of the terminal electrode to the substrate (the thickness of the terminal electrode (H 1 ′) / the thickness of the substrate (H 1 )) is 0.5 to 2, Desirably 0.8 ~
The range of 1.1 is preferable from the viewpoint of the uniformity of the etching amount.

【0023】また、末端電極と該基板との電極間の距離
としては、3〜30mm、望ましくは5〜15mmの範
囲であるのが、電解エッチング量の均一性の点で望まし
い。
The distance between the terminal electrode and the electrode is preferably in the range of 3 to 30 mm, and more preferably in the range of 5 to 15 mm from the viewpoint of the uniformity of the electrolytic etching amount.

【0024】末端電極の抵抗値は、エッチング処理を施
す部分と電気抵抗が実質的に同程度である事が好まし
い。即ち、Ni−Pメッキ層をエッチングする場合は、
Ni−Pと同等の電気抵抗値を有する材料からなる末端
電極を用いることが望ましい。
It is preferable that the resistance value of the terminal electrode is substantially the same as the electric resistance of the portion to be etched. That is, when etching the Ni-P plating layer,
It is desirable to use a terminal electrode made of a material having the same electric resistance value as Ni-P.

【0025】また、末端電極の材料としては基板より耐
食性を有する金属が好ましい。このような材料として
は、チタンや白金等を挙げることができる。末端電極は
金属板で構成するのが最も容易ではあるが、必要に応じ
て任意の構成をとることが可能である。
Further, as the material of the terminal electrode, a metal having more corrosion resistance than the substrate is preferable. Examples of such a material include titanium and platinum. The terminal electrode is most easily made of a metal plate, but can have any structure as needed.

【0026】本発明の特に好適な実施態様の一例を図1
〜図3を参照して説明する。図1は、基板を電解処理す
る様子を模式的に示す、基板面方向に見た電解槽内の立
面図である。図1において、符号1は、図面上で左側か
ら順次に数えて奇数番目の基板を、符号2は偶数番目の
基板を夫々示している。各基板1,2は、電解液3が満
たされた電解槽5内に、その基板面と直交方向に多数が
並んで配列される。また、末端電極としては符号20,
21が設けられている。符号4はAC電源であり、その
一方のライン6が奇数番目の各基板1に、他方のライン
7が偶数番目の各基板2に、夫々図示しない支持部材を
介して接続されているAC電源4からは、所定周波数
(例えば20Hz)の矩形波から成る交番電圧が出力さ
れる。従って、奇数番目の基板1及びこれに対向する偶
数番目の基板2が夫々交互に陽極又は陰極の電極板とし
て機能し、対向する基板間1,2を交番電流が流れるこ
とにより、各基板1,2の電解処理が可能となる。この
電界処理により、基板表面の突起やバリがエッチングに
より除去され、基板表面が滑らかな表面状態に仕上げら
れる。
One example of a particularly preferred embodiment of the present invention is shown in FIG.
This will be described with reference to FIG. FIG. 1 is an elevational view of the inside of an electrolytic cell viewed in a substrate surface direction, schematically showing a state in which a substrate is subjected to electrolytic treatment. In FIG. 1, reference numeral 1 denotes an odd-numbered substrate counted sequentially from the left side in the drawing, and reference numeral 2 denotes an even-numbered substrate. A large number of the substrates 1 and 2 are arranged in an electrolytic bath 5 filled with the electrolytic solution 3 in a direction orthogonal to the substrate surface. Reference numeral 20, as the terminal electrode,
21 are provided. Reference numeral 4 denotes an AC power supply, of which one line 6 is connected to each odd-numbered substrate 1 and the other line 7 is connected to each even-numbered substrate 2 via a support member (not shown). Outputs an alternating voltage composed of a rectangular wave of a predetermined frequency (for example, 20 Hz). Accordingly, the odd-numbered substrate 1 and the even-numbered substrate 2 opposite thereto function alternately as anode or cathode electrode plates, and an alternating current flows between the opposing substrates 1 and 2 so that the respective substrates 1 and 2 2 is possible. By this electric field treatment, protrusions and burrs on the substrate surface are removed by etching, and the substrate surface is finished to a smooth surface state.

【0027】図2は、電解槽内での基板の支持状況を示
す、基板面と直交方向に見た基板の正面図であり、ま
た、図3は図2のA−A′矢視図である。図2は、奇数
番目及び偶数番目の基板1,2に共通の図として描かれ
ており、各ディスク状基板1,2は夫々、ディスクの円
周方向に相互に離隔してこれを受け止めるように配置さ
れた3つの支持部材11,12,13によって、ディス
ク外周縁部の3点で支持される。なお、支持部材の数は
2以上、任意の数が選定されるものの、基板の挿入及び
取り外し等の取扱いの便宜のために3点以上が好まし
い。
FIG. 2 is a front view of the substrate viewed in a direction perpendicular to the substrate surface, showing a state of supporting the substrate in the electrolytic cell. FIG. 3 is a view taken along the line AA ′ in FIG. is there. FIG. 2 is drawn as a diagram common to the odd-numbered and even-numbered substrates 1 and 2, and each of the disk-shaped substrates 1 and 2 is separated from each other in the circumferential direction of the disk so as to receive it. The three supporting members 11, 12, and 13 are supported at three points on the outer peripheral edge of the disk. The number of support members is two or more, and an arbitrary number is selected, but three or more points are preferable for convenience of handling such as insertion and removal of a substrate.

【0028】第1及び第2の支持部材11及び12は、
何れも導電性支持部材、例えば金属部材として構成され
ており、図3に示すように、基板の外周部近傍に基板の
配列方向に延びる導電性支持棒14と、この導電性支持
棒14に電気的に接触しつつ支持される第1の係止部材
15と、導電性支持棒14に電気的に絶縁されつつ支持
される第2の係止部材17とから構成される。各係止部
材15,17は、例えば金属材料から成り、略ソロバン
玉形状に形成され、導電性支持棒14に挿入される中空
穴を有すると共に、外周面が環状溝18として形成され
ている。環状溝18はその溝底部が基板1,2の外周面
に当接して、導電性基板1,2を垂直方向及び水平方向
に支持すると共にこれと電気的に接触している。
The first and second support members 11 and 12
Each of them is configured as a conductive support member, for example, a metal member. As shown in FIG. 3, a conductive support rod 14 extending in the arrangement direction of the substrate near the outer peripheral portion of the substrate, It is composed of a first locking member 15 that is supported while being in contact with each other, and a second locking member 17 that is supported while being electrically insulated by the conductive support rod 14. Each of the locking members 15 and 17 is made of, for example, a metal material, is formed in a substantially soloban ball shape, has a hollow hole inserted into the conductive support rod 14, and has an outer peripheral surface formed as an annular groove 18. The bottom of the annular groove 18 abuts against the outer peripheral surfaces of the substrates 1 and 2 to support the conductive substrates 1 and 2 in the vertical and horizontal directions and to make electrical contact therewith.

【0029】第1の係止部材15は、ネジ19によっ
て、導電性支持棒14に電気的及び機械的に結合されて
いる。第2の係止部材17は、例えばテフロン等の絶縁
材16を介して導電性支持棒14から絶縁されつつこれ
に支持されている。なお、図2に示した第3の支持部材
13は、導電性支持部材11,12と同様な導電性支持
棒及び第2の係止部材を有する絶縁性の支持部材であ
り、各導電性基板1,2を単に機械的に支持する。
The first locking member 15 is electrically and mechanically connected to the conductive support rod 14 by a screw 19. The second locking member 17 is supported by the conductive support rod 14 while being insulated from the conductive support rod 14 via an insulating material 16 such as Teflon. The third support member 13 shown in FIG. 2 is an insulative support member having a conductive support rod similar to the conductive support members 11 and 12 and a second locking member. 1 and 2 are merely mechanically supported.

【0030】AC電源4からの電流は、例えば第1の導
電性支持部材11の支持棒14を経由して、この支持棒
14と電気的に接触している第1の係止部材15に流入
し、更に、第1の係止部材の環状溝18表面を経て、対
応する奇数番目の導電性基板1の外周縁から当該基板に
与えられる。次いで、電解液を経由して対向する偶数番
目の基板2から、同様にして、第2の導電性支持部材1
2を経由してAC電源に還流する。電圧極性が反転する
と、同様にこれと逆方向に流れる。このように、奇数番
目の基板1とこれに対向する偶数番目の基板2とは相互
に対向する対向電極を構成する。これにより、各基板の
電解処理が可能となる。
The current from the AC power supply 4 flows through the support rod 14 of the first conductive support member 11, for example, to the first locking member 15 which is in electrical contact with the support rod 14. Then, it is provided to the odd-numbered conductive substrate 1 from the corresponding outer peripheral edge via the surface of the annular groove 18 of the first locking member. Next, from the even-numbered substrates 2 facing each other via the electrolytic solution, the second conductive support members 1 are similarly formed.
Reflux to AC power via 2. When the voltage polarity is inverted, the current flows in the opposite direction. As described above, the odd-numbered substrate 1 and the even-numbered substrate 2 facing the odd-numbered substrate 1 constitute opposing electrodes facing each other. Thereby, the electrolytic treatment of each substrate becomes possible.

【0031】上記において、絶縁のための第2の係止部
材17それ自体をテフロン等の絶縁材料で形成すること
も考えられるが、このようにすると、電解処理中に係止
部材17に気泡が付着し、支持部材近傍の基板面が気泡
によりマスキングされ、エッチングムラが発生すること
となり好ましくない。
In the above description, it is conceivable that the second locking member 17 itself for insulation is formed of an insulating material such as Teflon. However, in this case, bubbles are generated in the locking member 17 during the electrolytic treatment. It adheres, and the substrate surface near the support member is masked by the bubbles, which causes etching unevenness, which is not preferable.

【0032】本発明方法では、上記のように、好ましく
は酸性溶液の電解液中において、基板に流れる電流が特
定の波形となるように交番電圧を印加して、テクスチャ
加工を施した基板表面の電解処理を行なう。ここで、電
解液としては、例えば、硫酸、硝酸、塩酸、クロム酸、
リン酸、シュウ酸、酢酸等の1種又は2種以上を組み合
わせた0.5〜40重量%、望ましくは1〜30重量%
の範囲の濃度の水溶液が用いられ、特にリン酸水溶液が
好適である。電解処理の条件としては、液温が10〜7
0℃、平均電流密度が50mA/cm2 以下、好ましく
は1〜50mA/cm2 、更に好ましくは5〜45mA
/cm2 、電解時間が1〜400秒、好ましくは2〜2
00秒、電気量(平均電流密度と電解時間の積)が10
〜1000mA・秒/cm2 、好ましくは50〜600
mA・秒/cm2 の範囲が選ばれる。
In the method of the present invention, as described above, an alternating voltage is applied so that the current flowing through the substrate has a specific waveform, preferably in an electrolytic solution of an acidic solution, so that the surface of the textured substrate is treated. An electrolytic treatment is performed. Here, as the electrolytic solution, for example, sulfuric acid, nitric acid, hydrochloric acid, chromic acid,
0.5 to 40% by weight, preferably 1 to 30% by weight of one or a combination of two or more of phosphoric acid, oxalic acid and acetic acid
An aqueous solution having a concentration in the range described above is used, and a phosphoric acid aqueous solution is particularly preferable. The conditions of the electrolytic treatment are as follows:
0 ° C., an average current density of 50 mA / cm 2 or less, preferably 1~50mA / cm 2, more preferably 5~45mA
/ Cm 2 , the electrolysis time is 1 to 400 seconds, preferably 2 to 2 seconds.
00 seconds, quantity of electricity (product of average current density and electrolysis time) is 10
10001000 mA · sec / cm 2 , preferably 50-600
A range of mA · sec / cm 2 is selected.

【0033】電解エッチングに使用される電流として
は、正負の極性、即ち陽極、陰極の極性を交互に変える
交番電流、例えば正弦波の単相交流、或いは、矩形波、
3角波、台形波等の交番電流が挙げられる。交番電流の
周波数は0.5〜100Hz好ましくは1〜50Hzの
範囲である。
The current used for the electrolytic etching may be a positive or negative polarity, that is, an alternating current that alternately changes the polarity of the anode and the cathode, for example, a sinusoidal single-phase alternating current or a rectangular wave.
Alternating currents such as triangular waves and trapezoidal waves are mentioned. The frequency of the alternating current is in the range of 0.5-100 Hz, preferably 1-50 Hz.

【0034】テキスチャ処理後に上記電解処理を施した
場合には、洗浄、乾燥した後に薄膜の形成を行うのが一
般的である。その場合には通常第2次下地層としてCr
下地層を膜厚50〜2000Åの範囲で形成し、次いで
金属磁性薄膜層や保護層などを形成する。磁性薄膜層と
しては特に制限はないが、Co−Cr,Co−Ni,C
o−Cr−X,Co−Ni−X,Co−W−X等で表わ
されるCo系合金の磁性薄膜層が好適である。ここでX
としては、Li,Si,Ca,Ti,V,Cr,Ni,
As,Y,Zr,Nb,Mo,Ru,Rh,Ag,S
b,Hf,Ta,W,Re,Os,Ir,Pt,Au,
La,Ce,Pr,Nd,Pm,Sm,及び、Euより
なる群から選ばれた1種又は2種以上の元素が挙げられ
る。この金属磁性薄膜層の膜厚は、一般に、100〜1
000Åの範囲である。
When the above-described electrolytic treatment is performed after the texturing treatment, it is general to form a thin film after washing and drying. In such a case, Cr is usually used as the second underlayer.
An underlayer is formed in a thickness of 50 to 2000 °, and then a metal magnetic thin film layer and a protective layer are formed. Although there is no particular limitation on the magnetic thin film layer, Co—Cr, Co—Ni, C
A magnetic thin film layer of a Co-based alloy represented by o-Cr-X, Co-Ni-X, Co-WX or the like is preferable. Where X
Are Li, Si, Ca, Ti, V, Cr, Ni,
As, Y, Zr, Nb, Mo, Ru, Rh, Ag, S
b, Hf, Ta, W, Re, Os, Ir, Pt, Au,
One or more elements selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu. The thickness of the metal magnetic thin film layer is generally 100 to 1
In the range of 000 °.

【0035】金属磁性薄膜上には、好ましくは炭素質膜
から成る保護薄膜層が形成される。炭素質保護薄膜層
は、通常、アルゴン(Ar)、ヘリウム(He)等の希
ガスの雰囲気下又はこれに加えて少量の水素の存在下
で、カーボンをターゲットとして行うスパッタリングに
より形成され、アモルファス状カーボン膜や水素化カー
ボン膜等として被着形成される。この保護薄膜層の膜厚
は、通常50〜500Åの範囲である。また、摩擦係数
を更に小さくするために、保護薄膜上に更に潤滑膜を形
成してもよい。
On the metal magnetic thin film, a protective thin film layer preferably made of a carbonaceous film is formed. The carbonaceous protective thin film layer is usually formed by sputtering using carbon as a target in an atmosphere of a rare gas such as argon (Ar) or helium (He) or in the presence of a small amount of hydrogen in addition to the amorphous. It is formed as a carbon film or a hydrogenated carbon film. The thickness of this protective thin film layer is usually in the range of 50 to 500 °. Further, in order to further reduce the friction coefficient, a lubricating film may be further formed on the protective thin film.

【0036】電解処理による表面処理は、テキスチャ加
工後だけでなく、磁気ディスクの製造工程中任意に採用
することが可能であり、本発明の適用もテキスチャ加工
に引き続く電解処理時に限定されない。
The surface treatment by the electrolytic treatment can be arbitrarily adopted not only after the texturing but also during the manufacturing process of the magnetic disk, and the application of the present invention is not limited to the electrolytic treatment following the texturing.

【0037】[0037]

【実施例】次に、実施例により本発明を更に説明する
が、本発明はその要旨を越えない限り以下の実施例によ
って限定されるものではない。 (実施例1)無電解メッキ法によりNi−Pメッキを1
5μm程度の厚みに施した、アルミニウム合金製で3.
5インチディスク用の基板を用意した。基板の表面をポ
リッシュ加工して、その表面平均粗さ(Ra)が約20
〜30Åである膜面とし、次いで、研磨テープを用いた
テクスチャ加工により微細な溝を形成した。更に、その
ディスクに遊離砥粒を用いたテクスチャ加工を施す処理
を行ない、表面平均粗さ(Ra)が約60Å程度となる
ように仕上げた。
Next, the present invention will be further described with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. (Example 1) Ni-P plating was performed by one
2. Made of an aluminum alloy with a thickness of about 5 μm
A substrate for a 5-inch disk was prepared. The surface of the substrate is polished to have an average surface roughness (Ra) of about 20.
Then, a fine groove was formed by texturing using a polishing tape. Further, the disk was subjected to a texturing process using free abrasive grains, so that the surface was finished so that the average surface roughness (Ra) was about 60 °.

【0038】次に、図1〜図3に示した装置を用い、該
ディスク基板20枚及び表1に示す形状のチタン電極2
枚(符号20,21)を図1に示したように、電極間距
離6.2mmとしてディスク基板を配置し、且つ両端の
ディスク基板の外側にチタン電極20,21を配置し
た。次に電解処理液として3wt%リン酸水溶液中で、
通電電流が矩形波の交番電流となるように奇数番目の基
板と偶数番目の基板との間に印加する交番電圧を制御し
て電解処理を行なった。電解処理の条件として、電解液
の液温20℃、平均電流密度20mA/cm2 、周波数
5Hz、及び、電解時間20秒を採用した。
Next, using the apparatus shown in FIGS. 1 to 3, 20 disk substrates and a titanium electrode 2 having the shape shown in Table 1 were used.
As shown in FIG. 1, the disc substrates (20 and 21) were arranged at a distance between the electrodes of 6.2 mm, and the titanium electrodes 20 and 21 were arranged outside the disc substrates at both ends. Next, in a 3 wt% phosphoric acid aqueous solution as an electrolytic treatment solution,
The electrolysis treatment was performed by controlling the alternating voltage applied between the odd-numbered substrate and the even-numbered substrate so that the supplied current became an alternating current of a rectangular wave. As the conditions for the electrolytic treatment, a liquid temperature of the electrolytic solution of 20 ° C., an average current density of 20 mA / cm 2 , a frequency of 5 Hz, and an electrolytic time of 20 seconds were employed.

【0039】上記電解処理で得られた両端の基板のチタ
ン電極対向面について、電解エッチング深さの面内分布
を測定した。 (測定方法)基板の中心で交わり互いに直行する2方向
(即ち、基板中心を原点として0度、90度、180
度、270度方向)に、所定の幅のマスクを施してエッ
チング処理を行い、エッチング終了後にマスクを除去す
る。所定の半径位置においてタリステップ(触針粗さ
計)を用い、基板中心から見た4方向の各方向について
半径位置を8点ずつマスクされた部分とエッチングした
部分との段差を測定し、同一半径位置における段差測定
値のばらつきをみることによりエッチング深さの分布を
測定する。測定段差平均値のプラスマイナス10%以内
に前データが含まれる場合にムラがないと判断した。実
施例1の測定結果を図5(a)及び表1に示す。
The in-plane distribution of the electrolytic etching depth was measured for the opposite surfaces of the substrates at both ends obtained by the electrolytic treatment, which face the titanium electrodes. (Measurement method) Two directions that intersect at the center of the substrate and are orthogonal to each other (that is, 0 degree, 90 degree, 180
(In the direction of 270 degrees), an etching process is performed by applying a mask having a predetermined width, and the mask is removed after the etching. Using a tally step (a stylus roughness meter) at a predetermined radius position, the step between the portion where the radius position is masked by 8 points and the etched portion in each of the four directions viewed from the center of the substrate is measured. The distribution of the etching depth is measured by observing the variation in the measured step value at the radial position. It was determined that there was no unevenness when the previous data was included within plus or minus 10% of the measured step average value. The measurement results of Example 1 are shown in FIG.

【0040】比較例1〜4 実施例1において、末端電極として表1に示す形状のチ
タン電極を用いたこと以外は同様にして行った。その結
果、図5(b)(比較例1)、図5(c)(比較例2)
及び表1に示すようにそれぞれ内周側にエッチング深さ
の不均一な面内分布を有するものが得られ、基板の内周
側に局部的な電解エッチングムラが生じていることが判
明した。
Comparative Examples 1 to 4 The same procedure as in Example 1 was carried out except that a titanium electrode having the shape shown in Table 1 was used as a terminal electrode. As a result, FIG. 5B (Comparative Example 1) and FIG. 5C (Comparative Example 2)
As shown in Table 1 and Table 1, those having an in-plane distribution of the etching depth on the inner peripheral side were obtained, and it was found that local electrolytic etching unevenness occurred on the inner peripheral side of the substrate.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
特定形状の末端電極を用いることにより、磁気ディスク
の最外面においてもエッチング深さを均一にする事がで
きる。
As described above, according to the present invention,
By using a terminal electrode having a specific shape, the etching depth can be made uniform even on the outermost surface of the magnetic disk.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電解エッチング装置の要部構成を示す図FIG. 1 is a diagram showing a main configuration of an electrolytic etching apparatus.

【図2】 電解槽における基板支持構成例を示す図FIG. 2 is a diagram showing an example of a substrate support configuration in an electrolytic cell.

【図3】 図2の断面図FIG. 3 is a sectional view of FIG. 2;

【図4】 基板と末端電極の寸法を示す図FIG. 4 is a view showing dimensions of a substrate and a terminal electrode.

【図5】 実施例及び比較例におけるエッチング深さ測
定結果を示す図
FIG. 5 is a diagram showing etching depth measurement results in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1、2 基板 3 電解液 4 AC電源 5 電解槽 20、21 末端電極 1, 2 substrate 3 electrolytic solution 4 AC power supply 5 electrolytic cell 20, 21 terminal electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板若しくは媒体の表面を電気分解処理
する工程を有する磁気記録媒体の製造方法において、 前記電気分解処理を、基板若しくは媒体の、他の基板若
しくは媒体に対向しない面に対向するように設けた一対
の略円盤状の末端電極を用いて行い、かつ該末端電極の
内径が前記基板若しくは媒体の内径よりも大きく、外径
が前記基板若しくは媒体の外径よりも小さいことを特徴
とする磁気記録媒体の製造方法。
1. A method for manufacturing a magnetic recording medium comprising a step of subjecting a surface of a substrate or a medium to electrolysis, wherein the electrolysis is performed so as to face a surface of the substrate or medium that does not face another substrate or medium. The method is performed using a pair of substantially disk-shaped terminal electrodes provided on the substrate, and the inner diameter of the terminal electrode is larger than the inner diameter of the substrate or the medium, and the outer diameter is smaller than the outer diameter of the substrate or the medium. Of manufacturing a magnetic recording medium.
【請求項2】 前記末端電極の内径が前記基板若しくは
媒体の内径に対し1.05〜1.5、外径が前記基板若
しくは媒体の外径に対して0.7〜0.95であること
を特徴とする請求項1記載の磁気記録媒体の製造方法。
2. The inner diameter of the terminal electrode is 1.05 to 1.5 with respect to the inner diameter of the substrate or medium, and the outer diameter is 0.7 to 0.95 with respect to the outer diameter of the substrate or medium. The method for manufacturing a magnetic recording medium according to claim 1, wherein:
【請求項3】 該末端電極は該基板と電気抵抗値が実質
的に同程度であり、且つ該基板より耐食性を有する金属
電極である請求項1または2に記載の磁気記録媒体の製
造方法。
3. The method for manufacturing a magnetic recording medium according to claim 1, wherein the terminal electrode is a metal electrode having substantially the same electric resistance value as the substrate and having corrosion resistance more than the substrate.
【請求項4】 該電解処理工程は複数の導電性基板を基
板面と直交方向に順次に並べて電解液中に配置し、順次
数えて奇数番目の導電性基板と偶数番目の導電性基板と
の間に交番電圧を印加される、請求項1ないし3に記載
の磁気記録媒体の製造方法。
4. The electrolytic processing step comprises: arranging a plurality of conductive substrates in an electrolytic solution by sequentially arranging the plurality of conductive substrates in a direction perpendicular to the substrate surface, and sequentially counting odd-numbered conductive substrates and even-numbered conductive substrates. 4. The method according to claim 1, wherein an alternating voltage is applied between the magnetic recording media.
JP2195798A 1998-02-03 1998-02-03 Production of magnetic recording medium Pending JPH11219520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195798A JPH11219520A (en) 1998-02-03 1998-02-03 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195798A JPH11219520A (en) 1998-02-03 1998-02-03 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH11219520A true JPH11219520A (en) 1999-08-10

Family

ID=12069558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195798A Pending JPH11219520A (en) 1998-02-03 1998-02-03 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH11219520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090145881A1 (en) * 2007-12-06 2009-06-11 Intevac, Inc. System and method for dual-sided sputter etch of substrates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090145881A1 (en) * 2007-12-06 2009-06-11 Intevac, Inc. System and method for dual-sided sputter etch of substrates
US8784622B2 (en) * 2007-12-06 2014-07-22 Intevac, Inc. System and method for dual-sided sputter etch of substrates
US9165587B2 (en) 2007-12-06 2015-10-20 Intevac, Inc. System and method for dual-sided sputter etch of substrates

Similar Documents

Publication Publication Date Title
US6957511B1 (en) Single-step electromechanical mechanical polishing on Ni-P plated discs
JPH0695369B2 (en) Method of manufacturing perpendicular magnetic recording / reproducing thin film head
JP2006063438A (en) Plating method on glass base plate, method of manufacturing disk substrate for magnetic recording medium using the method and method for manufacturing vertical magnetic recording medium
JPH11219520A (en) Production of magnetic recording medium
JP4947429B2 (en) Information recording medium substrate and information magnetic recording medium using the same
JP3386909B2 (en) Manufacturing method of magnetic recording medium
JP4566667B2 (en) Plating solution, method of manufacturing structure using plating solution, and apparatus using plating solution
JPH11149633A (en) Production of magnetic recording medium
JP2004310851A (en) Magnetic recording medium, magnetic recording/reproducing device, and information processor
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JPH08171720A (en) Production of magnetic recording medium
JP4983500B2 (en) Information recording medium substrate and information magnetic recording medium using the same
JP2698086B2 (en) Magnetic disk substrate and method of manufacturing the same
JPH025836B2 (en)
JPH10134346A (en) Production of magnetic recording medium
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
JPH07169049A (en) Manufacture of magnetic recording medium
JP5983897B1 (en) Glass substrate for magnetic disk and magnetic disk
JPH01271908A (en) Magnetic storage body and magnetic storage device and its manufacture
JPH07225945A (en) Production of magnetic recording medium
JPH11203673A (en) Production of magnetic recording medium
JPH11203672A (en) Production of magnetic recording medium
JPH11175968A (en) Production of magnetic recording medium
JPH11161946A (en) Texturing method of substrate for magnetic recording medium
JPH11277339A (en) Magnetic recording medium, substrate for magnetic recording medium its polishing method, device and polishing tape