JPH11217641A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JPH11217641A
JPH11217641A JP10316161A JP31616198A JPH11217641A JP H11217641 A JPH11217641 A JP H11217641A JP 10316161 A JP10316161 A JP 10316161A JP 31616198 A JP31616198 A JP 31616198A JP H11217641 A JPH11217641 A JP H11217641A
Authority
JP
Japan
Prior art keywords
weight
hydrogen storage
alloy
storage alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10316161A
Other languages
Japanese (ja)
Inventor
Masaki Kasashima
匡樹 笠嶋
Noriaki Hamaya
典明 浜谷
Hisafumi Shintani
尚史 新谷
Satoshi Shima
聡 島
Takao Maeda
孝雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10316161A priority Critical patent/JPH11217641A/en
Publication of JPH11217641A publication Critical patent/JPH11217641A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy suitable for a cathode for Ni-hydrogen battery effective at a low temp. by containing a specified compound as well as a specified Mg. SOLUTION: A formula shows the compound used. In the formula, R shows a mixture consisting of >=77 wt.% La and <=23 wt.% one kind or more of rare earth metals except La. M shows one kind or more of metals selected from a group of Fe, Cr, Cu, Mn. (a)-(b) are a positive number showing a mol ratio for R and are shown in 30 <=a<=4.5; 0.3<=b<=1.0; 0<=c<=0.6; 0<=d<=0.5, the alloy contains 50-500 ppm Mg, further <=0.05 wt.% Ti, <=0.05 wt.% Pb, <=0.3 wt.% O, <=0.05 wt.% C and preferably <=0.05 wt.% S, by this method, a negative pole which has a high capacity a well as a long cycle life and is excellent in a high rate discharge property, a low temp. discharge property resoling from effect of a minute quantity of an eddying element of Mg, etc., is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金に関
し、特にアルカリ蓄電池負極用として好適な水素吸蔵合
金に関する。
The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy suitable for use as a negative electrode of an alkaline storage battery.

【0002】[0002]

【従来の技術】水素を吸蔵放出する水素吸蔵合金が発見
されて以来、その応用は、単なる水素貯蔵手段にとどま
らずヒートポンプや電池へと展開が図られてきた。ま
た、近年電子技術の発展にともない、電子機器の小型化
及び省力化が重要なファクターとなっている。さらに、
最近では、該合金を用いた蓄電池は高地や寒冷地で使用
されるようになり、低温特性が優れる電池が切望されて
いる。
2. Description of the Related Art Since the discovery of a hydrogen storage alloy that stores and releases hydrogen, its application has been extended to heat pumps and batteries as well as simple hydrogen storage means. In recent years, with the development of electronic technology, miniaturization and labor saving of electronic devices have become important factors. further,
Recently, storage batteries using such alloys have been used in high altitude or cold areas, and batteries with excellent low-temperature characteristics have been eagerly desired.

【0003】特に、水素吸蔵合金を負電極として用いる
アルカリ蓄電池は実用化され用いる水素吸蔵合金も次々
に改良されている。当初検討されたLaNi5合金は
(特開昭51―13934号公報参照)水素吸蔵量は大
きいという利点がある一方、水素を吸蔵放出することの
繰り返しによって微粉化しやすく、そのため合金表面の
比表面積が増加し、劣化面積の増大が起こり、更にアル
カリ溶液や酸溶液によって腐食されやすいという欠点が
あった。
In particular, an alkaline storage battery using a hydrogen storage alloy as a negative electrode has been put to practical use, and the hydrogen storage alloy used has been continuously improved. The LaNi5 alloy initially studied (see JP-A-51-13934) has the advantage that it has a large hydrogen storage capacity, but is liable to be pulverized by repeated storage and release of hydrogen, thereby increasing the specific surface area of the alloy surface. However, there is a disadvantage that the deteriorated area increases, and furthermore, it is easily corroded by an alkali solution or an acid solution.

【0004】かかる欠点は、Laの一部をCe,Pr、
Ndその他の希土類金属元素に置換することによって、
及び/又はNiの一部をCo、Al、Mn等の金属で置
換することによって改良された(例えば、特開昭53−
48918号公報、同54−64014号公報、同60
−250558号公報、同61−233968号公報、
同62−43064号公報参照)。そして、Laの一部
をCe等で置換した合金としては、Ceが40〜50重
量%程度含まれるミッシュメタル(Mm)やLaが50
〜60重量%、Ceが10〜30重量%程度含まれるL
aリッチミッシュメタル(Lm)が使用されている。
The disadvantage is that a part of La is made of Ce, Pr,
By substituting Nd and other rare earth metal elements,
And / or by replacing a part of Ni with a metal such as Co, Al, Mn (for example,
48918, 54-64014, 60
-250558, 61-233968,
No. 62-43064). As an alloy in which a part of La is replaced by Ce or the like, misch metal (Mm) containing about 40 to 50% by weight of Ce or La
L containing about 60% by weight and about 10 to 30% by weight of Ce
a Rich misch metal (Lm) is used.

【0005】[0005]

【発明が解決しようとする課題】一般に電池用として、
La−Ni系の水素吸蔵合金を用いる場合、高容量でか
つ、さらに低温での放電特性が良いこと、充放電サイク
ル寿命が長いことが重要である。その上で、Laの一部
をCeで置換して目的を達しようとしているが、上記従
来技術では充放電サイクル寿命は改善するが、低温時に
おける高率放電特性や寿命が改善されていない。また、
Ni側をCo、Mn、Al等で置換することにより常温
での高率放電特性や寿命の効果を及ぼすことが分かって
いる。従って、本発明の目的は、低温時に効果のあるN
i- 水素蓄電池用の負電極として好適な水素吸蔵合金を
提供することにある。
SUMMARY OF THE INVENTION Generally, for batteries,
When a La-Ni-based hydrogen storage alloy is used, it is important that the battery has high capacity, good discharge characteristics at a lower temperature, and a long charge / discharge cycle life. Then, La is partially replaced with Ce to achieve the purpose. In the above-mentioned conventional technology, the charge / discharge cycle life is improved, but the high-rate discharge characteristics and the life at low temperatures are not improved. Also,
It has been found that replacing the Ni side with Co, Mn, Al, or the like exerts the effects of high-rate discharge characteristics at normal temperature and life. Accordingly, an object of the present invention is to provide an effective N
An object of the present invention is to provide a hydrogen storage alloy suitable as a negative electrode for an i-hydrogen storage battery.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
La側、Ni側の相乗作用について検討を重ねた結果、
La側のLa量を一定量以上にし、かつMg等の微量の
金属元素の添加効果と炭素、酸素等の非金属元素の添加
効果により低温時における高容量でかつ、高率放電特
性、放電特性がよく、かつサイクル寿命の良いアルカリ
蓄電池負極に適した水素吸蔵合金を得ることを見いだ
し、本発明に到達した。
Means for Solving the Problems Accordingly, the present inventors have
As a result of repeatedly examining the synergistic action on the La side and the Ni side,
The La content on the La side is made a certain amount or more, and the addition effect of a trace metal element such as Mg and the addition effect of non-metal elements such as carbon and oxygen provide a high capacity at a low temperature and a high rate discharge characteristic and discharge characteristic. It has been found that a hydrogen storage alloy suitable for a negative electrode of an alkaline storage battery having good cycle life and good cycle life is obtained, and the present invention has been achieved.

【0007】本発明は、La−Ni系水素吸蔵合金にお
いて、当該水素吸蔵合金中のMgの含有量が50〜50
0ppmであるとともに、一般式R(Ni)a(Co)b
(Al)c(M)dで表され、Rは、77重量%以上のL
aと、23重量%以下のLa以外の一種類以上の希土類
金属とを有する混合物からなり、Mは、Fe、Cr、C
u、Mnからなる一群から選ばれる一種以上の金属から
なり、a〜dは下記の範囲の正の数を表すモル比(Rを
1とする。)である水素吸蔵合金により達成された。
3.0≦a≦4.5;0.3≦b≦1.0;0<c≦
0.6;0<d≦0.5また、さらに上記合金中にTi
の含有量が0.05重量%以下であること、Pbの含有
量が0.05重量%以下であることで好適な結果が得ら
れる。さらに、当該水素吸蔵合金中にTi、Pbの他に
非金属元素である0.3重量%以下の酸素、0.05重
量%以下の炭素、0.05重量%以下の硫黄を含有させ
ることによってさらに好ましい結果が得られることを見
いだした。
The present invention relates to a La—Ni-based hydrogen storage alloy, wherein the content of Mg in the hydrogen storage alloy is 50 to 50.
0 ppm and the general formula R (Ni) a (Co) b
(Al) c (M) d , where R is 77% by weight or more of L
a and at least 23% by weight of one or more rare earth metals other than La, wherein M is Fe, Cr, C
This was achieved by a hydrogen storage alloy comprising at least one metal selected from the group consisting of u and Mn, wherein a to d are positive ratio molar ratios (R is 1) in the following ranges.
3.0 ≦ a ≦ 4.5; 0.3 ≦ b ≦ 1.0; 0 <c ≦
0.6; 0 <d ≦ 0.5 Further, Ti
Suitable results are obtained when the content of Pb is 0.05% by weight or less and the content of Pb is 0.05% by weight or less. Further, by adding 0.3% by weight or less of oxygen, 0.05% by weight or less of carbon, and 0.05% by weight or less of sulfur, which are nonmetallic elements, to the hydrogen storage alloy in addition to Ti and Pb. It has been found that more favorable results can be obtained.

【0008】[0008]

【発明の実施の形態】本発明のLa- Ni系水素吸蔵合
金は、La側の希土類混合物中に含有されるLaの含有
量を増加させ、微量のMgを添加させることにより、低
温時における高容量を維持しかつサイクル寿命の向上を
達成した。また、La側のLa含有量を増加させること
により、解離平衡圧をアルカリ二次電池に好適な範囲に
調整出来るため、Ni側でのMn等やAlの置換量を従
来より小さくすることが可能となり、高容量でサイクル
寿命の良いアルカリ二次電池負極用合金に適している。
BEST MODE FOR CARRYING OUT THE INVENTION The La—Ni-based hydrogen storage alloy according to the present invention has a high La content in a rare earth mixture on the La side and a small amount of Mg added thereto to provide a high-temperature low-temperature alloy. The capacity was maintained and the cycle life was improved. Also, by increasing the La content on the La side, the dissociation equilibrium pressure can be adjusted to a range suitable for an alkaline secondary battery, so that the substitution amount of Mn or the like or Al on the Ni side can be made smaller than before. It is suitable for an alloy for a negative electrode of an alkaline secondary battery having a high capacity and a good cycle life.

【0009】本発明のLa側は、一般式Rで表され、L
aは77重量%以上含めばよいが、特に77〜95重量
%のLaと、5〜23重量%のLa以外の一種類以上の
希土類金属を有する混合物からなることが好ましい。一
般式R中のLa含有量が77重量%より小さいと本発明
で得られたような低温時における効果は期待できない。
また、一般式R中のLa含有量が95重量%をこえると
経済性が悪くなる傾向となる。本発明では特にLaを7
7〜90重量%含有させることが好ましい。
The La side of the present invention is represented by the general formula R
a may be contained in an amount of 77% by weight or more, and particularly preferably a mixture containing 77 to 95% by weight of La and 5 to 23% by weight of one or more rare earth metals other than La. If the La content in the general formula R is less than 77% by weight, the effect at low temperatures as obtained in the present invention cannot be expected.
If the La content in the general formula R exceeds 95% by weight, the economy tends to deteriorate. In the present invention, La is particularly set to 7
It is preferable to contain 7 to 90% by weight.

【0010】一般式R中のLa以外の希土類元素として
は、Ce、Pr、Nd、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、Lu、Yからなる一群か
ら選ばれる一種以上を23重量%以下、好ましくは5〜
23重量%含有する。好ましくは、Pr、Ce、Ndか
ら一種以上選ばれ、好ましくはR中に5〜23重量%含
有させるとよい。その中でも特に好ましくは、Ce、P
r、又はNdを10〜23重量%含ませるとよい。さら
に、Ce、Pr、Ndなる一群から選ばれる一種以上と
Laとを含むRを用いる場合には、これらの合計がR中
に占める割合が95〜100重量%であり、残部(0〜
5重量%)をこれら以外の希土類元素の一種以上とする
ことが好ましい。
The rare earth elements other than La in the general formula R include Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu, Y, at least one selected from the group consisting of 23% by weight or less, preferably 5% by weight or less.
Contains 23% by weight. Preferably, one or more of Pr, Ce, and Nd are selected, and the content of R is preferably 5 to 23% by weight. Among them, Ce and P are particularly preferable.
r or Nd may be contained in an amount of 10 to 23% by weight. Further, when R containing one or more members selected from the group consisting of Ce, Pr and Nd and La is used, the ratio of the total to R is 95 to 100% by weight, and the balance (R
(5% by weight) is preferably one or more of the other rare earth elements.

【0011】本発明の一般式R(Ni)a(Co)b(A
l)c(M)dにおいて、Niの量は、Rを1モルとした
場合にaが3.0〜4.5モルの範囲である。Niの量
がこの範囲より少ないと容量の低下が起こり、この範囲
より多すぎるとサイクル寿命が落ちる。以下、b、c、
dについても、Rを1モルとした場合のモル数、即ち、
モル比を表す。また、Co、Alは各々水素吸蔵合金の
耐食性を向上させることができる。Coの含有量は0.
3≦b≦1.0であるが、特に0.4≦b≦0.7の範
囲が好ましい。0.3未満であるとサイクル寿命が低下
する傾向にあり、1.0を超えると低温特性、高率放電
特性の面で好ましくない。Alの含有量cは0<c≦
0.6であるが、特に0.2≦c≦0.5が好ましい。
Alを含まないとサイクル寿命が低下し、0.6を超え
ると容量が低下するので好ましくない。
The general formula R (Ni) a (Co) b (A
1) In c (M) d , the amount of Ni is such that a is in the range of 3.0 to 4.5 moles when R is 1 mole. If the amount of Ni is less than this range, the capacity will decrease, and if it is more than this range, the cycle life will decrease. Hereinafter, b, c,
Also for d, the number of moles when R is 1 mole, that is,
Represents the molar ratio. Further, Co and Al can each improve the corrosion resistance of the hydrogen storage alloy. The content of Co is 0.1.
3 ≦ b ≦ 1.0, and particularly preferably 0.4 ≦ b ≦ 0.7. If it is less than 0.3, the cycle life tends to decrease. If it exceeds 1.0, it is not preferable in terms of low-temperature characteristics and high-rate discharge characteristics. The content c of Al is 0 <c ≦
0.6, but preferably 0.2 ≦ c ≦ 0.5.
If it does not contain Al, the cycle life is reduced, and if it exceeds 0.6, the capacity is undesirably reduced.

【0012】Mは、Fe,Mn,Cr,Cuからなる一
群から選ばれる一種以上の金属であり、特に好ましくは
Mn、Crである。例えば、Mnの添加は水素の解離平
衡圧を低くし容量を増加させ、また、Crの添加は初期
活性を高め、La量が高い場合でも寿命を低下しにくく
する効果がある。しかし、サイクル寿命を低下させるた
め、Mの添加量dは0<d≦0.5であり、特に0.0
5≦d≦0.3が好ましい。Mを含まないと容量が低下
し、0. 5をこえるとサイクル寿命が低下するので好ま
しくない。さらに、本発明では、Ni側組成において、
aとbとcとdとの合計(a+b+c+d)を4.5〜
5.5にさせ、水素吸蔵能力をさらに高めるとよい。
M is at least one metal selected from the group consisting of Fe, Mn, Cr and Cu, and particularly preferably Mn and Cr. For example, the addition of Mn has the effect of lowering the dissociation equilibrium pressure of hydrogen and increasing the capacity, and the addition of Cr has the effect of increasing the initial activity and making it difficult to shorten the life even when the La content is high. However, in order to reduce the cycle life, the amount d of M is 0 <d ≦ 0.5,
5 ≦ d ≦ 0.3 is preferred. If M is not included, the capacity is reduced, and if it exceeds 0.5, the cycle life is undesirably reduced. Furthermore, in the present invention, in the Ni-side composition,
The sum of a, b, c, and d (a + b + c + d) is 4.5 to 4.5.
It is advisable to increase the hydrogen storage capacity to 5.5.

【0013】次に、本発明の特徴とする微量に含有させ
た元素の効果であるが、MgはLaを大量に含んだこと
によりアルカリ二次電池に組んだ際に極めて初期の段階
でアルカリ電解液に優先的に溶解し、当該水素吸蔵合金
表面の表面積を増加させることにより初期の段階の低温
特性を改善する。Mgの添加量は、50〜500ppm
がよく、さらに好ましくは100ppm〜400ppm
である。50ppm未満では放電容量が下がり、さらに
は低温特性の効果が得られず、500ppmをこえると
サイクル寿命が低下する。
Next, the effect of the element contained in a very small amount, which is a feature of the present invention, is that Mg is contained in a large amount of La, and thus, when assembled in an alkaline secondary battery, alkaline electrolysis is performed at an extremely early stage. It dissolves preferentially in a liquid and improves the low-temperature characteristics in the initial stage by increasing the surface area of the surface of the hydrogen storage alloy. The addition amount of Mg is 50 to 500 ppm.
Preferably, more preferably 100 ppm to 400 ppm
It is. If it is less than 50 ppm, the discharge capacity decreases, and furthermore, the effect of low-temperature characteristics cannot be obtained. If it exceeds 500 ppm, the cycle life decreases.

【0014】本発明では、上記微量Mg含有合金に、さ
らに微量にTi、Pb、C、O、Sを含有させることを
特徴とする。本発明では、上記合金にさらにTiを含ま
せることにより、Ti−Niの金属間化合物を作り、主
にマトリックス中の粒界に析出し、水素を吸蔵放出した
場合の膨張収縮による当該水素吸蔵合金の割れの基点に
なりやすく、初期の低温特性、特に低温での放電特性を
改善する。また、微量の酸素が存在する場合には、炭化
物を形成し、後述するように、良好な初期の低温特性を
与える。Tiの添加量は、0.05重量%以下、好まし
くは0.005〜0.05重量%、さらに好ましくは
0.01〜0.04重量%である。0.005重量%未
満では本発明の効果が得られない場合があり、0.05
重量%をこえるとサイクル寿命が低下する。
The present invention is characterized in that the above-mentioned trace Mg-containing alloy further contains trace amounts of Ti, Pb, C, O and S. In the present invention, by further adding Ti to the alloy, a Ti-Ni intermetallic compound is produced, which is mainly precipitated at the grain boundaries in the matrix, and the hydrogen storage alloy is expanded and contracted when hydrogen is stored and released. It tends to be a starting point for cracks in the steel, and improves the initial low-temperature characteristics, particularly the discharge characteristics at low temperatures. Also, when a trace amount of oxygen is present, it forms carbides and gives good initial low-temperature properties, as described below. The addition amount of Ti is 0.05% by weight or less, preferably 0.005 to 0.05% by weight, and more preferably 0.01 to 0.04% by weight. If the amount is less than 0.005% by weight, the effect of the present invention may not be obtained in some cases.
If the amount is more than 10% by weight, the cycle life decreases.

【0015】また、Pbにより、アルカリ二次電池に組
んだ際アルカリ電解液に溶出し電池系の放電電圧を上昇
させる効果があり、低温における放電特性を改善する。
Pbの含有量は0.05重量%以下、好ましくは0.0
01〜0.05重量%、好ましくは0.005〜0.0
4重量%である。0.001重量%未満の場合は本発明
の効果は得られない場合があり、0.05重量%をこえ
ると充電時の電圧が上昇しアルカリ二次電池としては好
ましくない。
Further, Pb has an effect of being eluted in an alkaline electrolyte when assembled into an alkaline secondary battery and increasing the discharge voltage of the battery system, and improves discharge characteristics at low temperatures.
The content of Pb is 0.05% by weight or less, preferably 0.0% by weight.
01-0.05% by weight, preferably 0.005-0.0%
4% by weight. If the amount is less than 0.001% by weight, the effect of the present invention may not be obtained. If the amount is more than 0.05% by weight, the voltage at the time of charging increases, which is not preferable as an alkaline secondary battery.

【0016】さらに、当該水素吸蔵合金中の酸素含有量
は、0.3重量%以下、好ましくは0.01〜0.3重
量%、さらに好ましくは0.03〜0.2重量%であ
る。0.01重量%未満では、活性が強く取扱いが難し
くなる場合があり、0.3重量%をこえると、合金表面
の酸化膜がアルカリ二次電池とした場合の合金表面での
反応の障害となり、高率放電特性等を低下させる。ま
た、当該水素吸蔵合金中の酸素含有量の調整は、製造工
程中の雰囲気を制御することに因って容易に可能とな
る。
Further, the oxygen content in the hydrogen storage alloy is 0.3% by weight or less, preferably 0.01 to 0.3% by weight, more preferably 0.03 to 0.2% by weight. If the content is less than 0.01% by weight, the activity may be so strong that handling may be difficult. If the content exceeds 0.3% by weight, the oxide film on the alloy surface may hinder the reaction on the alloy surface when an alkaline secondary battery is used. , Degrades high rate discharge characteristics and the like. Further, the adjustment of the oxygen content in the hydrogen storage alloy can be easily performed by controlling the atmosphere during the manufacturing process.

【0017】微量に含有させた炭素は、当該水素吸蔵合
金中において、希土類金属元素及びTiと優先的に化合
して炭化物を作り、主にマトリックス中の粒界の析出
し、水素を吸蔵放出した場合の膨張収縮による当該水素
吸蔵合金の割れの基点になりやすく、初期の低温特性、
特に最近の携帯用機器に必要な低温側における高率放電
特性等を改善する。炭素の含有量は、0.05重量%以
下、好ましくは0.005〜0.05重量%、さらに好
ましくは0.01〜0.04重量%である。0.005
重量%未満ではTi−Cの炭化物の形成が起こらない場
合があり、0.05重量%をこえるとTi−Cとして粒
界に析出する量が多すぎて特性が下がるからである。
[0017] The carbon contained in a trace amount preferentially combines with the rare earth metal element and Ti in the hydrogen storage alloy to form a carbide, and mainly precipitates at the grain boundaries in the matrix and absorbs and releases hydrogen. Easy to become the starting point of cracking of the hydrogen storage alloy due to expansion and contraction in the case, initial low temperature characteristics,
Particularly, the high-rate discharge characteristics and the like on the low temperature side required for recent portable devices are improved. The carbon content is 0.05% by weight or less, preferably 0.005 to 0.05% by weight, and more preferably 0.01 to 0.04% by weight. 0.005
If the content is less than 0.05% by weight, the formation of carbides of Ti-C may not occur. If the content is more than 0.05% by weight, the amount of Ti-C precipitated at the grain boundary is too large, and the properties deteriorate.

【0018】硫黄は、0.05重量%以下、好ましくは
0.001〜0.05重量%、さらに好ましくは0.0
03〜0.04重量%の含有量である。硫黄は、当該水
素吸蔵合金中のNi、Coと特に硫化物を形成しやす
く、0.05重量%をこえると形成されたNi、Co硫
化物が不動態化して高率放電特性の低下を招き、0.0
01重量%未満ではアルカリ二次電池に組んだ際アルカ
リ電解液にNi、Coが溶出し電解液の減少によるサイ
クル寿命の低下を起こしやすい場合がある。
The sulfur content is 0.05% by weight or less, preferably 0.001 to 0.05% by weight, more preferably 0.0% by weight.
It is a content of 03 to 0.04% by weight. Sulfur easily forms sulfides, especially with Ni and Co in the hydrogen storage alloy. If the content exceeds 0.05% by weight, the formed Ni and Co sulfides are passivated to cause a decrease in high-rate discharge characteristics. , 0.0
If the content is less than 01% by weight, when assembled into an alkaline secondary battery, Ni and Co are eluted in the alkaline electrolyte and the cycle life may be easily reduced due to a decrease in the electrolyte.

【0019】本発明は、特にLa側に77重量%以上の
LaとLa以外の一種以上の希土類元素を含有し、かつ
Mgを50〜500ppm含み、さらにはTi、Pbの
希土類以外の金属及びO、C、Sの非金属を所定量の範
囲内で含むことが好ましい。また、本発明は上記の組成
からなる合金であるが上記元素以外の金属元素等を追加
して効果を高めることもできる。
The present invention is particularly directed to a method of the present invention wherein the La side contains 77% by weight or more of La and one or more rare earth elements other than La, contains 50 to 500 ppm of Mg, and further contains metals other than rare earths such as Ti and Pb and O , C and S are preferably contained within a predetermined range. Although the present invention is an alloy having the above composition, the effect can be enhanced by adding a metal element other than the above elements.

【0020】本発明の水素吸蔵合金は、所定量の各元素
を秤量し、ルツボ等を用いて高周波溶解炉、アーク溶解
炉にて真空中(0.01Torr以下の低圧下)又はAr等
不活性ガス雰囲気下200〜800Torr中で溶解後、1
300〜1600℃で鉄製モールド等に鋳込みインゴッ
トを作製する。その場合、La側は、希土類元素を各々
投入したり、また、ミッシュメタルにLaを添加し所定
量にすることができる。さらに、真空中(0.01Torr
以下の低圧下)又はAr等不活性ガス雰囲気下(600
〜1000Torr)中において800〜1200℃で5〜
20時間熱処理を行う。上記鋳造法の他にロール急冷
法、ガスアトマイズ法、ディスクアトマイズ法により本
発明の合金を得ることができる。上記方法で製造した当
該水素吸蔵合金をAr、窒素等の不活性雰囲気下で衝撃
式又は磨砕式粉砕機により平均粒径5〜50μmになる
ように粉砕して容易に得ることが出来る。さらに、本発
明の合金粉末を水酸化カリウム等のアルカリ溶液、塩酸
等の酸性溶液等で表面処理を施したり、Ni、Co等の
遷移金属等で合金表面に金属層を形成させ活性化しても
よい。
The hydrogen storage alloy of the present invention is prepared by weighing a predetermined amount of each element, and using a crucible or the like in a high-frequency melting furnace or arc melting furnace under vacuum (under a low pressure of 0.01 Torr or less) or inert gas such as Ar. After melting in a gas atmosphere at 200-800 Torr,
At 300 to 1600 ° C., an ingot is cast into an iron mold or the like. In this case, the La side can be charged with a rare earth element, or can be added to the misch metal to have a predetermined amount. Furthermore, in vacuum (0.01 Torr
Under the following low pressure) or under an inert gas atmosphere such as Ar (600).
~ 1000 Torr) at 800-1200 ° C
Heat treatment is performed for 20 hours. The alloy of the present invention can be obtained by a roll quenching method, a gas atomizing method, or a disk atomizing method in addition to the casting method. The hydrogen storage alloy produced by the above method can be easily obtained by pulverizing it under an inert atmosphere such as Ar, nitrogen or the like by an impact type or grinding type pulverizer so as to have an average particle size of 5 to 50 μm. Further, the alloy powder of the present invention may be subjected to a surface treatment with an alkali solution such as potassium hydroxide or the like, an acidic solution such as hydrochloric acid or the like, or a metal layer may be formed on the alloy surface with a transition metal such as Ni or Co and activated. Good.

【0021】このようにして得られた水素吸蔵合金粉末
をポリビニルアルコール、カルボキシメチルセルロー
ス、メチルセルロース等のセルロース類、PTFE、ポ
リエチレンオキサイド、高分子ラテックス等のバインダ
ーを用いて溶解させペースト化し、ニッケル発泡体、ニ
ッケル繊維体等の三次元導電支持体、パンチングメタル
等の二次元導電支持体に充填することによって容易に電
極とすることが出来る。該バインダーの使用量は、合金
100重量部に対し0.1〜20重量部を用いるとよ
い。さらに、必要により、カーボン・グラファイト、N
i粉末等の導電助材を0.5〜10重量部添加してもよ
い。本発明の水素吸蔵合金を負電極として使用したアル
カリ蓄電池は、高容量でかつ充放電を繰り返した場合の
サイクル寿命が長く、高率放電特性及び低温時における
放電特性が優れている。本発明の合金は、電極以外の用
途として、ヒートポンプ等の貯蔵手段としても用いるこ
とができる。
The hydrogen-absorbing alloy powder thus obtained is melted using a binder such as polyvinyl alcohol, carboxymethylcellulose, cellulose such as methylcellulose, or a binder such as PTFE, polyethylene oxide or polymer latex to form a paste. An electrode can be easily formed by filling a three-dimensional conductive support such as a nickel fiber body or a two-dimensional conductive support such as punched metal. The binder is preferably used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the alloy. Further, if necessary, carbon graphite, N
0.5 to 10 parts by weight of a conductive aid such as i powder may be added. The alkaline storage battery using the hydrogen storage alloy of the present invention as a negative electrode has a high capacity, a long cycle life when charging and discharging are repeated, and has excellent high rate discharge characteristics and low temperature discharge characteristics. The alloy of the present invention can be used as a storage means such as a heat pump as an application other than the electrode.

【0022】[0022]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。 実施例1〜30、比較例1〜8 La(純度99重量%以上)、Ce(純度99重量%以
上)、Pr(純度99重量%以上)、Nd(純度99重
量%以上)、Ni(純度99重量%以上)、Co(純度
99重量%以上)、Mn(純度99重量%以上)、Al
(純度99重量%以上)、Cr(純度99重量%以上)
の各元素を、表1と表2に示す配合組成になるように秤
量して混合した。なお、表1と表2において、La側す
なわちR側(La、Ca、Pr、Nd)の総和を1.0
とした場合に、Ni側(Ni、Co、Al、Mn、C
r)の総和が5.0となるモル比で配合した。また、表
1と表2における「添加元素」の欄は、合金全体に占め
るppm または重量%を表す。さらに、Mg等のその他添
加元素を添加してアルゴン下高周波溶解により加熱溶解
(1400℃)させてさらに760Torr、Ar雰囲気下
で900℃、5時間熱処理を行って表1と表2の組成を
有する水素吸蔵合金を製造した。得られた合金を粉砕
し、平均粒径が35μmになるように粉砕し水素吸蔵合
金粉末とした。酸素量については、高周波溶解、熱処
理、粉砕の各単位操作において不活性ガス(Ar)中の
酸素濃度を調整して所定の酸素量の水素吸蔵合金を得
た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Examples 1 to 30, Comparative Examples 1 to 8 La (purity 99% by weight or more), Ce (purity 99% by weight or more), Pr (purity 99% by weight or more), Nd (purity 99% by weight or more), Ni (purity) 99% by weight or more), Co (99% by weight or more), Mn (99% by weight or more), Al
(Purity 99% by weight or more), Cr (Purity 99% by weight or more)
Were weighed and mixed to obtain the composition shown in Tables 1 and 2. In Tables 1 and 2, the sum of the La side, that is, the R side (La, Ca, Pr, Nd) is 1.0.
, The Ni side (Ni, Co, Al, Mn, C
r) was added in a molar ratio such that the total sum was 5.0. In addition, the columns of “additional elements” in Tables 1 and 2 represent ppm or% by weight based on the entire alloy. Further, other additional elements such as Mg are added, heated and melted (1400 ° C.) by high frequency melting under argon, and further heat-treated at 760 Torr and 900 ° C. for 5 hours in an Ar atmosphere to have compositions shown in Tables 1 and 2. A hydrogen storage alloy was manufactured. The obtained alloy was pulverized and pulverized so as to have an average particle diameter of 35 μm to obtain a hydrogen storage alloy powder. Regarding the oxygen amount, a hydrogen storage alloy having a predetermined oxygen amount was obtained by adjusting the oxygen concentration in the inert gas (Ar) in each unit operation of high frequency melting, heat treatment, and pulverization.

【0023】この粉末10gに対し3重量%のポリビニ
ルアルコール(平均重合度2000、ケン化度98モル
%)の水溶液を2.5gの割合で混合してペースト状と
し、このペーストを発泡状ニッケル金属多孔体内に30
vol%充填、乾燥した後、加圧成形して厚さ0.5〜
1.0mmの極板を製作し、次いでリード線を取り付け
て負極とした。正極には焼結式電極を用いて、ポリプロ
ピレン製セパレーターを介して負極と張り合わせ、6NK
OH電解液に浸漬して電池を作製した。
An aqueous solution of 3% by weight of polyvinyl alcohol (average degree of polymerization: 2,000, saponification degree: 98 mol%) is mixed with 2.5 g of a 10 wt% powder to form a paste. 30 in porous body
After filling and drying by vol.
A 1.0 mm electrode plate was manufactured, and then a lead wire was attached to obtain a negative electrode. Using a sintered electrode for the positive electrode, and bonding it to the negative electrode via a polypropylene separator, 6NK
The battery was fabricated by immersion in an OH electrolyte.

【0024】得られた電池について、負極容量に対して
20℃において0.1Cで120%充電、1時間の休止
の後0.2Cで電池電圧が0.6Vになるまで放電した
(以上を1サイクルとする。)。このサイクルを5回繰
り返した後、高率放電特性、低温での放電特性(−10
℃及び−18℃における1C放電)を測定した。また、
サイクル寿命は、このサイクルを200回繰り返した
後、200サイクル時容量と5サイクル時容量との比で
ある。その結果を表3に示す。比較例1〜8も実施例と
同様にして、合金を作製後電池試験を行った。その結果
を表3及び表4に示す。
The obtained battery was charged to the negative electrode capacity at 20 ° C. at 120% at 0.1 C, and after a 1-hour pause, discharged at 0.2 C until the battery voltage reached 0.6 V (the above was 1 to 1). Cycle). After repeating this cycle five times, the high-rate discharge characteristics and the low-temperature discharge characteristics (−10
C and -18 ° C). Also,
The cycle life is the ratio of the capacity at 200 cycles to the capacity at 5 cycles after repeating this cycle 200 times. Table 3 shows the results. In Comparative Examples 1 to 8, a battery test was performed after producing an alloy in the same manner as in Example. The results are shown in Tables 3 and 4.

【0025】[0025]

【発明の効果】本発明の水素吸蔵合金は、高容量でサイ
クル寿命が長くかつ、Mg等の微量の添加元素の効果に
より高率放電特性、低温での放電特性に優れたアルカリ
二次電池負極として好適である。
The hydrogen storage alloy of the present invention has a high capacity and a long cycle life, and has a high rate discharge characteristic and an excellent discharge characteristic at a low temperature due to the effect of a small amount of added elements such as Mg. It is suitable as.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 聡 福井県武生市北府二丁目1番5号 信越化 学工業株式会社磁性材料研究所内 (72)発明者 前田 孝雄 福井県武生市北府二丁目1番5号 信越化 学工業株式会社磁性材料研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoshi Shima 2-5-1-5 Kitafu, Takefu-shi, Fukui Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Laboratory (72) Inventor Takao Maeda 2-1-1 Kitafu, Takefu-shi, Fukui No. 5 Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式R(Ni)a(Co)b(Al)
c(M)d(式中、Rは、77重量%以上のLaと、23
重量%以下のLa以外の一種以上の希土類金属とを有す
る混合物を表す。Mは、Fe、Cr、Cu、Mnからな
る一群から選ばれる一種以上の金属を表す。a〜dは、
Rに対するモル比を表す正の数であり、3.0≦a≦
4.5;0.3≦b≦1.0;0<c≦0.6;0<d
≦0.5である。)で表され、50〜500ppmのM
gを含む水素吸蔵合金。
1. The general formula R (Ni) a (Co) b (Al)
c (M) d (wherein R is at least 77% by weight of La and 23
Represents a mixture having up to 1% by weight of one or more rare earth metals other than La. M represents one or more metals selected from the group consisting of Fe, Cr, Cu, and Mn. ad are
A positive number representing the molar ratio to R, and 3.0 ≦ a ≦
4.5; 0.3 ≦ b ≦ 1.0; 0 <c ≦ 0.6; 0 <d
≦ 0.5. ), 50 to 500 ppm of M
Hydrogen storage alloy containing g.
【請求項2】 さらに、上記合金中に0.05重量%以
下のTiと、0.05重量%以下のPbとを含む請求項
1に記載の水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, further comprising 0.05% by weight or less of Ti and 0.05% by weight or less of Pb in the alloy.
【請求項3】 さらに、上記合金中に0. 3重量%以下
の酸素と、0.05重量%以下の炭素と、0.05重量
%以下の硫黄とを含む請求項2に記載の水素吸蔵合金。
3. The hydrogen storage according to claim 2, further comprising 0.3% by weight or less of oxygen, 0.05% by weight or less of carbon, and 0.05% by weight or less of sulfur in the alloy. alloy.
JP10316161A 1997-11-06 1998-11-06 Hydrogen storage alloy Pending JPH11217641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316161A JPH11217641A (en) 1997-11-06 1998-11-06 Hydrogen storage alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30474197 1997-11-06
JP9-304741 1997-11-06
JP10316161A JPH11217641A (en) 1997-11-06 1998-11-06 Hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH11217641A true JPH11217641A (en) 1999-08-10

Family

ID=26564036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316161A Pending JPH11217641A (en) 1997-11-06 1998-11-06 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH11217641A (en)

Similar Documents

Publication Publication Date Title
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JPWO2007018291A1 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP5119551B2 (en) Hydrogen storage alloy, method for producing the same, and secondary battery
JP3828922B2 (en) Low Co hydrogen storage alloy
JPH0790435A (en) Hydrogen storage alloy, its manufacture and electrode using this alloy
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
CN114946051B (en) Hydrogen storage alloy for alkaline storage battery
JPH0641663A (en) Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode
US6063524A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JPH11217641A (en) Hydrogen storage alloy
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
US5910379A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JP2011021241A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
CN111118346B (en) Zirconium or titanium containing A2B7 type hydrogen storage alloy, negative electrode, battery and preparation method
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JPH11217642A (en) Hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP4573421B2 (en) Hydrogen storage alloy
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof