JPH11217621A - Production of clean steel in rh vacuum degassing apparatus - Google Patents

Production of clean steel in rh vacuum degassing apparatus

Info

Publication number
JPH11217621A
JPH11217621A JP1610898A JP1610898A JPH11217621A JP H11217621 A JPH11217621 A JP H11217621A JP 1610898 A JP1610898 A JP 1610898A JP 1610898 A JP1610898 A JP 1610898A JP H11217621 A JPH11217621 A JP H11217621A
Authority
JP
Japan
Prior art keywords
molten steel
slag
pressure
vacuum chamber
degassing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1610898A
Other languages
Japanese (ja)
Inventor
Takeshi Murai
剛 村井
Eiju Matsuno
英寿 松野
Hiroaki Ishikawa
博章 石川
Eiji Sakurai
栄司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1610898A priority Critical patent/JPH11217621A/en
Publication of JPH11217621A publication Critical patent/JPH11217621A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably produce clean steel having little inclusions by sufficiently reducing slag being brought in contact with molten steel and preventing the reaction between the molten steel and the slag. SOLUTION: At the time of refluxing molten steel 10 containing Al between a vacuum vessel 1 and a ladle 9 by lowering the pressure in the vacuum vessel of an RH vacuum degassing apparatus and also, blowing Ar gas for refluxing into a rising side immersion tube 4 of the RH vacuum degassing apparatus, the pressure in the vacuum vessel is increased and decreased in plural times and the surface position of the molten steel in the ladle is locked to reduce the slag 11 with the Al in the molten steel. At this time, the reduction speed of the slag is raised by regulating the difference between the max. value and the min. value of the pressure in the vacuum vessel to >=100 Torr and then, the production of the clean steel is further stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、RH真空脱ガス装
置を用いて、酸化物系非金属介在物の少ない清浄鋼を安
定して製造する方法に関するものである。
[0001] The present invention relates to a method for stably producing clean steel containing few oxide-based nonmetallic inclusions by using an RH vacuum degassing apparatus.

【0002】[0002]

【従来の技術】近年の鉄鋼材料の高機能化及び高品質化
への要求の高まりから、燐、硫黄等の不純物元素や、脱
酸生成物、転炉スラグ及びモールドパウダー等を起源と
する酸化物系非金属介在物(以下、「介在物」と記す)
を極力低減することが要望されている。この内、介在物
は薄鋼板製品での表面欠陥の主原因となるため、精錬か
ら鋳造に至るまで、その発生原因が検討され、そして、
介在物の主要な発生原因の1つとして、取鍋内における
スラグ中の鉄酸化物やMnO等の低級酸化物による溶鋼
の再酸化が挙げられるに至り、清浄鋼を製造する手段と
して、スラグに脱酸剤を添加してこれら低級酸化物を還
元して溶鋼の再酸化を防止する方法が多数提案されてき
た。
2. Description of the Related Art In recent years, demands for higher functionality and higher quality of steel materials have increased, and oxidation elements originating from impurity elements such as phosphorus and sulfur, deoxidation products, converter slag, mold powder, and the like have been developed. Nonmetallic inclusions (hereinafter referred to as "inclusions")
It is desired to reduce as much as possible. Of these, inclusions are the main cause of surface defects in thin steel products, so from the refining to casting, the causes of their occurrence were examined, and
One of the main causes of inclusions is the reoxidation of molten steel by lower oxides such as iron oxide and MnO in the slag in the ladle, leading to slag as a means of producing clean steel. A number of methods have been proposed for adding a deoxidizer to reduce these lower oxides to prevent reoxidation of molten steel.

【0003】例えば、特開平2−30711号公報に
は、転炉出鋼後、取鍋内スラグ上に脱酸剤を投入してス
ラグ中のT.Fe濃度5%以下とし、その後、RH真空
脱ガス装置にて溶鋼を脱炭し、次いで脱酸して極低炭素
鋼を製造する方法が、又、特開平2−93017号公報
には、RH真空脱ガス装置での溶鋼の脱炭後に、取鍋内
スラグ上に脱酸剤を添加してスラグを還元し、次いで溶
鋼を脱酸して極低炭素鋼を製造する方法が開示されてい
る。尚、T.Fe濃度とは、スラグ中の全ての鉄酸化物
(FeOやFe23等)中の鉄分の濃度を合計した値を
表わすものである。
[0003] For example, Japanese Patent Application Laid-Open No. Hei 2-30711 discloses that, after tapping from a converter, a deoxidizing agent is charged onto slag in a ladle to remove T.O. A method of producing ultra-low carbon steel by reducing the Fe concentration to 5% or less and then decarburizing the molten steel by an RH vacuum degassing apparatus and then deoxidizing the molten steel is disclosed in Japanese Patent Application Laid-Open No. 2-93017. A method is disclosed in which, after decarburization of molten steel in a vacuum degassing apparatus, a slag is reduced by adding a deoxidizing agent onto slag in a ladle, and then the molten steel is deoxidized to produce ultra-low carbon steel. . In addition, T. The Fe concentration represents a value obtained by summing the iron concentrations in all iron oxides (FeO, Fe 2 O 3, etc.) in the slag.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
特開平2−30711号公報に開示された方法では、還
元されたスラグが、溶鋼が脱酸されるまでの期間に溶鋼
中の溶解酸素により再度酸化されてスラグ中にFeO等
の低級酸化物を再度生成する。そのため、脱酸剤を添加
して溶鋼を脱酸した後にスラグと溶鋼中のAlとが反応
して溶鋼中に介在物を生成し、十分な清浄性を得られな
いという問題点がある。
However, according to the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 2-30711, the reduced slag is re-used by the dissolved oxygen in the molten steel until the molten steel is deoxidized. It is oxidized to produce lower oxides such as FeO in the slag again. For this reason, there is a problem that after the molten steel is deoxidized by adding a deoxidizing agent, the slag reacts with Al in the molten steel to generate inclusions in the molten steel, so that sufficient cleanliness cannot be obtained.

【0005】又、特開平2−93017号公報に開示さ
れた方法では、RH真空脱ガス装置においては取鍋内の
スラグと溶鋼とを攪拌できないため、RH真空脱ガス装
置での処理中にスラグ上に添加された脱酸剤はスラグを
十分に還元できないという問題点がある。このように、
従来の方法では、スラグの還元が未だ十分とは言えず、
清浄性の高い鋼を安定して製造するまでには至っていな
い。
In the method disclosed in JP-A-2-93017, slag and molten steel in a ladle cannot be stirred in an RH vacuum degassing apparatus. The deoxidizer added above has a problem that slag cannot be sufficiently reduced. in this way,
With conventional methods, the reduction of slag is not yet sufficient,
Stable production of highly clean steel has not yet been achieved.

【0006】本発明は、このような事情に鑑みなされた
もので、その目的は、スラグを十分に還元して溶鋼とス
ラグとの反応を防止し、介在物の少ない清浄鋼をRH真
空脱ガス装置で安定して製造する方法を提供することで
ある。
[0006] The present invention has been made in view of such circumstances, and an object thereof is to sufficiently reduce slag to prevent reaction between molten steel and slag, and to remove clean steel containing few inclusions by RH vacuum degassing. It is an object of the present invention to provide a method for stable production with an apparatus.

【0007】[0007]

【課題を解決するための手段】第1の発明によるRH真
空脱ガス装置での清浄鋼の製造方法は、RH真空脱ガス
装置の真空槽内を減圧すると共に、RH真空脱ガス装置
の上昇側浸漬管内に環流用Arガスを吹き込み、真空槽
と取鍋との間でAlを含有する溶鋼を環流させる際に、
前記真空槽内の圧力を増減させて取鍋内溶鋼の湯面位置
を揺動させることを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for producing clean steel using an RH vacuum degassing apparatus, wherein the pressure inside the vacuum chamber of the RH vacuum degassing apparatus is reduced and the rising side of the RH vacuum degassing apparatus is raised. When blowing Ar gas for reflux into the immersion tube and refluxing the molten steel containing Al between the vacuum chamber and the ladle,
The molten steel in the ladle is oscillated by increasing or decreasing the pressure in the vacuum chamber.

【0008】又、第2の発明によるRH真空脱ガス装置
での清浄鋼の製造方法は、第1の発明において、真空槽
内の圧力の最大値と最小値との差を100torr以上
として真空槽内の圧力を増減させることを特徴とするも
のである。
Further, the method for producing clean steel in an RH vacuum degassing apparatus according to the second invention is characterized in that, in the first invention, the difference between the maximum value and the minimum value of the pressure in the vacuum chamber is set to 100 torr or more. The internal pressure is increased or decreased.

【0009】RH真空脱ガス装置の真空槽と取鍋との間
で溶鋼を環流しつつ、真空槽内圧力を増減させると、真
空槽内の溶鋼湯面位置が上下し、これに伴い取鍋内溶鋼
の湯面位置も上下に揺動する。この時、溶鋼はAlを含
有しているので、スラグが鉄酸化物やMnO等の低級酸
化物を含有していても、取鍋内溶鋼湯面の揺動により、
溶鋼中のAlとスラグ中の低級酸化物との反応が促進さ
れ、スラグ中の低級酸化物は迅速に還元されて減少す
る。その結果、これ以降、取鍋内において溶鋼中のAl
とスラグ中の低級酸化物との反応、即ちスラグによる溶
鋼の再酸化を抑えることができ、溶鋼の清浄性が向上す
る。
When the pressure in the vacuum chamber is increased or decreased while circulating the molten steel between the vacuum chamber and the ladle of the RH vacuum degassing apparatus, the molten steel surface level in the vacuum chamber fluctuates, and accordingly the ladle is moved. The position of the molten steel surface also swings up and down. At this time, since the molten steel contains Al, even if the slag contains a lower oxide such as iron oxide or MnO, due to the swing of the molten steel surface in the ladle,
The reaction between Al in the molten steel and the lower oxide in the slag is promoted, and the lower oxide in the slag is rapidly reduced and reduced. As a result, after this, Al
And the lower oxide in the slag, that is, reoxidation of the molten steel by the slag can be suppressed, and the cleanliness of the molten steel is improved.

【0010】そして、その際に、真空槽内の圧力の最大
値と最小値との差を100torr以上として真空槽内
の圧力を増減させると、取鍋内溶鋼の湯面位置の揺動が
激しくなり、溶鋼中のAlとスラグ中の低級酸化物との
反応が一層促進されてスラグ中の低級酸化物がより低い
水準にまで減少し、溶鋼の清浄性が更に向上する。
[0010] At this time, if the pressure in the vacuum chamber is increased or decreased by setting the difference between the maximum value and the minimum value of the pressure in the vacuum chamber to 100 torr or more, the molten steel in the ladle fluctuates sharply. Thus, the reaction between Al in the molten steel and the lower oxide in the slag is further promoted, the lower oxide in the slag is reduced to a lower level, and the cleanliness of the molten steel is further improved.

【0011】[0011]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は、本発明を実施したRH真空脱ガス装置の縦断面
概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【0012】図において、RH真空脱ガス装置の真空槽
1は、外郭を鉄皮とし、内部を耐火物で構築された上部
槽2及び下部槽3から構成され、上部槽2にはその側壁
を貫通して、排気装置(図示せず)と連結するダクト7
と原料投入口8とが設けられ、又、下部槽3の下部に
は、内部に鉄芯(図示せず)を有する耐火物製の上昇側
浸漬管4及び下降側浸漬管5が、下部槽3と分離可能に
設けられている。この上昇側浸漬管4を貫通して環流用
Arガス吹き込み管6が設けられ、上昇側浸漬管4内に
環流用Arガスが吹き込まれる。
In FIG. 1, a vacuum tank 1 of an RH vacuum degassing apparatus comprises an upper tank 2 and a lower tank 3 each having an outer shell made of an iron shell and an inner part made of a refractory material. A duct 7 that penetrates and connects to an exhaust device (not shown)
The lower tank 3 is provided with an ascending-side immersion pipe 4 and a descending-side immersion pipe 5 made of a refractory having an iron core (not shown) therein. 3 is provided so as to be separable. An circulating Ar gas blow-in pipe 6 is provided through the ascending immersion pipe 4, and the circulating Ar gas is blown into the ascending immersion pipe 4.

【0013】真空槽1の直下には、転炉(図示せず)か
ら出鋼された溶鋼10とスラグ11とを収納した取鍋9
が搬入されており、この取鍋9は昇降装置(図示せず)
により上昇され、上昇側浸漬管4及び下降側浸漬管5が
取鍋9内の溶鋼10に浸漬されている。
A ladle 9 containing molten steel 10 and slag 11 discharged from a converter (not shown) is located immediately below the vacuum chamber 1.
The ladle 9 is lifted by a lifting device (not shown).
As a result, the ascending-side immersion pipe 4 and the descending-side immersion pipe 5 are immersed in the molten steel 10 in the ladle 9.

【0014】そして、環流用Arガス吹き込み管6から
上昇側浸漬管4内にArガスを吹き込むと共に、真空槽
1内を排気装置にて排気して真空槽1内を減圧する。真
空槽1内が減圧されると共に、取鍋9内の溶鋼10は、
環流用Arガス吹き込み管6から吹き込まれたArガス
と共に上昇側浸漬管4を上昇して真空槽1内に流入し、
その後、下降側浸漬管5を介して真空槽1から取鍋9に
戻る流れ、所謂、環流を形成して脱ガス処理が施され
る。
Then, Ar gas is blown into the rising side immersion pipe 4 from the reflux Ar gas blowing pipe 6, and the inside of the vacuum chamber 1 is depressurized by evacuating the inside of the vacuum chamber 1 with an exhaust device. The pressure in the vacuum chamber 1 is reduced, and the molten steel 10 in the ladle 9
The rising side immersion pipe 4 is raised together with the Ar gas blown from the reflux Ar gas blowing pipe 6 and flows into the vacuum chamber 1.
After that, a flow returning from the vacuum tank 1 to the ladle 9 via the descending dipping tube 5, that is, a so-called reflux is formed and degassing is performed.

【0015】先ず、RH真空脱ガス装置にて脱炭処理等
の所定の処理を実施した後、金属Alを原料投入口8よ
り溶鋼10に添加して溶鋼10の脱酸を行う。金属Al
の添加量は、溶鋼10中の溶解酸素をAl23として全
量除去し、且つ溶鋼10中に0.01wt%のAlが残
留する量に相当する量とする。残留するAl濃度が0.
01wt%未満では脱酸が弱く、清浄鋼を安定して製造
することができない。尚、残留するAl濃度の上限は、
鋼種によって決められた範囲とする。金属Alの添加量
を精度良く把握するため、金属Alの添加前に、溶鋼1
0の溶解酸素濃度を酸素プローブ等で測定することが好
ましい。尚、RH真空脱ガス装置において、脱炭処理等
の未脱酸状態のままの溶鋼10で行う処理が必要でない
場合には、転炉出鋼直後に金属Alを添加して予め脱酸
しても、又、RH真空脱ガス装置の処理開始時に脱酸し
ても良い。
First, after performing a predetermined treatment such as a decarburization treatment in an RH vacuum degassing apparatus, metal Al is added to the molten steel 10 from the raw material inlet 8 to deoxidize the molten steel 10. Metal Al
Is added in such a manner that all dissolved oxygen in the molten steel 10 is removed as Al 2 O 3 and 0.01 wt% of Al remains in the molten steel 10. The remaining Al concentration is 0.
If it is less than 01% by weight, deoxidation is weak, and it is not possible to stably produce clean steel. The upper limit of the remaining Al concentration is
The range is determined by the type of steel. In order to accurately grasp the amount of metal Al added, the molten steel 1
It is preferable to measure the dissolved oxygen concentration of 0 with an oxygen probe or the like. In the RH vacuum degassing apparatus, when it is not necessary to perform the treatment performed on the molten steel 10 in an undeoxidized state, such as a decarburization treatment, metal Al is added immediately after the start of the converter and deoxidized in advance. Alternatively, deoxidation may be performed at the start of the processing of the RH vacuum degassing apparatus.

【0016】次いで、真空槽1内の圧力を増減させる。
真空槽1内の圧力の制御はダクト7に連結される排気装
置の排気能力を増減することで制御する。例えば、排気
能力を落とすと、上昇側浸漬管4内に吹き込まれる環流
用Arガスにより真空槽1内の圧力が増加し、排気装置
の排気能力を元に戻すことで真空槽1内の圧力は低下す
る。尚、真空槽1内の圧力を増加させる際は、一旦5t
orr以下にまで真空槽1内の圧力を下げてから増加さ
せることが好ましい。真空槽1内の圧力が5torrを
越える高い状態で圧力を増減すると、溶鋼10の環流量
が低下して、水素や窒素等の不純物の除去が妨げられる
虞があるからである。
Next, the pressure in the vacuum chamber 1 is increased or decreased.
The pressure in the vacuum chamber 1 is controlled by increasing or decreasing the exhaust capacity of an exhaust device connected to the duct 7. For example, when the exhaust capacity is reduced, the pressure in the vacuum chamber 1 is increased by the Ar gas for recirculation blown into the rising-side immersion pipe 4, and the pressure in the vacuum chamber 1 is reduced by returning the exhaust capacity of the exhaust device to the original. descend. When increasing the pressure in the vacuum chamber 1, once 5 t
It is preferable to reduce the pressure in the vacuum chamber 1 to orr or less and then increase it. This is because if the pressure is increased or decreased while the pressure in the vacuum chamber 1 is higher than 5 torr, the ring flow rate of the molten steel 10 is reduced, which may hinder the removal of impurities such as hydrogen and nitrogen.

【0017】真空槽1内の圧力を増減させると溶鋼10
とスラグ11とが反応して、溶鋼10中のAl濃度が減
少する。その際に、溶鋼中のAl濃度が0.01wt%
以下になるとスラグ11の還元速度が遅くなるので、処
理中に溶鋼10からサンプルを定期的に採取して溶鋼1
0中のAl濃度を分析し、Al濃度が0.01wt%以
下となる場合には、溶鋼10のAl濃度が0.01wt
%以上となるように、金属Alを原料投入口8から追加
供給する。
When the pressure in the vacuum chamber 1 is increased or decreased, the molten steel 10
Reacts with the slag 11, and the Al concentration in the molten steel 10 decreases. At this time, the Al concentration in the molten steel was 0.01 wt%
Since the rate of reduction of the slag 11 becomes slower when the temperature falls below, a sample is periodically taken from the molten steel
The Al concentration in the molten steel 10 is analyzed to be 0.01 wt% or less.
% Is additionally supplied from the raw material input port 8 so as to be at least 10%.

【0018】真空槽1内の圧力の増減は、圧力の最大値
と最小値との差が100torr以上となるようにする
ことが好ましい。即ち、具体的には、真空槽1内の圧力
の最小値を5torr以下とし、最大値をこれに対して
100torr以上とすることが望ましい。圧力の最大
値と最小値との差が100torr以上となると、取鍋
9内の溶鋼10の湯面位置の揺動が激しくなり、溶鋼1
0中のAlとスラグ11中の低級酸化物との反応が一層
促進されて溶鋼10の清浄性が向上するからである。
The pressure in the vacuum chamber 1 is preferably increased or decreased so that the difference between the maximum value and the minimum value of the pressure is 100 torr or more. That is, specifically, it is desirable that the minimum value of the pressure in the vacuum chamber 1 be 5 torr or less and the maximum value be 100 torr or more. When the difference between the maximum value and the minimum value of the pressure is 100 torr or more, the molten steel 10 in the ladle 9 swings sharply, and the molten steel 1
This is because the reaction between Al in the slag 11 and the lower oxide in the slag 11 is further promoted, and the cleanliness of the molten steel 10 is improved.

【0019】真空槽1内の圧力の増減の周期は、5分以
下、望ましくは3分以下とする。周期が5分を越える
と、取鍋9内の溶鋼10の揺動が緩慢となり、溶鋼10
とスラグ11との反応が遅く、処理時間が延長してRH
真空脱ガス装置の処理能力が低下するためである。そし
て、圧力の増減の周期が短ければ短いほど溶鋼10の揺
動が頻繁になり、溶鋼10とスラグ11との反応が進み
好ましいが、圧力の増減の周期は排気装置の排気能力と
関係するので、5分以内で、且つ個々の排気装置の排気
能力に見合った最短時間を増減の周期とすれば良い。
The cycle of increasing and decreasing the pressure in the vacuum chamber 1 is 5 minutes or less, preferably 3 minutes or less. If the cycle exceeds 5 minutes, the swing of the molten steel 10 in the ladle 9 becomes slow, and the molten steel 10
Reaction with slag 11 is slow, processing time is extended and RH
This is because the processing capacity of the vacuum degassing device is reduced. The shorter the cycle of increasing and decreasing the pressure, the more frequently the molten steel 10 fluctuates and the more the reaction between the molten steel 10 and the slag 11 proceeds, which is preferable. However, since the cycle of increasing and decreasing the pressure is related to the exhaust capacity of the exhaust device, The shortest time within 5 minutes and corresponding to the exhaust capacity of each exhaust device may be set as the increase / decrease cycle.

【0020】溶鋼10を環流しつつ真空槽1内の圧力を
増減させる回数は、少なくとも2回以上、即ち2周期以
上とすることが好ましい。真空槽1内の圧力を増減させ
る回数が2回未満では、スラグ11の還元が不十分で、
その後も、スラグ11による溶鋼10の再酸化が発生す
る虞があるからである。そして、所定時間の処理後、真
空槽1内を大気圧に戻して脱ガス処理を終了し、溶鋼1
0を連続鋳造機等で鋳造する。
The number of times the pressure in the vacuum chamber 1 is increased or decreased while circulating the molten steel 10 is preferably at least two times, that is, two cycles or more. If the number of times of increasing and decreasing the pressure in the vacuum chamber 1 is less than two times, the reduction of the slag 11 is insufficient,
This is because the re-oxidation of the molten steel 10 by the slag 11 may occur thereafter. After the treatment for a predetermined time, the inside of the vacuum chamber 1 is returned to the atmospheric pressure, and the degassing treatment is completed.
0 is cast by a continuous casting machine or the like.

【0021】このようにしてRH真空脱ガス装置にて処
理することで、スラグ11を十分に還元することがで
き、その結果、スラグ11による溶鋼10の再酸化を防
止して介在物の少ない清浄鋼を安定して製造することが
できる。
By performing the treatment in the RH vacuum degassing apparatus in this manner, the slag 11 can be sufficiently reduced, and as a result, the reoxidation of the molten steel 10 by the slag 11 is prevented, and the cleaning with few inclusions is performed. Steel can be manufactured stably.

【0022】[0022]

【実施例】図1に示すRH真空脱ガス装置を用いて本発
明を実施した例を以下に説明する。対象とした溶鋼は、
高炉から出銑された溶銑を転炉精錬して取鍋に出鋼した
もので、溶鋼の炭素濃度は0.02〜0.06wt%、
転炉からの出鋼量は1ヒート250トンであり、未脱酸
の状態でRH真空脱ガス装置に搬送した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is implemented using the RH vacuum degassing apparatus shown in FIG. 1 will be described below. The target molten steel is
The hot metal spouted from the blast furnace was refined in a converter and was tapped into a ladle. The carbon concentration of the molten steel was 0.02 to 0.06 wt%.
The amount of tapping from the converter was 250 tons per heat, and was conveyed to the RH vacuum degassing apparatus in a non-deoxidized state.

【0023】取鍋内スラグの組成はCaO−SiO2
Al23−MgO系であり、一部の実施例では、取鍋内
スラグの低級酸化物含有量の清浄性への影響を把握する
ため、出鋼後に取鍋内のスラグにCaOを主成分とする
スラグ改質剤を添加し、スラグ中の(wt%T.Fe)
と(wt%MnO)との合計値を5wt%以下に予め調
整した。
The composition of the slag in the ladle is CaO--SiO 2-
Al is a 2 O 3 -MgO based, in some embodiments, in order to understand the impact on the cleanliness of the lower oxide content in ladle slag of CaO in slag in the ladle after tapping the main A slag modifier as a component is added, and (wt% T.Fe) in the slag is added.
And (wt% MnO) were previously adjusted to 5 wt% or less.

【0024】そして、環流用Arガス流量を3000N
l/min、真空槽内の圧力を0.5〜2torrまで
減圧して15分間処理を行った後、溶鋼中の溶解酸素濃
度を酸素プローブにて測定し、溶解酸素濃度に基づいて
算出した所定量の金属Alを原料投入口から添加した。
金属Alの添加後、圧力増減の周期を2分として10分
間真空槽内の圧力を増減させた。その際に、真空槽内圧
力の最大値と最小値との差を、44〜162torrの
範囲で変更し、その影響を調査した。
Then, the Ar gas flow rate for reflux is set to 3000N.
1 / min, the pressure in the vacuum chamber was reduced to 0.5 to 2 torr, the treatment was performed for 15 minutes, and then the dissolved oxygen concentration in the molten steel was measured with an oxygen probe and calculated based on the dissolved oxygen concentration. A fixed amount of metallic Al was added from the raw material inlet.
After the addition of metal Al, the pressure in the vacuum chamber was increased or decreased for 10 minutes with a cycle of increasing or decreasing the pressure being 2 minutes. At that time, the difference between the maximum value and the minimum value of the pressure in the vacuum chamber was changed in the range of 44 to 162 torr, and the influence was investigated.

【0025】表1に、本発明を実施した12ヒートの操
業における、脱ガス処理前後のスラグ中の(wt%T.
Fe)と(wt%MnO)との合計値、及び、脱ガス処
理中のスラグ中の(wt%T.Fe)と(wt%Mn
O)との合計値の減少量、又、真空槽内圧力の最大値と
最小値との差を示す。表1に示すヒートNo.1、4、
7、10は、スラグ改質剤で予めスラグの低級酸化物を
低減してスラグ中の(wt%T.Fe)と(wt%Mn
O)との合計値を5wt%以下としたもので、ヒートN
o.2、3、5、6、8、9、11、12は、スラグ改質
剤を添加しないものである。尚、比較のために真空槽内
の圧力の増減をせずに、その他の条件を実施例と同一と
した従来例での3ヒートの操業をヒートNo.13〜15
として、表1にその操業条件を合わせて示す。ヒートN
o.13はスラグ改質剤を添加したもので、ヒートNo.1
4、15は改質剤を添加しないものである。
Table 1 shows that (wt% T.C.) in the slag before and after the degassing treatment in the operation of 12 heats according to the present invention.
Fe) and (wt% MnO), and (wt% T.Fe) and (wt% Mn) in the slag during degassing.
O) and the difference between the maximum value and the minimum value of the pressure in the vacuum chamber. Heat Nos. 1 and 4 shown in Table 1
7 and 10 are slag modifiers for reducing the lower oxides of slag in advance to reduce (wt% T.Fe) and (wt% Mn) in the slag.
O) and 5 wt% or less.
o. 2, 3, 5, 6, 8, 9, 11, and 12 do not include a slag modifier. For comparison, the operation of the three heats in the conventional example in which the other conditions were the same as in the example without increasing or decreasing the pressure in the vacuum chamber was compared with heat Nos. 13 to 15.
Table 1 also shows the operating conditions. Heat N
o.13 added slag modifier, heat No.1
Nos. 4 and 15 do not add a modifier.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示すように、本発明の実施例では、
脱ガス処理中にスラグ中の低級酸化物は還元され、脱ガ
ス処理後のスラグ中(wt%T.Fe)と(wt%Mn
O)との合計値は全て4wt%以下に低減しており、そ
して、真空槽内圧力の差を大きくしたヒートNo.7〜1
2では、3wt%以下にまで低減した。これに対してヒ
ートNo.13〜15の従来例では、脱ガス処理中のスラ
グの低級酸化物の還元は少なく、その減少量は高々0.
5wt%であった。
As shown in Table 1, in the embodiment of the present invention,
The lower oxides in the slag are reduced during the degassing treatment, and (wt% T. Fe) and (wt% Mn)
O) were all reduced to 4 wt% or less, and heat Nos.
In No. 2, it was reduced to 3 wt% or less. On the other hand, in the conventional examples of heat Nos. 13 to 15, the reduction of the lower oxides of the slag during the degassing treatment is small, and the reduction amount is at most 0.1.
It was 5 wt%.

【0028】又、脱ガス処理前のスラグ中の(wt%
T.Fe)と(wt%MnO)との合計値が6wt%前
後のヒートNo.2、5、8、11、14では、真空槽内
の圧力を増減して行う処理の前後に溶鋼からサンプルを
採取して、この処理による溶鋼中のAlの減少量を調査
した。調査結果を図2に示す。図2に示すように、従来
例では溶鋼中Alは殆ど減少しないが、本発明の実施例
では、真空槽内圧力の最大値と最小値との差を大きくす
ると共に溶鋼中Alの減少量が大きくなり、最大0.0
08wt%の減少が観察された。このように、真空槽内
圧力の最大値と最小値との差を大きくすることで、溶鋼
の揺動が激しくなり、溶鋼とスラグとの反応が促進され
ることが分かった。
In addition, (wt%) in the slag before degassing
T. In Heat Nos. 2, 5, 8, 11, and 14 in which the total value of Fe) and (wt% MnO) is around 6 wt%, samples are taken from molten steel before and after the treatment performed by increasing and decreasing the pressure in the vacuum chamber. Then, the reduction amount of Al in the molten steel by this treatment was investigated. FIG. 2 shows the results of the investigation. As shown in FIG. 2, Al in the molten steel hardly decreases in the conventional example, but in the embodiment of the present invention, the difference between the maximum value and the minimum value of the pressure in the vacuum chamber is increased and the reduction amount of Al in the molten steel is reduced. Grows up to 0.0
A reduction of 08 wt% was observed. As described above, it was found that by increasing the difference between the maximum value and the minimum value of the pressure in the vacuum chamber, the fluctuation of the molten steel was increased and the reaction between the molten steel and the slag was promoted.

【0029】脱ガス処理後、スラブ連続鋳造機にて鋳造
して厚み250mm、幅950mmのスラブ鋳片を製造
し、次いで、熱間圧延及び冷間圧延してコイル状薄鋼板
を製造し、得られたコイル状薄鋼板の介在物による表面
欠陥を検査し、単位面積当たりの表面欠陥発生率を製品
欠陥指数として指数化し、各ヒート毎に調査した。表1
に調査結果を合わせて示す。本発明の実施例では、薄鋼
板における表面欠陥の発生は少なく、製品欠陥指数は
1.7以下であり、良好であった。これに対して従来例
では、スラグ改質剤を添加したヒートNo.13で表面欠
陥指数が1.8と良好であったが、スラグ改質剤を添加
しないヒートNo.14、15では、表面欠陥が多発して
製品欠陥指数は2.8及び5.1と高い値であった。
After degassing, a slab cast having a thickness of 250 mm and a width of 950 mm is manufactured by casting with a continuous slab casting machine, and then hot-rolled and cold-rolled to manufacture a coiled thin steel sheet. Surface defects due to inclusions of the obtained coiled thin steel plate were inspected, and the incidence rate of surface defects per unit area was indexed as a product defect index, and was investigated for each heat. Table 1
Shows the results of the survey. In Examples of the present invention, the occurrence of surface defects in the thin steel sheet was small, and the product defect index was 1.7 or less, which was good. On the other hand, in the conventional example, the surface defect index was as good as 1.8 in the heat No. 13 to which the slag modifier was added, but the surface defect index was not good in the heat Nos. 14 and 15 to which the slag modifier was not added. Defects occurred frequently, and the product defect index was a high value of 2.8 and 5.1.

【0030】図3は、真空槽内圧力の最大値と最小値と
の差が、製品欠陥指数に及ぼす影響を示した図である
が、真空槽内の圧力差を大きくすると製品欠陥指数は低
減し、その差を100torr以上とすることで、介在
物による表面欠陥を安定して防止することができた。
FIG. 3 shows the effect of the difference between the maximum value and the minimum value of the pressure in the vacuum chamber on the product defect index. When the pressure difference in the vacuum chamber is increased, the product defect index decreases. However, by setting the difference to 100 torr or more, it was possible to stably prevent surface defects due to inclusions.

【0031】図4は、本発明の実施例を真空槽内圧力の
最大値と最小値との差毎に区分し、脱ガス処理前のスラ
グ中の(wt%T.Fe)と(wt%MnO)との合計
値が、製品欠陥指数に及ぼす影響を示した図である。
尚、図中ΔPは真空槽内圧力の最大値と最小値との差を
表わし、又、図には従来例も合わせて示す。図4に示す
ように、本発明の実施例では、脱ガス処理前のスラグ中
の(wt%T.Fe)と(wt%MnO)との合計値
は、製品欠陥指数に影響を及ぼず、製品欠陥指数は、真
空槽内圧力の最大値と最小値との差に左右されることが
分かる。即ち、本発明ではスラグ改質剤を添加して予め
スラグ中の低級酸化物を低減しても、その効果は少な
く、スラグ改質剤の添加は必要ではないことが分かる。
これに対し、従来例では、スラグ中の(wt%T.F
e)と(wt%MnO)との合計値が高くなると共に製
品欠陥指数が増加し、スラグ改質剤の効果が見られた。
FIG. 4 shows an embodiment of the present invention in which the difference between the maximum value and the minimum value of the pressure in the vacuum chamber is divided into (wt% T.Fe) and (wt% FIG. 3 is a diagram showing the effect of the total value of the product with MnO) on the product defect index.
In the figure, ΔP represents the difference between the maximum value and the minimum value of the pressure in the vacuum chamber, and the figure also shows the conventional example. As shown in FIG. 4, in the example of the present invention, the total value of (wt% T.Fe) and (wt% MnO) in the slag before the degassing treatment does not affect the product defect index, It can be seen that the product defect index depends on the difference between the maximum value and the minimum value of the pressure in the vacuum chamber. That is, in the present invention, even if the lower oxide in the slag is previously reduced by adding the slag modifier, the effect is small, and it is understood that the addition of the slag modifier is not necessary.
On the other hand, in the conventional example, (wt% TF
e) and (wt% MnO) increased, the product defect index increased with the increase, and the effect of the slag modifier was observed.

【0032】このように、本発明により、スラグ改質剤
を添加することなく、スラグ中の低級酸化物を低減する
ことができ、安定して清浄鋼を製造することができた。
As described above, according to the present invention, lower oxides in slag could be reduced without adding a slag modifier, and clean steel could be stably produced.

【0033】[0033]

【発明の効果】本発明では、溶鋼を真空槽と取鍋との間
で環流させる際に、真空槽内の圧力を増減させて取鍋内
溶鋼の湯面位置を揺動させるので、溶鋼中のAlにより
スラグ中の低級酸化物が還元されてスラグによる溶鋼の
酸化を抑制することができ、スラグ改質剤を添加するこ
となく、介在物の極めて少ない清浄鋼を安定して製造す
ることができる。
According to the present invention, when the molten steel is circulated between the vacuum chamber and the ladle, the pressure in the vacuum chamber is increased or decreased to fluctuate the molten steel level in the ladle. The lower oxides in the slag are reduced by Al to suppress the oxidation of the molten steel by the slag, and it is possible to stably produce clean steel with extremely few inclusions without adding a slag modifier. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施したRH真空脱ガス装置の縦断面
概略図である。
FIG. 1 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【図2】脱酸後の溶鋼中Alの減少量を、本発明の実施
例と従来例とで比較して示す図である。
FIG. 2 is a diagram showing a reduction amount of Al in molten steel after deoxidation in a comparison between an example of the present invention and a conventional example.

【図3】真空槽内の圧力差が製品欠陥指数に及ぼす影響
を、本発明の実施例と従来例とで比較して示す図であ
る。
FIG. 3 is a diagram showing the effect of a pressure difference in a vacuum chamber on a product defect index in comparison between an example of the present invention and a conventional example.

【図4】脱ガス処理前のスラグ中の(wt%T.Fe)
と(wt%MnO)との合計値が製品欠陥指数に及ぼす
影響を、本発明の実施例と従来例とで比較して示す図で
ある。
FIG. 4 (wt% T.Fe) in slag before degassing treatment
FIG. 7 is a diagram showing the effect of the total value of (wt% MnO) and the product defect index on the product defect index in comparison between the example of the present invention and the conventional example.

【符号の説明】[Explanation of symbols]

1 真空槽 2 上部槽 3 下部槽 4 上昇側浸漬管 5 下降側浸漬管 6 環流用Arガス吹き込み管 7 ダクト 8 原料投入口 9 取鍋 10 溶鋼 11 スラグ DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Upper tank 3 Lower tank 4 Ascending side immersion pipe 5 Descending side immersion pipe 6 Ar gas blowing pipe for reflux 7 Duct 8 Material input port 9 Ladle 10 Molten steel 11 Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 栄司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Eiji Sakurai 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RH真空脱ガス装置の真空槽内を減圧す
ると共に、RH真空脱ガス装置の上昇側浸漬管内に環流
用Arガスを吹き込み、真空槽と取鍋との間でAlを含
有する溶鋼を環流させる際に、前記真空槽内の圧力を増
減させて取鍋内溶鋼の湯面位置を揺動させることを特徴
とするRH真空脱ガス装置での清浄鋼の製造方法。
1. The pressure inside the vacuum chamber of the RH vacuum degassing apparatus is reduced, and Ar gas for reflux is blown into the rising side immersion pipe of the RH vacuum degassing apparatus to contain Al between the vacuum chamber and the ladle. A method for producing clean steel in an RH vacuum degassing apparatus, characterized in that when circulating molten steel, the pressure in the vacuum chamber is increased or decreased to fluctuate the molten steel surface position in the ladle.
【請求項2】 前記真空槽内の圧力の最大値と最小値と
の差を100torr以上として真空槽内の圧力を増減
させることを特徴とする請求項1に記載のRH真空脱ガ
ス装置での清浄鋼の製造方法。
2. The RH vacuum degassing apparatus according to claim 1, wherein the pressure in the vacuum chamber is increased or decreased by setting the difference between the maximum value and the minimum value of the pressure in the vacuum chamber to 100 torr or more. Manufacturing method of clean steel.
JP1610898A 1998-01-28 1998-01-28 Production of clean steel in rh vacuum degassing apparatus Pending JPH11217621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1610898A JPH11217621A (en) 1998-01-28 1998-01-28 Production of clean steel in rh vacuum degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1610898A JPH11217621A (en) 1998-01-28 1998-01-28 Production of clean steel in rh vacuum degassing apparatus

Publications (1)

Publication Number Publication Date
JPH11217621A true JPH11217621A (en) 1999-08-10

Family

ID=11907332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1610898A Pending JPH11217621A (en) 1998-01-28 1998-01-28 Production of clean steel in rh vacuum degassing apparatus

Country Status (1)

Country Link
JP (1) JPH11217621A (en)

Similar Documents

Publication Publication Date Title
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP3915386B2 (en) Manufacturing method of clean steel
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP2007169717A (en) Method for judging decarburize-end point in vacuum degassing facility
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JP4085898B2 (en) Melting method of low carbon high manganese steel
JPH11217621A (en) Production of clean steel in rh vacuum degassing apparatus
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP4806869B2 (en) Manufacturing method of high clean steel
JP3747653B2 (en) Method for producing clean steel in RH vacuum degassing apparatus
JP3468121B2 (en) Melting method of ultra low carbon steel
JPH10298631A (en) Method for melting clean steel
JP3674422B2 (en) Melting method of high cleanliness low carbon steel
JPH0925507A (en) Method for refining molten steel
JP4066674B2 (en) Manufacturing method of manganese-containing ultra-low carbon steel
JP2000144232A (en) Production of highly cleaned steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
SU926028A1 (en) Method for refining low-carbon steel
JPH0633133A (en) Production of ultralow carbon steel
JP4020125B2 (en) Method of melting high cleanliness steel