JPH11216364A - Photocatalyst - Google Patents

Photocatalyst

Info

Publication number
JPH11216364A
JPH11216364A JP10019319A JP1931998A JPH11216364A JP H11216364 A JPH11216364 A JP H11216364A JP 10019319 A JP10019319 A JP 10019319A JP 1931998 A JP1931998 A JP 1931998A JP H11216364 A JPH11216364 A JP H11216364A
Authority
JP
Japan
Prior art keywords
photocatalyst
metal element
visible light
hydrogen
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10019319A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10019319A priority Critical patent/JPH11216364A/en
Publication of JPH11216364A publication Critical patent/JPH11216364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst having higher catalytic activity in the visible light region. SOLUTION: A photocatalyst having catalytic activity within a visible light region decomposes water by the irradiation with visible light to form at least one of hydrogen and oxygen and is obtained by finely dividing a photocatalyst precursor (particulate material) of which the surface is modified by acid treatment into a fine particulate substance represented by the chemical formula: ABO2 (wherein A is a monovalent single metal element or composite metal element; and B is a trivalent single metal element or composite metal element).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光照射下にお
いて水を分解し、水素と酸素のうち少なくとも一方を生
成させる可視光領域で触媒活性を有する光触媒に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst having catalytic activity in a visible light region that decomposes water under irradiation with visible light and generates at least one of hydrogen and oxygen.

【0002】[0002]

【従来の技術】現在、エネルギー源としては主として、
石油や石炭等の化石燃料と原子力エネルギーが用いられ
ている。しかし、化石燃料は、その埋蔵量が有限であり
枯渇が問題視されている。また、化石燃料は、燃焼させ
た際に二酸化炭素、窒素酸化物、硫黄酸化物等を排出
し、その結果、二酸化炭素は地球の温暖化をもたらし、
窒素酸化物や硫黄酸化物は空気中の水分と反応して硝酸
や硫酸を生成して酸性雨となり、地球環境の破壊をもた
らしている。
2. Description of the Related Art At present, energy sources mainly include:
Fossil fuels such as oil and coal and nuclear energy are used. However, fossil fuels have a finite reserve and depletion is a problem. Also, fossil fuels emit carbon dioxide, nitrogen oxides, sulfur oxides, etc. when burned, and as a result, carbon dioxide causes global warming,
Nitrogen oxides and sulfur oxides react with moisture in the air to produce nitric acid and sulfuric acid, resulting in acid rain and destruction of the global environment.

【0003】また、新しいエネルギー源である原子力エ
ネルギーを利用すべく原子力発電が実用化されている
が、安全性や廃棄物処理等の問題を抱えている。このよ
うな状況の下で、エネルギー資源枯渇や地球環境破壊の
問題を解決する一つの方法として、クリーンなエネルギ
ー源である水素の利用が注目されている。水素は燃焼さ
せても水になるだけであり、環境汚染を引き起こさな
い。なお、この水素を発生させるために、化石燃料等を
用いたのでは意味がないことは言うまでもない。
[0003] Nuclear power generation has been put into practical use to utilize nuclear energy, which is a new energy source, but has problems such as safety and waste disposal. Under such circumstances, attention has been paid to the use of hydrogen, which is a clean energy source, as one method for solving the problems of depletion of energy resources and destruction of the global environment. Hydrogen only turns into water when burned, and does not cause environmental pollution. Needless to say, it is meaningless to use fossil fuel or the like to generate this hydrogen.

【0004】埋蔵量が有限である化石燃料に対して、太
陽光は無尽蔵にあり、水も地球には大量にある。そこ
で、太陽光のエネルギーを利用して水を分解することに
より水素を生成すれば、前記の各問題を解決することが
できる。そして、太陽光のエネルギーを利用して水を分
解する手段の一つとして水分解用の光触媒がある。光触
媒は一種の半導体であり、そのバンドギャップ以上のエ
ネルギーを吸収すると、ホール(正孔)とエレクトロン
(電子)を生成し、ホールが水を酸化して酸素を生成
し、エレクトロンが水を還元して水素を生成する機能を
有する。
[0004] For fossil fuels with finite reserves, sunlight is inexhaustible and water is abundant on the earth. Then, if hydrogen is generated by decomposing water using the energy of sunlight, each of the above-mentioned problems can be solved. As one of the means for decomposing water using the energy of sunlight, there is a photocatalyst for water decomposition. A photocatalyst is a type of semiconductor. When it absorbs energy above its band gap, it generates holes (holes) and electrons (electrons), which oxidizes water to generate oxygen, and electrons reduce water. To generate hydrogen.

【0005】ところで、地表で得られる太陽光は、波長
500nm付近にピークを持つスペクトル分布を示す。ま
た、その分布割合は、紫外線領域(波長400nm未満)
が約5%、可視光領域(波長400nm以上、750nm未
満)が約43%、赤外線領域(波長750nm以上)が約
52%である。そのため、太陽光を効率良く利用するた
めには、バンドギャップのエネルギーが前記分布割合が
大きい可視光領域以上(波長400nm以上)の光エネル
ギーに相当する光触媒(可視光領域で触媒活性を有する
光触媒)が望まれる。
[0005] Incidentally, sunlight obtained on the ground surface has a spectrum distribution having a peak near a wavelength of 500 nm. The distribution ratio is in the ultraviolet region (wavelength less than 400 nm).
Is about 5%, the visible light region (wavelength 400 nm or more, less than 750 nm) is about 43%, and the infrared light region (wavelength 750 nm or more) is about 52%. Therefore, in order to use sunlight efficiently, a photocatalyst whose bandgap energy corresponds to light energy in the visible light region or more (wavelength 400 nm or more) where the distribution ratio is large (a photocatalyst having catalytic activity in the visible light region). Is desired.

【0006】[0006]

【発明が解決しようとする課題】かかる可視光領域で触
媒活性を有する光触媒としては、例えば化学式abO2
(a:1種または2種以上の1価の金属元素、b:1種
または2種以上の3価の金属元素、(例)CuFe
2)で表され、デラフォサイト(Delafossite)型の結
晶構造を有する微粒子状物質からなる光触媒がある。
As such a photocatalyst having a catalytic activity in the visible light region, for example, the chemical formula abO 2
(A: one or more monovalent metal elements, b: one or more trivalent metal elements, (Example) CuFe
There is a photocatalyst composed of particulate matter represented by O 2 ) and having a delafossite crystal structure.

【0007】この光触媒は、通常の固相法により、即ち
原料となる各金属元素成分の酸化物を所定組成の比率に
て混合し、不活性ガス雰囲気中で焼成することにより製
造できる。或いは、この光触媒は、原料となる各金属元
素成分の酸化物を所定組成の比率にて混合し、不活性ガ
ス雰囲気中で焼成することにより前駆体である粒子状物
質を合成した後、この前駆体を粉砕して微粒子状にする
ことにより製造できる。
This photocatalyst can be produced by a usual solid-phase method, that is, by mixing oxides of respective metal element components as raw materials at a predetermined composition ratio and firing in an inert gas atmosphere. Alternatively, this photocatalyst is prepared by mixing oxides of respective metal element components as raw materials at a predetermined composition ratio and firing in an inert gas atmosphere to synthesize a particulate material as a precursor. It can be manufactured by pulverizing the body into fine particles.

【0008】例えば、Cuの酸化物とFeの酸化物を所
定組成の比率にて混合し、不活性ガス雰囲気中で焼成す
ることにより合成した光触媒の前駆体(粒子状のCuF
eOX)をさらに粉砕することにより光触媒(微粒子状
のCuFeOX)を製造できる。しかしながら、前記化
学式abO2で表され、デラフォサイト型の結晶構造を
有するとされる微粒子状物質からなる従来の光触媒は、
可視光照射下において水を水素と酸素に分解する機能
(触媒活性)を有するものの、その触媒活性がかなり低
いという問題点があった。
For example, a precursor (particulate CuF) of a photocatalyst synthesized by mixing an oxide of Cu and an oxide of Fe at a predetermined composition ratio and firing in an inert gas atmosphere.
eO x ) can be further pulverized to produce a photocatalyst (particulate CuFeO x ). However, a conventional photocatalyst represented by the chemical formula abO 2 and composed of a particulate material having a delafossite-type crystal structure,
Although it has a function of decomposing water into hydrogen and oxygen under visible light irradiation (catalytic activity), there is a problem that its catalytic activity is considerably low.

【0009】本発明は、かかる問題点に鑑みてなされた
ものであり、可視光領域において従来よりも高い触媒活
性を有するデラフォサイト型の光触媒を提供することを
目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a delafossite-type photocatalyst having a higher catalytic activity in the visible light region than conventional ones.

【0010】[0010]

【課題を解決するための手段】そのため、本発明は第一
に「一般式ABO2(A:1種または2種以上の1価の金
属元素、B:1種または2種以上の3価の金属元素)で
表され、可視光により水を分解して、水素と酸素のうち
少なくとも一方を生成させる光触媒のうち、酸処理によ
り表面改質したことを特徴とする光触媒(請求項1)」
を提供する。
Therefore, the present invention firstly provides a compound represented by the general formula ABO 2 (A: one or more monovalent metal elements, B: one or more trivalent metal elements) (A metal element), which is a photocatalyst characterized by surface modification by an acid treatment, among photocatalysts that decompose water by visible light to generate at least one of hydrogen and oxygen (claim 1) ”
I will provide a.

【0011】また、本発明は第二に「可視光照射下にお
いて水を分解し、水素と酸素のうち少なくとも一方を生
成させる光触媒であり、酸処理により表面改質がなさ
れ、かつ化学式ABO2(A:1価の単一金属元素または
複合金属元素、B:3価の単一金属元素または複合金属
元素)で表される粒子状の光触媒(請求項2)」を提供
する。
The present invention also provides, secondly, a photocatalyst which decomposes water under irradiation with visible light to generate at least one of hydrogen and oxygen, has a surface modified by an acid treatment, and has a chemical formula of ABO 2 ( A: a monovalent single metal element or a composite metal element, and B: a trivalent single metal element or a composite metal element).

【0012】また、本発明は第三に「可視光照射下にお
いて水を分解し、水素と酸素のうち少なくとも一方を生
成させる光触媒であり、酸処理により表面改質した光触
媒前駆体(粒子状物質)を、化学式ABO2(A:1価の
単一金属元素または複合金属元素、B:3価の単一金属
元素または複合金属元素)で表される微粒子状物質に微
細化してなる光触媒(請求項3)」を提供する。
Further, the present invention provides a photocatalyst which decomposes water under visible light irradiation to generate at least one of hydrogen and oxygen, and comprises a photocatalyst precursor (particulate matter ) Is converted to fine particles represented by the chemical formula ABO 2 (A: monovalent single metal element or composite metal element, B: trivalent single metal element or composite metal element) to form a photocatalyst (claim Item 3) "is provided.

【0013】また、本発明は第四に「前記化学式におけ
るAがCuであることを特徴とする請求項1〜3のいず
れかに記載の光触媒(請求項4)」を提供する。また、
本発明は第五に「前記化学式におけるBがCr,Mn,F
e,Co,Gaからなる元素群から選択された単一金属元
素または複合金属元素であることを特徴とする請求項1
〜4のいずれかに記載の光触媒(請求項5)」を提供す
る。
The present invention fourthly provides a "photocatalyst according to any one of claims 1 to 3, wherein A in the above chemical formula is Cu (claim 4)." Also,
The present invention is a fifth aspect of the present invention wherein B in the above chemical formula is Cr, Mn, F
2. A single metal element or a composite metal element selected from the group consisting of e, Co, and Ga.
The photocatalyst according to any one of (1) to (4) (claim 5) is provided.

【0014】また、本発明は第六に「粒径が0.1〜10ミクロ
ン(好ましくは、0.1〜1ミクロン)であることを特徴とする
請求項1〜5のいずれかに記載の光触媒(請求項6)」
を提供する。
The present invention provides a photocatalyst according to any one of claims 1 to 5, characterized in that the particle size is 0.1 to 10 microns (preferably 0.1 to 1 micron). 6) "
I will provide a.

【0015】[0015]

【発明の実施の形態】本発明者らが鋭意検討した結果、
前記化学式abO2で表され、デラフォサイト(Delafos
site)型の結晶構造を有するとされる微粒子状物質から
なる従来の光触媒において、金属元素aが1価以外の価
数をとらない元素であれば特に問題はないが、金属元素
aが1価以外の価数をとることができる元素の場合に、
光触媒の触媒活性がかなり低いことが判った。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies by the present inventors,
The chemical formula is represented by abO 2 and is represented by Delafosite (Delafos).
In a conventional photocatalyst comprising a particulate material having a site-type crystal structure, there is no particular problem as long as the metal element a does not take a valence other than monovalent, but the metal element a is monovalent. In the case of an element that can take a valence other than
It was found that the catalytic activity of the photocatalyst was considerably low.

【0016】そして、本発明者らは、金属元素aが1価
以外の価数をとることができる元素の場合には、酸化反
応が起こらないように不活性ガス雰囲気中で合成したと
しても、原料に吸着した水の影響等により合成される光
触媒または光触媒前駆体の表面付近では価数変化が発生
して完全なデラフォサイト型の結晶構造とはならず、そ
の結果、製造される光触媒の触媒活性が阻害されるおそ
れが高いことを見いだした。
When the metal element a is an element capable of taking a valence other than monovalent, the present inventors have proposed that even if the metal element a is synthesized in an inert gas atmosphere so as not to cause an oxidation reaction, In the vicinity of the surface of the photocatalyst or photocatalyst precursor synthesized due to the influence of water adsorbed on the raw material, a valence change occurs, and a complete delafossite-type crystal structure is not obtained. It has been found that the catalyst activity is likely to be inhibited.

【0017】さらに、本発明者らは、前記合成された光
触媒または光触媒前駆体を酸(特に硝酸が好ましい)で
処理して表面改質することにより、最終的に製造される
光触媒の可視光領域における触媒活性を従来よりも大き
く向上させることができることを見出して、本発明をな
すにいたった。即ち、光触媒または光触媒前駆体の合成
時に、原料に吸着した水の影響等により光触媒または前
駆体の表面付近で価数変化が発生した場合でも、合成さ
れた光触媒または前駆体を酸処理することで光触媒また
は前駆体の表面を溶解し、光触媒内部または前駆体内部
の価数変化を起こしていない面を露出させれば、最終的
に製造される光触媒の触媒活性が阻害されることはな
い。
The present inventors further treat the synthesized photocatalyst or photocatalyst precursor with an acid (particularly, nitric acid is preferred) to modify the surface thereof, thereby obtaining a visible light region of a finally produced photocatalyst. The present inventors have found that the catalyst activity can be greatly improved as compared with the prior art, and have accomplished the present invention. That is, at the time of synthesis of the photocatalyst or photocatalyst precursor, even when a valence change occurs near the surface of the photocatalyst or precursor due to the influence of water adsorbed on the raw material, the synthesized photocatalyst or precursor is subjected to acid treatment. By dissolving the surface of the photocatalyst or the precursor and exposing the inside of the photocatalyst or the inside of the precursor where the valence does not change, the catalytic activity of the finally produced photocatalyst is not hindered.

【0018】そこで、本発明(請求項1〜6)にかかる
可視光領域で触媒活性を有し、化学式ABO2(A:1価
の単一金属元素または複合金属元素、B:3価の単一金
属元素または複合金属元素)で表される光触媒は、酸処
理により表面改質した光触媒とするか、或いは酸処理に
より表面改質した光触媒前駆体(粒子状物質)を、前記
化学式ABO2で表される微粒子状物質に微細化してな
る光触媒とした。
Therefore, according to the present invention (claims 1 to 6), it has a catalytic activity in the visible light region and has a chemical formula of ABO 2 (A: monovalent single metal element or composite metal element, B: trivalent monometallic element). The photocatalyst represented by the monometallic element or the composite metal element) is a photocatalyst whose surface has been modified by acid treatment, or a photocatalyst precursor (particulate matter) whose surface has been modified by acid treatment is represented by the chemical formula ABO 2 . The resulting photocatalyst was made into a fine particle material.

【0019】そして、かかる構成を採用したので、本発
明(請求項1〜6)の光触媒は、可視光領域における触
媒活性を従来よりも大きく向上させることができる。な
お、1価の複合金属元素とは、1価の単一金属元素から
なる物質を1種類以上の異なる単一金属元素(1価)で
部分的に置換した物質の構成元素を概念化したものであ
り、同様に3価の複合金属元素とは、3価の単一金属元
素からなる物質を1種類以上の異なる単一金属元素(3
価)で部分的に置換した物質の構成元素を概念化したも
のである。
Since such a configuration is employed, the photocatalyst of the present invention (claims 1 to 6) can greatly improve the catalytic activity in the visible light region as compared with the conventional one. The monovalent composite metal element is a conceptualization of a constituent element of a substance obtained by partially substituting a substance consisting of a monovalent single metal element with one or more different single metal elements (monovalent). Similarly, a trivalent composite metal element refers to a substance consisting of a trivalent single metal element as one or more different single metal elements (3
) Is a conceptualization of the constituent elements of a substance partially substituted with (valence).

【0020】本発明にかかる前記化学式におけるAをC
u元素とすると、可視光照射下において水を分解し、水
素と酸素の両方を同時に生成させることができるので好
ましい(請求項4)。即ち、水素と酸素の両方を同時に
生成させることができる光触媒においては、光照射によ
り生成されたホール(正孔)とエレクトロン(電子)が
それぞれ有効に水の分解反応に関与するので、触媒寿命
や触媒活性の低下が起こりにくく、触媒機能の安定性が
良好となるので好ましい。
In the chemical formula according to the present invention, A is represented by C
The element u is preferable because water can be decomposed under visible light irradiation, and both hydrogen and oxygen can be generated simultaneously (claim 4). That is, in a photocatalyst capable of simultaneously generating both hydrogen and oxygen, holes (holes) and electrons (electrons) generated by light irradiation effectively participate in the decomposition reaction of water, respectively, so that the catalyst life and This is preferable because the catalyst activity hardly decreases and the stability of the catalyst function is improved.

【0021】本発明にかかる前記化学式におけるBとし
ては、Cr,Mn,Fe,Co,Gaからなる元素群から選
択された単一金属元素または複合金属元素が使用できる
(請求項5)。本発明にかかる光触媒の形状は、可視光
を有効に利用できるように、表面積の大きな微粒子(微
粒子サイズ0.1〜10ミクロン)とすることが好ましく、特に
好ましい微粒子サイズは0.1〜1ミクロンである(請求項
6)。
As B in the chemical formula according to the present invention, a single metal element or a composite metal element selected from the group consisting of Cr, Mn, Fe, Co, and Ga can be used. The shape of the photocatalyst according to the present invention is preferably fine particles having a large surface area (fine particle size of 0.1 to 10 microns), and particularly preferable fine particle size is 0.1 to 1 micron so that visible light can be effectively used. Item 6).

【0022】かかる微粒子サイズの光触媒は、粒子状の
光触媒または光触媒前駆体をボールミルや遊星ミルで粉
砕して、さらに微粒子化することにより得ることができ
る。なお、助触媒(例えばPt、NiO等)の担持等、
光触媒の製造において一般的に使用される修飾を本発明
にかかる光触媒についても行うことができる。さらに、
本発明にかかる水分解反応を行う際に使用する水は純水
に限らず、炭酸塩や炭酸水素塩等の塩類を混ぜた水を使
用してもよい。或いは、アルコールや銀イオン等の犠牲
試薬を使用して、水素または酸素のいずれか一方を生成
させてもよい。
Such a photocatalyst having a fine particle size can be obtained by pulverizing a particulate photocatalyst or a photocatalyst precursor with a ball mill or a planetary mill and further reducing the particle size. In addition, supporting of a co-catalyst (for example, Pt, NiO, etc.)
Modifications commonly used in the production of photocatalysts can also be made to photocatalysts according to the present invention. further,
The water used when performing the water splitting reaction according to the present invention is not limited to pure water, and water mixed with salts such as carbonates and bicarbonates may be used. Alternatively, a sacrificial reagent such as alcohol or silver ions may be used to generate either hydrogen or oxygen.

【0023】本発明の光触媒は、水の分解反応だけでな
く、他の化学反応(例えば、有機物の分解反応や貴金属
イオンの還元反応)にも適用可能である。以下、実施例
により本発明を具体的に説明するが、本発明はこれらに
限定されるものではない。
The photocatalyst of the present invention can be applied to not only a water decomposition reaction but also other chemical reactions (for example, a decomposition reaction of an organic substance and a reduction reaction of a noble metal ion). Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto.

【0024】[0024]

【実施例1】本実施例の可視光領域で触媒活性を有する
光触媒は、粒子状の光触媒または光触媒前駆体を酸処理
して表面改質したものを、さらに微粒子状に粉砕した光
触媒(CuFeO2)である。 (1)本実施例の光触媒を製造する方法 まず、Cu2OとFe23を所定組成の比率にて混合
し、不活性ガス雰囲気中で焼成することにより(固相
法)、光触媒の前駆体(粒子状のCuFeOX)を合成
した。
Embodiment 1 The photocatalyst having catalytic activity in the visible light region of this embodiment is a photocatalyst (CuFeO 2) obtained by subjecting a particulate photocatalyst or a photocatalyst precursor to a surface modification by acid treatment and further pulverizing the photocatalyst into fine particles. ). (1) Method for Producing the Photocatalyst of the Example First, Cu 2 O and Fe 2 O 3 were mixed at a predetermined composition ratio and fired in an inert gas atmosphere (solid phase method) to obtain a photocatalyst. A precursor (particulate CuFeO x ) was synthesized.

【0025】ここで、Cu2Oについては合成中に揮発
することを考慮し、理論量(化学量論比による量:2.36
g)のほぼ10%増しで調合した。即ち、Cu2O:2.
60g、Fe23 :2.64gをそれぞれ秤量し、ア
ルミナボートに入れて、窒素雰囲気中で1050℃、1
0時間の焼成を行った。次に、得られた前駆体(粒子状
物質)2gを5N硝酸中で20時間攪拌することによ
り、前駆体の酸処理を行った。
The stoichiometric amount (amount based on stoichiometric ratio: 2.36) of Cu 2 O is considered in consideration of volatilization during the synthesis.
g) increased by almost 10%. That is, Cu 2 O: 2.
60 g and 2.64 g of Fe 2 O 3 were weighed and placed in an alumina boat at 1050 ° C. for 1 hour in a nitrogen atmosphere.
The firing was performed for 0 hours. Next, 2 g of the obtained precursor (particulate matter) was stirred in 5N nitric acid for 20 hours to perform an acid treatment of the precursor.

【0026】次に、酸処理による表面改質を行った前駆
体を濾過して回収し、これを純水洗浄してから風乾させ
た。その後、前駆体を乳鉢で径10μm以下の微粒子に
粉砕することにより、本実施例の光触媒(微粒子状のC
uFeO2)を製造した。なお、製造した光触媒微粒子
を粉末X線回折により同定したところ、デラフォサイト
構造を有するCuFeO2であり、酸処理による構造変
化は見られなかった。 (2)触媒活性の評価 製造した光触媒の触媒活性の評価は、閉鎖循環系触媒反
応装置を使用し、以下に示すように、反応溶液として純
水を用いて水素及び酸素を生成させることにより行っ
た。
Next, the precursor whose surface was modified by acid treatment was recovered by filtration, washed with pure water, and air-dried. Thereafter, the precursor is pulverized in a mortar into fine particles having a diameter of 10 μm or less, whereby the photocatalyst (fine particle C
uFeO 2 ). When the produced photocatalyst fine particles were identified by powder X-ray diffraction, they were CuFeO 2 having a delafossite structure, and no structural change due to acid treatment was observed. (2) Evaluation of catalytic activity The catalytic activity of the produced photocatalyst was evaluated by using a closed-circulation catalytic reactor and generating hydrogen and oxygen using pure water as a reaction solution as shown below. Was.

【0027】まず、製造した光触媒0.4gを純水35
0ml中に入れて、マグネチックスターラーで攪拌しな
がら外部から光を照射した。この際、光源として500
Wキセノンランプ、反応管としてパイレックスガラス製
の管を用いた。また、フィルターにより波長420nm
以下の光をカットして光照射を行なった。次に、生成し
た水素、酸素の測定(検出及び定量)をガスクロマトグ
ラフィーにより行った。測定の結果、水素及び酸素の発
生が認められ、触媒活性は水素:5μmol/h、酸素2μm
ol/hであった。
First, 0.4 g of the produced photocatalyst was mixed with 35 parts of pure water.
The mixture was placed in 0 ml, and irradiated with light from the outside while stirring with a magnetic stirrer. At this time, 500
A tube made of Pyrex glass was used as a W xenon lamp and a reaction tube. In addition, wavelength 420nm by filter
The following light was cut and light irradiation was performed. Next, measurement (detection and quantification) of the generated hydrogen and oxygen was performed by gas chromatography. As a result of the measurement, generation of hydrogen and oxygen was recognized, and the catalytic activity was 5 μmol / h for hydrogen and 2 μm for oxygen.
ol / h.

【0028】前述したように、本実施例の光触媒は、粒
子状の光触媒前駆体を微粒子状に粉砕する前に、前駆体
を酸処理して表面改質しているが、比較のために前駆体
の酸処理を行わないで得られた従来の光触媒についてそ
の触媒活性を測定したところ、水素:0.7μmol/h、
酸素:0.5μmol/hであった。即ち、本実施例の光触
媒は、従来の光触媒よりも可視光領域でかなり高い触媒
活性を有することが確認された。
As described above, in the photocatalyst of this embodiment, the surface of the photocatalyst precursor is modified by acid treatment before the photocatalyst precursor is pulverized into fine particles. When the catalytic activity of the conventional photocatalyst obtained without performing acid treatment of the body was measured, hydrogen: 0.7 μmol / h,
Oxygen: 0.5 μmol / h. That is, it was confirmed that the photocatalyst of this example had a considerably higher catalytic activity in the visible light region than the conventional photocatalyst.

【0029】[0029]

【実施例2】本実施例の可視光領域で触媒活性を有する
光触媒は、粒子状の光触媒前駆体を酸処理して表面改質
したものを微粒子状に粉砕してなる光触媒(CuGaO
2)である。 (1)本実施例の光触媒を製造する方法 まず、Cu2OとGa23を所定組成の比率にて混合
し、不活性ガス雰囲気中で焼成することにより(固相
法)、光触媒の前駆体(粒子状のCuGaOX)を合成
した。
Embodiment 2 The photocatalyst having catalytic activity in the visible light region of this embodiment is a photocatalyst (CuGaOO) obtained by pulverizing a particulate photocatalyst precursor which has been surface-modified by acid treatment into fine particles.
2 ). (1) Method for Producing the Photocatalyst of the Example First, Cu 2 O and Ga 2 O 3 are mixed at a predetermined composition ratio and fired in an inert gas atmosphere (solid phase method) to obtain a photocatalyst. A precursor (particulate CuGaO x ) was synthesized.

【0030】ここで、Cu2Oについては合成中に揮発
することを考慮し、理論量(化学量論比による量:2.16
g)の10%増しで調合した。即ち、Cu2O:2.37
g、Ga23 :2.84gをそれぞれ秤量し、アルミ
ナボートに入れて、窒素雰囲気中で1050℃、10時
間の焼成を行った。次に、得られた前駆体(粒子状物
質)2gを5N硝酸中で20時間攪拌することにより、
前駆体の酸処理を行った。
Here, considering that Cu 2 O is volatilized during the synthesis, a stoichiometric amount (amount based on stoichiometric ratio: 2.16)
g) was increased by 10%. That is, Cu 2 O: 2.37
g and 2.84 g of Ga 2 O 3 were weighed, placed in an alumina boat, and fired at 1050 ° C. for 10 hours in a nitrogen atmosphere. Next, by stirring 2 g of the obtained precursor (particulate matter) in 5 N nitric acid for 20 hours,
The precursor was acid treated.

【0031】次に、酸処理による表面改質を行った前駆
体を濾過して回収し、これを純水洗浄してから風乾させ
た。その後、前駆体を乳鉢で径10μm以下の微粒子に
粉砕することにより、本実施例の光触媒(微粒子状のC
uGaO2)を製造した。なお、製造した光触媒微粒子
を粉末X線回折により同定したところ、デラフォサイト
構造を有するCuGaO2であり、酸処理による構造変
化は見られなかった。 (2)触媒活性の評価 実施例1と同様にして触媒活性の評価を行ったところ、
本実施例の光触媒は、従来の光触媒(前駆体の表面改質
を行わないもの)よりも可視光領域でかなり高い触媒活
性を有することが確認された。
Next, the precursor whose surface was modified by acid treatment was recovered by filtration, washed with pure water, and air-dried. Thereafter, the precursor is pulverized in a mortar into fine particles having a diameter of 10 μm or less, whereby the photocatalyst (fine particle C
uGaO 2 ). When the produced photocatalyst fine particles were identified by powder X-ray diffraction, they were CuGaO 2 having a delafossite structure, and no structural change due to acid treatment was observed. (2) Evaluation of catalytic activity When the catalytic activity was evaluated in the same manner as in Example 1,
It was confirmed that the photocatalyst of this example had a considerably higher catalytic activity in the visible light region than the conventional photocatalyst (which does not modify the surface of the precursor).

【0032】以上の実施例では、微粒子状のCuGaO
2、CuFeO2について説明したが、これ以外にも、微
粒子状のCuCrO2、CuMnO2、CuCoO2につ
いても同様に製造して、得られた各光触媒をそれぞれ評
価したところ、従来の光触媒(前駆体の表面改質を行わ
ないもの)よりも可視光領域でかなり高い触媒活性を有
することが確認された。
In the above embodiment, the fine particle CuGaO
2 and CuFeO 2 , but in addition to the above, fine particles of CuCrO 2 , CuMnO 2 , and CuCoO 2 were produced in the same manner, and the obtained photocatalysts were evaluated. (Having no surface modification) has a significantly higher catalytic activity in the visible light region.

【0033】[0033]

【発明の効果】以上説明した通り、本発明(請求項1〜
6)の光触媒は、可視光領域において従来よりも高い触
媒活性を有する。即ち、本発明(請求項1〜6)にかか
る可視光領域で触媒活性を有する光触媒は、酸処理して
表面を改質してなるので、酸処理による表面改質を行わ
ない従来の光触媒よりも高い触媒活性を有する。
As described above, the present invention (Claims 1 to 5)
The photocatalyst of 6) has a higher catalytic activity in the visible light region than before. That is, since the photocatalyst having catalytic activity in the visible light region according to the present invention (claims 1 to 6) is obtained by modifying the surface by an acid treatment, the photocatalyst does not perform the surface modification by the acid treatment. Also have high catalytic activity.

【0034】本発明にかかる前記化学式におけるAをC
u元素とすると、可視光の照射により水を分解して、水
素と酸素の両方を同時に生成させることができる(生成
された正孔と電子がそれぞれ有効に水の分解反応に関与
する)ので、触媒寿命や触媒活性の低下が起こりにく
く、触媒機能の安定性が良好となる(請求項4)。本発
明にかかる前記化学式におけるBとして、Cr,Mn,F
e,Co,Gaからなる元素群から選択された単一金属元
素または複合金属元素を使用すれば、従来の光触媒(前
駆体の表面改質を行わないもの)よりも可視光領域でか
なり高い触媒活性を有する光触媒が得られる(請求項
5)。
In the chemical formula according to the present invention, A is represented by C
When the element is u, water can be decomposed by irradiation with visible light to generate both hydrogen and oxygen at the same time (the generated holes and electrons are each effectively involved in the decomposition reaction of water). The catalyst life and catalyst activity are not easily reduced, and the stability of the catalyst function is improved. As B in the chemical formula according to the present invention, Cr, Mn, F
When a single metal element or a composite metal element selected from the group consisting of e, Co, and Ga is used, the catalyst is considerably higher in the visible light region than the conventional photocatalyst (which does not modify the surface of the precursor). An active photocatalyst is obtained (claim 5).

【0035】本発明の光触媒の形状を径0.1〜10ミクロン
(好ましくは、0.1〜1ミクロン)の微粒子状とすると、光触
媒の表面積が大きくなって、照射される可視光を有効に
利用することができる(請求項6)。 以上
When the photocatalyst of the present invention is formed into fine particles having a diameter of 0.1 to 10 μm (preferably 0.1 to 1 μm), the surface area of the photocatalyst becomes large, and the visible light to be irradiated can be effectively used. (Claim 6). that's all

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/86 B01J 23/82 M C01B 3/04 23/84 311M ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/86 B01J 23/82 M C01B 3/04 23/84 311M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式ABO2(A:1種または2種以上
の1価の金属元素、B:1種または2種以上の3価の金
属元素)で表され、可視光により水を分解して、水素と
酸素のうち少なくとも一方を生成させる光触媒のうち、
酸処理により表面改質したことを特徴とする光触媒。
1. A compound represented by the general formula ABO 2 (A: one or more monovalent metal elements, B: one or more trivalent metal elements), and decomposes water by visible light And among the photocatalysts that generate at least one of hydrogen and oxygen,
A photocatalyst having a surface modified by acid treatment.
【請求項2】 可視光照射下において水を分解し、水素
と酸素のうち少なくとも一方を生成させる光触媒であ
り、酸処理により表面改質がなされ、かつ化学式ABO
2(A:1価の単一金属元素または複合金属元素、B:3
価の単一金属元素または複合金属元素)で表される粒子
状の光触媒。
2. A photocatalyst which decomposes water under irradiation with visible light to generate at least one of hydrogen and oxygen, has a surface modified by acid treatment, and has a chemical formula of ABO
2 (A: monovalent single metal element or composite metal element, B: 3
Particulate photocatalyst represented by the following formula:
【請求項3】 可視光照射下において水を分解し、水素
と酸素のうち少なくとも一方を生成させる光触媒であ
り、酸処理により表面改質した光触媒前駆体(粒子状物
質)を、化学式ABO2(A:1価の単一金属元素または
複合金属元素、B:3価の単一金属元素または複合金属
元素)で表される微粒子状物質に微細化してなる光触
媒。
3. A photocatalyst that decomposes water under irradiation with visible light to generate at least one of hydrogen and oxygen. A photocatalyst precursor (particulate matter) whose surface has been modified by acid treatment is converted to a chemical formula of ABO 2 ( A: a photocatalyst that is finely divided into fine particles represented by the following formula: A: a monovalent single metal element or a composite metal element;
【請求項4】 前記化学式におけるAがCuであること
を特徴とする請求項1〜3のいずれかに記載の光触媒。
4. The photocatalyst according to claim 1, wherein A in the chemical formula is Cu.
【請求項5】 前記化学式におけるBがCr,Mn,Fe,
Co,Gaからなる元素群から選択された単一金属元素
または複合金属元素であることを特徴とする請求項1〜
4のいずれかに記載の光触媒。
5. In the above chemical formula, B is Cr, Mn, Fe,
A single metal element or a composite metal element selected from the group consisting of Co and Ga.
5. The photocatalyst according to any one of 4.
【請求項6】 粒径が0.1〜10ミクロン(好ましくは、0.1〜
1ミクロン)であることを特徴とする請求項1〜5のいずれ
かに記載の光触媒。
6. A particle size of 0.1 to 10 microns (preferably 0.1 to 10 microns).
The photocatalyst according to any one of claims 1 to 5, wherein the photocatalyst is 1 micron.
JP10019319A 1998-01-30 1998-01-30 Photocatalyst Pending JPH11216364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10019319A JPH11216364A (en) 1998-01-30 1998-01-30 Photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10019319A JPH11216364A (en) 1998-01-30 1998-01-30 Photocatalyst

Publications (1)

Publication Number Publication Date
JPH11216364A true JPH11216364A (en) 1999-08-10

Family

ID=11996097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10019319A Pending JPH11216364A (en) 1998-01-30 1998-01-30 Photocatalyst

Country Status (1)

Country Link
JP (1) JPH11216364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185605A (en) * 2006-01-13 2007-07-26 Univ Of Tokyo Promoter for photocatalyst and photocatalytic material
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2016521234A (en) * 2013-04-02 2016-07-21 ビーワイディー カンパニー リミテッドByd Company Limited Metal compound, method for producing the metal compound, and selective metallization of the substrate surface with the metal compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185605A (en) * 2006-01-13 2007-07-26 Univ Of Tokyo Promoter for photocatalyst and photocatalytic material
JP4714873B2 (en) * 2006-01-13 2011-06-29 国立大学法人 東京大学 Cocatalyst for photocatalyst and photocatalyst material
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2016521234A (en) * 2013-04-02 2016-07-21 ビーワイディー カンパニー リミテッドByd Company Limited Metal compound, method for producing the metal compound, and selective metallization of the substrate surface with the metal compound

Similar Documents

Publication Publication Date Title
Hao et al. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis
CN110449176A (en) A kind of preparation method and application of the monatomic catalyst of base metal
JP3790189B2 (en) Novel synthesis method of visible light responsive BiVO4 fine powder, photocatalyst comprising the BiVO4 fine powder, and purification method using the photocatalyst
EP0070712B1 (en) Catalysts for photo-assisted oxidation-reduction reactions
CH643215A5 (en) METHOD FOR THE SIMULTANEOUS PRODUCTION OF HYDROGEN AND OXYGEN FROM WATER.
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
KR100470533B1 (en) A method for preparaing ZnO nanopowder
JPH0724329A (en) Photocatalyst
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
Zhou et al. Cryptomelane nanowires for highly selective self-heating photothermal synergistic catalytic oxidation of gaseous ammonia
JPH10244165A (en) Photocatalyst having catalytic activity in visible light range
JPH11216364A (en) Photocatalyst
JPH0889804A (en) Photocatalyst
JPH09248465A (en) Photocatalyst having catalytic activity in visible light region
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP2730111B2 (en) New water photolysis catalyst
CN114471707B (en) Hydrogel sphere containing catalyst, preparation method thereof and application thereof in photocatalytic treatment of organic pollutants
JPH0889800A (en) Photocatalyst
JP2004025032A (en) High activity photocatalyst, and method for producing the same
JPH11216366A (en) Photocatalyst
JP2005034716A (en) Visible light responsive photocatalyst comprising bismuth composite oxide of alkali metal and silver, and harmful chemical substance decomposing and removing method using it
JP2001259436A (en) Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP2015120117A (en) Purification catalyst
JP3718710B2 (en) Visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JPH10244163A (en) Photocatalyst having catalytic activity in visible light range