JPH09248465A - Photocatalyst having catalytic activity in visible light region - Google Patents

Photocatalyst having catalytic activity in visible light region

Info

Publication number
JPH09248465A
JPH09248465A JP8055134A JP5513496A JPH09248465A JP H09248465 A JPH09248465 A JP H09248465A JP 8055134 A JP8055134 A JP 8055134A JP 5513496 A JP5513496 A JP 5513496A JP H09248465 A JPH09248465 A JP H09248465A
Authority
JP
Japan
Prior art keywords
photocatalyst
catalytic activity
visible light
light region
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8055134A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8055134A priority Critical patent/JPH09248465A/en
Publication of JPH09248465A publication Critical patent/JPH09248465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photocatalyst showing catalytic activity against light within a visible light region and having a laminar structure by adding a transition metal element in the constitutional elements of a photocatalyst respresented by a specific structural formula. SOLUTION: A photocatalyst having catalytic activity within a visible light region composed of composite oxide decomposing water by light to generate hydrogen and/or oxygen is represented by general formula, AB2 C3-x Mx O10-x (wherein A is hydrogen or an alkali metal element, B is a divalent element containing an alkaline earth element, C is a pentavalent element, M is a trivalent element and (x) is an arbitrary number of 0-3). Concretely, M is Fe or Ni and A is H or Na and B is Ca or Cr and C is V or Nb. Since a transition metal element is added to constitutional elements, catalytic activity is shown even against light within a visible light region and, since the interlaminar parts of a laminar structure can be utilized as a place of hydrocracking reaction, a larger quantity of hydrogen can be generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水を分解して水素
と酸素の少なくともどちらか一方を生成させる際に使用
される水分解用の光触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst for water splitting used when water is split to produce at least one of hydrogen and oxygen.

【0002】[0002]

【従来の技術】現在、エネルギー源としては様々なもの
が用いられている。石油や石炭等の化石燃料は、その埋
蔵量は無限ではなく、燃焼させた際に二酸化炭素、窒素
酸化物、硫黄酸化物等が排出される。その結果、二酸化
炭素は地球の温暖化をもたらし窒素酸化物や硫黄酸化物
は酸性雨の要因となって環境破壊をもたらしている。
又、新しいエネルギー源として原子力発電が実用化され
ているが、安全性や廃棄物処理等の問題を抱えている。
2. Description of the Related Art At present, various energy sources are used. Fossil fuels such as petroleum and coal have infinite reserves and emit carbon dioxide, nitrogen oxides and sulfur oxides when burned. As a result, carbon dioxide causes global warming, and nitrogen oxides and sulfur oxides cause acid rain and cause environmental destruction.
Further, nuclear power generation has been put into practical use as a new energy source, but has problems such as safety and waste disposal.

【0003】このような状況の下で、エネルギー資源や
地球環境の問題を解決する一方法としてクリーンなエネ
ルギー源の一つである水素が注目されている。水素は燃
焼させても水になるのみであり、環境汚染を引き起こさ
ない。しかし、水素を発生させるために化石燃料等を用
いたのでは意味がなくなってしまう。太陽光は無尽蔵に
あり、水も地球には大量にある。太陽光のエネルギーを
利用して水を分解すれば水素が得られるが、この手段の
一つとして水分解用の光触媒がある。光触媒は一種の半
導体であり、そのバンドギャップ以上のエネルギーを吸
収すると、ホールとエレクトロンを生成し、ホールが水
と反応して酸素と水素イオンを生じ、この水素イオンが
エレクトロンと反応して水素を発生する。
[0003] Under such circumstances, attention has been paid to hydrogen, which is one of the clean energy sources, as a method for solving the problems of energy resources and the global environment. Hydrogen only turns into water when burned, and does not cause environmental pollution. However, the use of fossil fuel or the like to generate hydrogen is meaningless. Sunlight is inexhaustible, and water is abundant on Earth. Hydrogen can be obtained by decomposing water using the energy of sunlight. One of the means is a photocatalyst for water decomposition. A photocatalyst is a type of semiconductor. When it absorbs energy above its band gap, it generates holes and electrons, and the holes react with water to produce oxygen and hydrogen ions, which react with the electrons to convert hydrogen. Occur.

【0004】光触媒の中でも層状構造をもつ物質はバル
ク状の物質と違い、層状構造の層間を水分解反応の場と
して利用することで高い触媒活性が得られるため、有用
な物質として知られている。換言すれば、層状構造の物
質はバルク状の物質と比べてより多数の触媒活性点を有
している。更に、層状構造をもたない物質と比較して、
ホール及びエレクトロンの移動距離は、特にその移動方
向が層面に垂直な場合には短くなり、その結果、ホール
及びエレクトロンの再結合の割合が減少し、高い触媒活
性が得られるのである。
[0004] Among photocatalysts, a substance having a layered structure is known as a useful substance because unlike a bulky substance, a high catalytic activity can be obtained by using a layer of the layered structure as a site for a water splitting reaction. . In other words, the layered material has more catalytically active sites than the bulk material. Furthermore, compared to a material without a layered structure,
The travel distance of holes and electrons is reduced, especially when the direction of travel is perpendicular to the layer plane, so that the rate of recombination of holes and electrons is reduced, and high catalytic activity is obtained.

【0005】従来、層状構造をもち、高い触媒活性を示
す物質としてKCa2 Nb3 10やKSr2 Nb3 10
などの物質が知られていたが、これらは、紫外光では高
い触媒活性を示すが、可視光領域では吸収をもたないた
め触媒活性を示さなかった。
Conventionally, KCa 2 Nb 3 O 10 and KSr 2 Nb 3 O 10 have been used as materials having a layered structure and high catalytic activity.
Although such substances were known, they showed high catalytic activity in the ultraviolet light, but did not show catalytic activity because they had no absorption in the visible light region.

【0006】[0006]

【発明が解決しようとする課題】従来の、層状構造を有
するが紫外光にしか触媒活性を示さない光触媒は、太陽
光スペクトルの波長範囲で僅か5%しか含まれていない
光を利用するだけに限られていた。又、紫外光を100
%水分解反応に利用できる光触媒も未だ知られていな
い。従って、従来の光触媒を太陽光の下で作用させる場
合、光エネルギーから化学エネルギーへの効率良い変換
はできなかった。
Conventional photocatalysts having a layered structure but exhibiting a catalytic activity only to ultraviolet light utilize only light which is contained in only 5% in the wavelength range of the solar spectrum. It was limited. Also, the ultraviolet light is 100
No photocatalyst that can be used for the% water splitting reaction is known. Therefore, when the conventional photocatalyst is made to act under sunlight, it is not possible to efficiently convert light energy into chemical energy.

【0007】よって、本発明の目的は、僅か5%しか含
まれない太陽光中の紫外光領域の光を利用するだけでは
なく、紫外光領域の約9倍多く存在する可視光領域の光
に対しても触媒活性を示すとともに、層状構造を有する
光触媒を提供することである。
Therefore, the object of the present invention is not only to utilize the light in the ultraviolet light region of sunlight, which is contained in only 5%, but also to use the light in the visible light region, which is approximately 9 times as much as the ultraviolet light region. It is also to provide a photocatalyst having a layered structure while exhibiting catalytic activity.

【0008】[0008]

【課題を解決するための手段】本発明は、光で水を分解
し、水素と酸素の少なくともどちらか一方を発生させる
複合酸化物から成る可視光領域で触媒活性をもつ光触媒
であって、一般式(I):AB2 3-X X 10-Xで表
され、前記一般式(I)において、Aはアルカリ金属元
素及び水素から成る群から選択された1種以上の元素で
あり、Bはアルカリ土類金属元素を含む2価の元素から
選択された1種以上の元素であり、Cは5価の元素から
選択された1種以上の元素であり、Mは3価の元素から
選択された1種以上の元素であり、xは0<x≦3の任
意の数である、可視光領域で触媒活性をもつ光触媒(請
求項1)である。本発明による光触媒は、その構成元素
中に、可視光を吸収する機能をもつ遷移金属元素Mを含
む。
The present invention relates to a photocatalyst having a catalytic activity in the visible light region, which is composed of a complex oxide that decomposes water by light to generate at least one of hydrogen and oxygen, Formula (I): represented by AB 2 C 3-X M X O 10-X , wherein in the general formula (I), A is one or more elements selected from the group consisting of alkali metal elements and hydrogen. , B is one or more elements selected from divalent elements including alkaline earth metal elements, C is one or more elements selected from pentavalent elements, and M is a trivalent element. Is a photocatalyst having a catalytic activity in the visible light region (claim 1), which is one or more elements selected from, and x is an arbitrary number of 0 <x ≦ 3. The photocatalyst according to the present invention contains, in its constituent elements, a transition metal element M having a function of absorbing visible light.

【0009】[0009]

【発明の実施の形態】本発明の光触媒は、前記一般式
(I):AB2 3-X X 10-Xにおいて遷移金属Mを
含むので、可視光領域の光を吸収する。又、構成元素に
おいて、5価の元素が3価の元素に置換されることによ
る光触媒全体の電荷の補償は酸素で行っているので、元
の層状構造が維持できなくなり崩壊してしまうという問
題は生じない。更に、層状構造をとるので、従来と同様
に層間のアルカリ金属はイオン交換可能であり、酸水溶
液中でイオン交換を行えば層間のアルカリ金属をプロト
ンと交換できる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the photocatalyst of the present invention contains the transition metal M in the above general formula (I): AB 2 C 3-X M X O 10-X , it absorbs light in the visible light region. Further, in the constituent elements, the charge of the entire photocatalyst due to the substitution of the pentavalent element with the trivalent element is compensated by oxygen, so that there is a problem that the original layered structure cannot be maintained and collapses. Does not happen. Further, since it has a layered structure, the interlayer alkali metal can be ion-exchanged as in the conventional case, and the interlayer alkali metal can be exchanged with protons by performing ion exchange in an acid aqueous solution.

【0010】本発明の光触媒は、通常の固相法、すなわ
ち、原料たる各金属成分の酸化物又は炭酸塩や硝酸塩等
の塩類を目的組成比で混合し焼成することで合成する
が、それ以外の湿式法或いは気相法で合成してもかまわ
ない。また、前記一般式(I)においてAが水素の場合
は、まずAがアルカリ金属である一般式(I)の複合酸
化物を合成しておき、その後、この複合酸化物を例えば
硝酸等の酸水溶液中でイオン交換することにより、アル
カリ金属イオンを水素イオンに交換して合成する。もち
ろん、Aが水素以外のアルカリ金属の場合でも、同様に
目的組成の複合酸化物をイオン交換反応で合成すること
ができる。
The photocatalyst of the present invention is synthesized by a usual solid phase method, that is, by mixing salts such as oxides or carbonates or nitrates of each metal component as a raw material at a target composition ratio and calcining, but otherwise. It may be synthesized by the wet method or the gas phase method. When A is hydrogen in the general formula (I), a composite oxide of the general formula (I) in which A is an alkali metal is first synthesized, and then the composite oxide is treated with an acid such as nitric acid. By performing ion exchange in an aqueous solution, the alkali metal ions are exchanged for hydrogen ions to synthesize. Of course, even when A is an alkali metal other than hydrogen, a composite oxide having a desired composition can be similarly synthesized by an ion exchange reaction.

【0011】本発明の光触媒の形状は、光を有効に利用
するために表面積の大きい粒子であることが望ましく、
一般には粒子の大きさは、 0.1〜10μm 好ましくは 0.1
〜 1μm が適当である。このような粒径を得る慣用的な
手段には、例えば、ボールミルによる粉砕がある。更
に、本発明の光触媒に対しても、助触媒であるPtやN
iOの担持等の光触媒製造に通常用いられるような修飾
を行うことができる。又、水分解反応の場となる層間を
有効に利用するために無機物質の柱を立てたり、アルキ
ルアンモニウムのイオン交換で層間距離を広げることに
より、触媒活性を高めることもできる。
The shape of the photocatalyst of the present invention is preferably a particle having a large surface area in order to effectively utilize light,
Generally, the particle size is from 0.1 to 10 μm, preferably 0.1.
~ 1 µm is appropriate. Conventional means for obtaining such a particle size include, for example, grinding with a ball mill. Further, the photocatalyst of the present invention also has a promoter such as Pt or N
Modifications such as iO loading that are commonly used in photocatalyst production can be made. Further, the catalytic activity can be enhanced by erecting a pillar of an inorganic substance in order to effectively use the interlayer that is a site of the water splitting reaction, or by widening the interlayer distance by ion exchange of alkylammonium.

【0012】本発明の光触媒で水の水分解反応を行う際
に、水は純水に限らず、一般の水の分解反応によく用い
られるように、アルコールや銀イオン等の犠牲試薬を用
いても一向に差し支えないし、炭酸塩や炭酸水素塩等の
塩類を混ぜた水を用いてもよい。以下、実施例により本
発明を具体的に説明するが、本発明はこれに限られたも
のではない。
When carrying out the water-splitting reaction of water with the photocatalyst of the present invention, water is not limited to pure water, but sacrificial reagents such as alcohol and silver ions are used so that water is often used in the water splitting reaction. However, water in which salts such as carbonate and hydrogen carbonate are mixed may be used. Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

【0013】[0013]

【実施例】【Example】

(光触媒の製造方法)まず、固相法により、CsCa2
Nb2 NiO9 を合成する。Cs2 CO3 を9.16g、C
aCO3 を 11.25g、Nb2 5 を14.94 g、Ni2
3 を4.65gをそれぞれ白金ルツボに採取し、1200℃で10
時間焼成を行った。焼成後この焼成物を乳鉢で10μm 以
下に粉砕し、得られた粒子を粉末X線回折により同定し
たところ、目的物質の構造となっていた。
(Method for producing photocatalyst) First, by the solid phase method, CsCa 2
Nb 2 NiO 9 is synthesized. 9.16 g of Cs 2 CO 3 , C
aCO 3 11.25 g, Nb 2 O 5 14.94 g, Ni 2 O
4.65 g of 3 was sampled in a platinum crucible and stored at 1200 ° C for 10
The firing was performed for a time. After firing, this fired product was crushed to 10 μm or less in a mortar, and the particles obtained were identified by powder X-ray diffraction, and as a result, the structure of the desired substance was obtained.

【0014】更に、この複合酸化物 5gを5規定の硝酸
100ml中で3日間撹拌し、プロトン交換を行い、プロト
ン交換体を得た。 (触媒活性の評価)水分解用の光触媒の触媒活性の評価
は、閉鎖循環系触媒反応装置を用い、犠牲試薬としてメ
タノールを添加したメタノール水溶液から水素を生成さ
せることで行った。上記の方法で製造したプロトン交換
体1gをメタノール水溶液 350ml(水が 300ml、メタノー
ルが50ml)中に入れ、マグネチックスターラーで攪拌し
ながら外部から光を照射した。光源に 500Wキセノンラ
ンプを用い、 420nm以下の波長の光はフィルターでカッ
トした。反応管の材質としてパイレックス製のものを用
いた。又、生成した水素の検出及び定量はガスクロマト
グラフィーで行った。
Further, 5 g of the composite oxide is mixed with 5 N nitric acid.
The mixture was stirred in 100 ml for 3 days to perform proton exchange to obtain a proton exchanger. (Evaluation of catalytic activity) The catalytic activity of the photocatalyst for water splitting was evaluated by using a closed-circulation catalytic reactor and generating hydrogen from a methanol aqueous solution to which methanol was added as a sacrificial reagent. 1 g of the proton exchanger produced by the above method was placed in 350 ml of an aqueous methanol solution (300 ml of water, 50 ml of methanol), and irradiated with light from outside while stirring with a magnetic stirrer. A 500 W xenon lamp was used as a light source, and light with a wavelength of 420 nm or less was cut by a filter. As the material of the reaction tube, one made by Pyrex was used. The detection and quantification of the generated hydrogen were performed by gas chromatography.

【0015】測定の結果、水素の発生が認められ、水素
定常活性は 0.6μmol/hourであった。このように、短波
長の光をカットしても触媒活性を示した。
As a result of the measurement, generation of hydrogen was recognized, and the steady hydrogen activity was 0.6 μmol / hour. Thus, the catalytic activity was exhibited even when the light of short wavelength was cut.

【0016】[0016]

【発明の効果】以上の通り、本発明の光触媒は、その構
成元素中に遷移金属元素を含むので、可視光領域の光で
も触媒活性を示す。又、層状構造の層間を水分解反応の
場として利用できるので、より多くの水素を発生させる
ことができる。従って、本発明によれば、太陽光スペク
トル中に多く含まれる可視光も水分解反応に利用するこ
とができるので、紫外光領域の光にしか触媒活性を示さ
ない光触媒よりも太陽光エネルギーの使用効率を格段に
向上させることができる。
As described above, since the photocatalyst of the present invention contains a transition metal element in its constituent elements, it exhibits catalytic activity even in light in the visible light region. Moreover, since the layers of the layered structure can be used as a field for the water splitting reaction, more hydrogen can be generated. Therefore, according to the present invention, visible light contained in a large amount in the sunlight spectrum can also be utilized for the water-splitting reaction, so that the use of solar energy rather than the photocatalyst which shows a catalytic activity only for light in the ultraviolet region. The efficiency can be significantly improved.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光で水を分解し、水素と酸素の少なくと
もどちらか一方を発生させる複合酸化物から成る可視光
領域で触媒活性をもつ光触媒であって、 一般式(I):AB2 3-X X 10-Xで表され、前記
一般式(I)において、Aはアルカリ金属元素及び水素
から成る群から選択された1種以上の元素であり、Bは
アルカリ土類金属元素を含む2価の元素から選択された
1種以上の元素であり、Cは5価の元素から選択された
1種以上の元素であり、Mは3価の元素から選択された
1種以上の元素であり、xは0<x≦3の任意の数であ
ることを特徴とする、可視光領域で触媒活性をもつ光触
媒。
1. A photocatalyst having a catalytic activity in the visible light region, which comprises a composite oxide that decomposes water by light to generate at least one of hydrogen and oxygen, and has a general formula (I): AB 2 C. Represented by 3-X M X O 10-X , in the general formula (I), A is one or more elements selected from the group consisting of alkali metal elements and hydrogen, and B is an alkaline earth metal element. Is one or more elements selected from divalent elements including, C is one or more elements selected from pentavalent elements, and M is one or more elements selected from trivalent elements. A photocatalyst having catalytic activity in the visible light region, which is an element and x is an arbitrary number of 0 <x ≦ 3.
【請求項2】 前記MがFe、Ni、Cr、Co、Mn
から選択された1種以上の元素であることを特徴とす
る、請求項1に記載の可視光領域で触媒活性をもつ光触
媒。
2. The M is Fe, Ni, Cr, Co, Mn
The photocatalyst having a catalytic activity in the visible light region according to claim 1, wherein the photocatalyst is one or more elements selected from the following.
【請求項3】 前記AがH、Na、K、Rb、Csから
選択された1種以上の元素であることを特徴とする、請
求項1に記載の可視光領域で触媒活性をもつ光触媒。
3. The photocatalyst having a catalytic activity in the visible light region according to claim 1, wherein the A is one or more elements selected from H, Na, K, Rb and Cs.
【請求項4】 前記BがCa、Sr、Ba、Pbから選
択された1種以上の元素であることを特徴とする、請求
項1に記載の可視光領域で触媒活性をもつ光触媒。
4. The photocatalyst having a catalytic activity in the visible light region according to claim 1, wherein the B is one or more elements selected from Ca, Sr, Ba, and Pb.
【請求項5】 前記CがV、Nb、Taから選択された
1種以上の元素であることを特徴とする、請求項1に記
載の可視光領域で触媒活性をもつ光触媒。
5. The photocatalyst having a catalytic activity in the visible light region according to claim 1, wherein the C is one or more elements selected from V, Nb and Ta.
JP8055134A 1996-03-12 1996-03-12 Photocatalyst having catalytic activity in visible light region Pending JPH09248465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8055134A JPH09248465A (en) 1996-03-12 1996-03-12 Photocatalyst having catalytic activity in visible light region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8055134A JPH09248465A (en) 1996-03-12 1996-03-12 Photocatalyst having catalytic activity in visible light region

Publications (1)

Publication Number Publication Date
JPH09248465A true JPH09248465A (en) 1997-09-22

Family

ID=12990320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8055134A Pending JPH09248465A (en) 1996-03-12 1996-03-12 Photocatalyst having catalytic activity in visible light region

Country Status (1)

Country Link
JP (1) JPH09248465A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
WO2010104146A1 (en) 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate
WO2011093495A1 (en) 2010-02-01 2011-08-04 旭化成イーマテリアルズ株式会社 Coating material and layered body
EP2816087A1 (en) 2005-12-13 2014-12-24 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
JP2015112537A (en) * 2013-12-11 2015-06-22 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and optical sensor using the same
JP2016159182A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
JP2016159183A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
WO2017159564A1 (en) 2016-03-14 2017-09-21 旭化成株式会社 Highly durable antifogging coating film and coating composition
WO2019163918A1 (en) 2018-02-23 2019-08-29 旭化成株式会社 High-durability antifogging coating film and coating composition
CN113800483A (en) * 2021-09-14 2021-12-17 中国科学院深圳先进技术研究院 Nitrogen oxide nanosheet and preparation method thereof, photocatalyst and photocatalytic antibacterial agent

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752217A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
EP2816087A1 (en) 2005-12-13 2014-12-24 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
US9630208B2 (en) 2009-03-11 2017-04-25 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for manufacturing the laminate
WO2010104146A1 (en) 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate
US8916266B2 (en) 2009-03-11 2014-12-23 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for production of laminate
US9833811B2 (en) 2009-03-11 2017-12-05 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate and process for manufacturing the laminate
WO2011093495A1 (en) 2010-02-01 2011-08-04 旭化成イーマテリアルズ株式会社 Coating material and layered body
JP2015112537A (en) * 2013-12-11 2015-06-22 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and optical sensor using the same
JP2016159183A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
JP2016159182A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
WO2017159564A1 (en) 2016-03-14 2017-09-21 旭化成株式会社 Highly durable antifogging coating film and coating composition
WO2019163918A1 (en) 2018-02-23 2019-08-29 旭化成株式会社 High-durability antifogging coating film and coating composition
CN113800483A (en) * 2021-09-14 2021-12-17 中国科学院深圳先进技术研究院 Nitrogen oxide nanosheet and preparation method thereof, photocatalyst and photocatalytic antibacterial agent

Similar Documents

Publication Publication Date Title
Hao et al. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis
JP5594800B2 (en) Catalyst for producing thermochemical fuel and method for producing thermochemical fuel
Xiong et al. Strong structural modification of Gd to Co3O4 for catalyzing N2O decomposition under simulated real tail gases
CN107262085B (en) Preparation method of bismuth/potassium calcium niobate plasma nanocomposite
EP2658646B1 (en) Catalyst for Decomposition of Sulfur Trioxide and Hydrogen Production Process
JPH09248465A (en) Photocatalyst having catalytic activity in visible light region
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
CN103170323A (en) Titanate photocatalyst A2TiO4 and preparation method thereof
JPH10244165A (en) Photocatalyst having catalytic activity in visible light range
CN103191714B (en) Layered composite oxide photocatalyst Sr2KM3O10 and preparation method thereof
JPH0889804A (en) Photocatalyst
JPH0889799A (en) Photocatalyst
JPH0889800A (en) Photocatalyst
CN103191716A (en) Corundum structured composite oxide photocatalyst Mg4Nb2-xTaxO9 and preparation method thereof
JP3735711B2 (en) Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JPH1085607A (en) Photocatalyst
JPH02172535A (en) New photolysis catalyst for water
JPH1015394A (en) Photocatalyst
JP3718710B2 (en) Visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
Zou et al. Effect of Ni substitution on the structure and photocatalytic activity of InTaO 4 under visible light irradiation
JPH0970533A (en) Photocatalyst
JPH10244164A (en) Photocatalyst having catalytic activity in visible light range
CN103418368B (en) Visible-light responsive photocatalyst Sr3Ce2Ti6O19 and preparing method thereof
JPH11216366A (en) Photocatalyst
JPH10244163A (en) Photocatalyst having catalytic activity in visible light range