JP3735711B2 - Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method - Google Patents

Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method Download PDF

Info

Publication number
JP3735711B2
JP3735711B2 JP2002059804A JP2002059804A JP3735711B2 JP 3735711 B2 JP3735711 B2 JP 3735711B2 JP 2002059804 A JP2002059804 A JP 2002059804A JP 2002059804 A JP2002059804 A JP 2002059804A JP 3735711 B2 JP3735711 B2 JP 3735711B2
Authority
JP
Japan
Prior art keywords
photocatalyst
hydrogen
oxide semiconductor
visible light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002059804A
Other languages
Japanese (ja)
Other versions
JP2003251197A (en
Inventor
金花 葉
明行 松下
江 殷
光丈 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002059804A priority Critical patent/JP3735711B2/en
Publication of JP2003251197A publication Critical patent/JP2003251197A/en
Application granted granted Critical
Publication of JP3735711B2 publication Critical patent/JP3735711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、元素周期表中Y或いはランタノイド元素とバナジウム(V)を含みI41/amd空間群に属すジルコンタイプ結晶構造を有する複合酸化物半導体で、太陽光などに含まれる紫外線および可視光線を効率よく吸収する高活性な水素製造用光触媒、水分解用光触媒及び有害化学物質の分解用光触媒に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
地球温暖化が世界的な問題となっている。大気中の二酸化炭素がいまのペースで増え続けると2030年には、その濃度は産業革命以前の大気中濃度の2倍になる、と予想されている。その温室効果により、極地方の温度は約14度上昇し、海面が60cm上昇すると地球の生態系や気候変動に大きな悪影響を及ぼすとされている。各国の具体的な二酸化炭素排出量削減の数値が検討され、日本は2008年から2012年の平均排出量を1990年レベルより少なくとも6%削減するよう目標が設定された。人類が21世紀以降においても持続的な発展を続けるためには、二酸化炭素や環境汚染物質を排出しないクリーンエネルギーの開発が必須となっている。また、既に破壊しつつある環境を浄化することが必要不可欠である。
【0003】
水素は、熱効率がガソリンの3倍と大きい上に燃えて水に帰し、その際有害物質など一切発生しないまさに究極的な燃料と考えられている。実際、水素を燃料とした燃料電池が競って研究され、近いうちに実用化される勢いである。また、水素自動車や水素タービンなどが、有毒物質を発生しないクリーンなシステムとして、開発が企業を含めて緊急に進められている。そして、水素の合成法は、それらすべての元となるため緊急な課題となっている。現在、水素の殆どは石油や天然ガスなどからのリフォーミング反応、或いは水の電気分解から生成されるが、それは同時に温暖化の原因となる二酸化炭素を発生するか、貴重なエネルギー源を使ってしまうことになる。
【0004】
一方、一年間で地上に届く太陽エネルギーは人類の年間エネルギー消費量の1万倍に相当するほど莫大である。太陽エネルギーの利用法として、太陽電池や太陽熱利用システムが開発されているが、その利用率はまだまだ不十分である上、大規模のものが困難であり、コストが高いなど問題点が多い。
太陽光の有効利用を実現するためには、無尽蔵な太陽光と水から、可視光半導体光触媒を用いて、クリーンな燃料となる水素と酸素を直接製造することができる人工光合成技術が考えられる。
【0005】
光触媒は、そのバンドギャップ以上のエネルギーを吸収すると、正孔と電子を生成し、これらがそれぞれ水と酸化反応、還元反応を行い、酸素、水素を発生させる。この光触媒の実用化を考えた場合、光源として太陽光の利用は不可欠である。地表に降り注ぐ太陽光は、可視光である波長500nm付近に放射の最大強度をもっており、波長400〜750nmの可視光領域のエネルギー量は全太陽光の約43%である。一方、波長400nm以下の紫外線領域では5%にも満たない。従って、太陽光スペクトルを効率よく利用するためには、可視光の光にも触媒活性をもつ光触媒が望まれている。
【0006】
しかし、従来の多くの半導体光触媒はエネルギーの高い紫外光を照射したときには水素を生成できるが、可視光応答性の半導体光触媒による水素製造の検討例は非常に限られており、かつ活性も低かった。太陽光を利用するためには可視光の有効利用が可能な新規な光触媒の開発が必要不可欠である。
【0007】
また近年、光触媒の応用研究として、光触媒を有害化学物質の分解に使用することがその分野で広く検討されている。水中や大気中の農薬や悪臭物質などの有機物の分解や触媒を塗布した固体表面のセルフクリーニングなどの応用例が研究、提言されているが、その大部分は二酸化チタンを用いたものであり、しかも可視光線ではほとんど機能しないものであった。
したがって、上記の応用研究おいて、可視光が利用できる光触媒を開発し、使用することができれば効率が向上すると期待できる。その時重要なのが伝導帯の準位である。酸化物半導体の価電子帯の正孔は酸化能力が非常に強く、水や多くの有機物といった電子供与体を酸化することができる。その時、同時に生成した伝導帯の電子は空気中の酸素を還元することで消費される。つまり、伝導帯準位が酸素の還元準位より負でなくてはならない。水素を発生できる光触媒は酸素を還元できるポテンシャルを持つ新規な均一系の光触媒で、上記の分野への応用が期待できる。
【0008】
【発明が解決しようとする課題】
本発明は太陽光などに含まれる紫外線を効率よく吸収する光触媒を提供しようとするものであり、この触媒を使用することによって、有害物質や水素含有化合物に光を照射し、該有害物質あるいは水素含有化合物を分解し、以て、有害物質の無害化処理方法或いは水素の生成、製造方法を提供しようと云うものである。
【0009】
【課題を解決するための手段】
そのため本発明者等においては、鋭意研究した結果、上記の目的は、下記(1)〜(10)手段により解決し、達成しうることに成功した。
【0010】
(1)一般式(I):RVO4;で表されるバナジウム(V)含有複合酸化物半導体からなる光触媒。
式中、RはY元素或いはランタノイド元素である。Rのモル数がVのモル数に等しい稀土類複合酸化物半導体を使用し、この成分を含んでいることを特徴とするものであり、これによって解決を図るものである。
(2)前記RがY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu からなる群から選択された少なくとも1種の元素であることを特徴とする、(1)記載の光触媒。
【0011】
(3)一般式(I)で表される稀土類複合酸化物半導体はI41/amd空間群に属す
ジルコンタイプ結晶構造を有する複合酸化物半導体である、(1)又は(2)に記載の光触媒。
(4)Pt、NiO x (xは0を超え、1以下の値を表す。)RuO 2 から選ばれた1種又は2種以上の成分からなる助触媒を含んでいることを特徴とする、(1)ないし(3)の何れか1項に記載の光触媒。
(5)前記(1)ないし(4)の何れか1項に記載の複合酸化物半導体からなる水素製造用光触媒。
(6)前記(5)に記載の水素製造用光触媒の存在下、水素含有化合物に紫外線および可視光線を含む光を照射することを特徴とする水素の製造方法。
【0012】
(7)前記(1)ないし(4)の何れか1項に記載の複合酸化物半導体からなる水分解用光触媒。
(8)前記(7)に記載の水分解用光触媒の存在下、水に紫外線および可視光線を含む光を照射することを特徴とする水素の製造方法。
(9)前記(1)ないし(4)の何れか1項に記載の複合酸化物半導体からなる有害化学物質を分解用光触媒。
(10)前記(9)に記載の有害化学物質を分解用光触媒の存在下、有害化学物質に紫外線および可視光線を含む光を照射することを特徴とする有害化学物質を分解する方法。
【0013】
【発明の実施の形態】
以下、本発明を具体的に説明するが、これらは何れも本発明の具体的な一つの実施例を開示しているものであって、本発明はこれに限られるものではない。
【0014】
本発明の請求項第1項に記載した酸化物RVO4において、式中、RはY元素或いはランタノイド元素である。Rのモル数がVのモル数に等しい複合酸化物半導体を用いた光触媒。化学式の酸素は形式上4個で表記されるが、実際に調製した結果得られた酸素数は酸素欠陥などがあるので正確に4である必要はない。基本骨格は一般式R3+5+4で表されるI41/amd空間群(“International Tables for Crystallography”、vol.A、p.472、Kluwer Academic Publishers、1995)に属すジルコンタイプ結晶構造を持つ化合物であり、その結晶構造を保てばよい。
【0015】
本発明の複合酸化物半導体は、通常の固相反応法、すなわち原料となる各金属成分の酸化物を目的組成の比率で混合し、常圧下空気中で焼成することで合成することもできる。昇華し易い原料では少し多めに加える必要がある。また、金属アルコキシドや金属塩を原料とした各種ゾルゲル法、共沈法、錯体重合法など様々な方法も用いられる。その中には酸化物前駆体を調製し、焼成することで合成することも含むものである。
【0016】
本発明の光触媒の形状は、光を有効に利用するために微粒子で表面積の大きいことが望ましい。固相反応法で調製した酸化物は粒子が大きく表面積が小さいが、ボールミルなどで粉砕を行うことで粒子径を小さくできる。一般には粒子の大きさは10nm〜200μm、好ましくは50μm以下である。また微粒子を成型して板状として使用することもできる。或いは他の材質に薄膜状にコーティングして使用することもできる。
【0017】
更に、本発明の半導体に対しても、助触媒であるPtなどの貴金属、Niなどの遷移金属、NiOX(xは0を超え、1以下の値を表す。)やIrO2、RuO2等酸化物の担持等光触媒製造に通常用いられるような修飾を行うことができる。
担持方法は含浸法や光電着法などで行うことが出来る。含浸法では、光触媒活性種の塩化物、硝酸塩等の化合物の水溶液を用いて半導体に含浸させた後、100〜200℃で約2〜5時間乾燥して、800℃以下、好ましいのは200〜500℃でかつ還元性雰囲気及び/又は酸化雰囲気下で2〜5時間焼成する。助触媒量は0.01〜10wt%、好ましくは0.1〜5wt%である。
【0018】
また、水の分解反応を行う際に用いる反応溶液は、純水に限らず、通常、水の分解反応によく用いられるように、炭酸塩や炭酸水素塩、ヨウ素塩、臭素塩等の塩類を混ぜた水を用いてもよい。そして、上記水溶液に本発明の光触媒を添加する。触媒の添加量は、基本的に入射した光が効率よく吸収できる量を選ぶ。照射面積25cm2に対して0.05〜10g、好ましくは0.2〜3gである。このように光分解用触媒を添加した水溶液に光を照射することによって水が分解し、水素が発生する。照射する光の波長は半導体の吸収がある領域の波長の光を含むことが必要である。本発明では太陽光を照射してもよい。
【0019】
本発明の光触媒は、水の分解だけでなく多くの光触媒反応に応用できる。
たとえば有機物の分解の場合、アルコールや農薬、悪臭物質などは一般に電子供与体として働き、正孔によって酸化分解されるとともに、電子によって水素が発生するか、酸素が還元される。反応形態は、有機物を含む水溶液に触媒を懸濁して光照射しても良いし、触媒を基板に固定しても良い。悪臭物質の分解のように気相反応でも良い。
【0020】
(実施例)
以下、本発明を詳細に説明する。以下の実施例においては、Y元素とV元素を用い、YVO4を合成した。合成は、各成分の酸化物を化学量論比で調合し、固相法により行った。
【0021】
実施例1
Y元素とV元素を用い、YVO4を合成した。合成は、1.0molY23 と1.0molV25を金属当たりの化学量論比で調合した。(図1)
例えば、10gYVO4を合成の場合はY23を5.539gとV25を4.461gそれぞれ秤量した。これをアルミナるつぼに入れて、空気中常気圧下で電気炉中で700℃、12時間焼結した。焼成終了後、この焼成物を乳鉢で10mm以下の大きさに粉砕した。XRDとSEM−EDSを用いて触媒の化学組成と結晶構造を調べた。リートベルト構造解析により、この系は正方晶系に属し、空間群I41/amd、格子定数a=0.7123、c=0.6292nm、ジルコンタイプ結晶構造であることが判明した。紫外−可視吸収スペクトル測定により、本光触媒は紫外線領域から上限600nmの可視光領域まで吸収を示し、バンドキャップが2.1eV以下と見積もることができ、可視光の応答性を有することがわかった。
上記酸化物半導体の1.0wt%NiOX担持はNi(NO32水溶液の含侵、200℃で5時間乾燥して、500℃で水素還元、さらに200℃で再酸化によって行った。
1gのNiOX/YVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素と酸素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。
その結果、水素が300μmol/h、酸素が150μmol/hの速度で定常的に発生することがわかった。
【0022】
実施例2
実施例1において、担持金属をNiOXの代わりにRuO2を用いた。YVO4半導体の1.0wt%RuO2担持はRuCl4水溶液の含侵、200℃で5時間乾燥して、500℃で酸化雰囲気下で2時間焼成行った。1gのRuO2/YVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。
光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素と酸素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。この場合も水素が150μmol/h、酸素が75μmol/hの速度で定常的に発生することがわかった。
【0023】
実施例3
実施例1において、担持金属をNiOXの代わりにPtを用いた。酸化物に対して0.1wt%相当の白金を塩化白金酸水溶液で添加し、光電着により酸化物に担持させた。1gのRuO2/YVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素と酸素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。
【0024】
実施例4
実施例1において、担持金属の無い触媒を用いた。1gのYVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。この場合でも定常的な水素発生が認められた。
以上、実施例1から実施例4までの結果をみると、YVO4系半導体光触媒については、担持金属を有する触媒(実施例1、実施例2、実施例3)は、担持金属の無い触媒(実施例4)に比し、光触媒性能において優れていることが分かった。また、担持している金属成分によりその光触媒性能には大きな差異があることも分かった。このYVO4系半導体光触媒は、1.0wt%NiOX担持した配合設計の光触媒において、最も活性が高かった。
【0025】
実施例5
有機物の分解が光照射で効率良く進行するかを確認するため、水溶液中のメタノールの分解を行った。触媒はPt(0.1wt%)を担持した上記酸化物半導体を用いた。1gの触媒を純水320mlとメタノール50mlの混合液に懸濁し光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素の検出及び定量はガスクロマトグラフィーで行った。その結果、水素が1.5mmol/h定常的に発生した。酸素は発生しなかった。これは正孔によりメタノールが酸化分解される一方で、電子が水を還元し水素を発生する反応が光照射下で進行していることを示している。
【0026】
実施例6
Gd元素とV元素を用い、GdVO4を合成した。合成は、1.0molGd23と1.0molV25を金属当たりの化学量論比で調合した(図1)。
例えば、10gGdVO4を合成の場合はGd23を6.659gとV25を3.341gそれぞれ秤量した。試料作製は実施例1と同じである。この焼成物を乳鉢で10μm以下の大きさに粉砕した。XRDとSEM−EDSを用いて触媒の化学組成と結晶構造を調べた。リートベルト構造解析により、この系は正方晶系に属し、空間群I41/amd、ジルコンタイプ結晶構造であることが判明した。紫外−可視吸収スペクトル測定により、本光触媒は紫外線領域から上限600nmの可視光領域まで吸収を示し、バンドキャップが2.1eV以下と見積もることができ、可視光の応答性を有することがわかった。
上記酸化物半導体の1.0wt%NiOX担持はNi(NO32水溶液の含侵、200℃で5時間乾燥して、500℃で水素還元、さらに200℃で再酸化によって行った。
1gのNiOX/GdVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素と酸素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。
その結果、水素が300μmol/h、酸素が150μmol/hの速度で定常的に発生することがわかった。
【0027】
実施例7
実施例6において、担持金属をNiOXの代わりにRuO2を用いた。
GdVO4半導体の1.0wt%RuO2担持はRuCl4水溶液の含侵、200℃で5時間乾燥して、500℃で酸化雰囲気下で2時間焼成行った。1gのRuO2/GdVO4を純水370mlに懸濁し水の光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素と酸素の検出及び定量はガスクロマトグラフィーで行った。その結果を図1に示す。この場合も水素が250μmol/h、酸素が125μmol/hの速度で定常的に発生することがわかった。
【0028】
実施例8
有機物の分解が光照射で効率良く進行するかを確認するため、水溶液中のメタノールの分解を行った。触媒はPt(0.1wt%)を担持した上記酸化物半導体を用いた。1gの触媒を純水320mlとメタノール50mlの混合液に懸濁し光分解反応をさせた。閉鎖循環系触媒反応装置を用い、マグネチックスターラーで攪拌しながら外部から光を照射した。光源には 400W高圧水銀ランプを用い、反応セルとしては石英ガラス製のものを用いた。生成した水素の検出及び定量はガスクロマトグラフィーで行った。その結果、水素が2mmol/h定常的に発生した。酸素は発生しなかった。これは正孔によりメタノールが酸化分解される一方で、電子が水を還元し水素を発生する反応が光照射下で進行していることを示している。
【0029】
以上の結果を、図1にまとめて示す。すなわち、使用された光触媒成分、担持助触媒の成分とその有無、反応の種類(反応目的)、用いた光源、単位時間あたりの水素ガスの発生量、等の関係を、図1に示しているものである。
【0030】
【発明の効果】
以上の通り、一般式(I);RVO4(ただし、RはY元素或いはランタノイド元素を表す。)で表される本発明のI41/amd空間群に属するジルコンタイプ結晶構造を持つRVO4酸化物は、光応答できる波長領域が上限600nmの可視光まで広がり、これまでの光触媒が、紫外光領域でのみ機能していたことを考えると、有効利用できる波長領域を大きく広げ、しかも太陽エネルギーの大部分の主要な領域を占める光に対して、機能し得ることから、その意義は極めて大きい。また、光励起で生じたホール及びエレクトロンが速やかに触媒の表面に移動でき、ホールとエレクトロンの再結合の確率が減少し、光に対して高い触媒活性を示す。本発明によれば、可視光エネルギーを利用して水を分解して水素を生成できる。将来的には人工池に光触媒を敷き詰めれば、無尽蔵の太陽光で効率よく水素が大量に製造できる可能性があり、エネルギー問題の克服につながると言える。また、これらの光触媒を水の分解反応でなく他の化学反応に使用しても一向にかまわない。例えば有機物の分解反応や金属イオンの還元反応に応用することができる。環境浄化などにも大きく寄与できる。以上本発明の稀土類化合物光触媒は、光の広い領域に対して活性を有すること如上の通りであり、その特性の故、前示使用例以外にも多様な用途に使われることが期待され、今後その果たす役割は、非常に大きいと考えられる。
【図面の簡単な説明】
【図1】本発明の可視光応答性稀土類化合物光触媒を用いた水及びメタノールの分解反応による水素の発生量を示す図
[0001]
BACKGROUND OF THE INVENTION
The present invention is a composite oxide semiconductor having a zircon-type crystal structure that contains Y or a lanthanoid element in the periodic table and vanadium (V) and belongs to the I4 1 / amd space group. The present invention relates to a highly active photocatalyst for hydrogen production that absorbs efficiently, a photocatalyst for water decomposition, and a photocatalyst for decomposition of harmful chemical substances.
[0002]
[Prior art and problems to be solved by the invention]
Global warming has become a global problem. If carbon dioxide in the atmosphere continues to increase at the current pace, it is expected that in 2030, its concentration will double that of the pre-industrial level. Due to the greenhouse effect, the temperature in the polar region rises by about 14 degrees, and if the sea level rises by 60 cm, it is said that it will have a serious adverse effect on the earth's ecosystem and climate change. Specific carbon dioxide emission reduction figures for each country were examined, and Japan set a target of reducing average emissions from 2008 to 2012 by at least 6% from the 1990 level. In order for mankind to continue to develop after the 21st century, it is essential to develop clean energy that does not emit carbon dioxide or environmental pollutants. It is also essential to purify the environment that is already being destroyed.
[0003]
Hydrogen is considered to be the ultimate fuel that has three times the thermal efficiency of gasoline and burns back to water, producing no harmful substances. In fact, hydrogen-fueled fuel cells are being researched and put to practical use in the near future. In addition, hydrogen automobiles and hydrogen turbines are urgently being developed by companies and other companies as clean systems that do not generate toxic substances. And the synthesis method of hydrogen is an urgent problem because it is the source of all of them. Currently, most of the hydrogen is generated from reforming reactions from oil and natural gas, or from electrolysis of water, which simultaneously generates carbon dioxide, which causes global warming, or uses valuable energy sources. Will end up.
[0004]
On the other hand, the amount of solar energy that reaches the ground in one year is enormous, equivalent to 10,000 times the annual energy consumption of mankind. As solar energy utilization methods, solar cells and solar heat utilization systems have been developed, but their utilization rate is still insufficient, and large-scale ones are difficult and cost is high.
In order to realize the effective use of sunlight, an artificial photosynthesis technology that can directly produce hydrogen and oxygen as clean fuels from inexhaustible sunlight and water using a visible light semiconductor photocatalyst can be considered.
[0005]
When the photocatalyst absorbs energy greater than its band gap, it generates holes and electrons, which respectively undergo oxidation and reduction reactions with water to generate oxygen and hydrogen. Considering the practical application of this photocatalyst, it is essential to use sunlight as a light source. Sunlight falling on the surface of the earth has a maximum intensity of radiation in the vicinity of a wavelength of 500 nm that is visible light, and the amount of energy in the visible light region having a wavelength of 400 to 750 nm is about 43% of the total sunlight. On the other hand, it is less than 5% in the ultraviolet region with a wavelength of 400 nm or less. Therefore, in order to efficiently use the sunlight spectrum, a photocatalyst having catalytic activity for visible light is desired.
[0006]
However, many conventional semiconductor photocatalysts can produce hydrogen when irradiated with high-energy ultraviolet light, but the examples of hydrogen production using visible light-responsive semiconductor photocatalysts are very limited and their activity is low. . In order to use sunlight, it is essential to develop a new photocatalyst that can effectively use visible light.
[0007]
In recent years, as an applied study of photocatalysts, the use of photocatalysts for the decomposition of harmful chemical substances has been widely studied in the field. Application examples such as decomposition of organic substances such as agricultural chemicals and malodorous substances in the water and air and self-cleaning of solid surfaces coated with catalysts have been researched and proposed, most of which are using titanium dioxide, Moreover, it hardly functioned with visible light.
Therefore, in the above applied research, if a photocatalyst that can use visible light is developed and used, it can be expected that the efficiency will be improved. What is important at that time is the level of the conduction band. Holes in the valence band of an oxide semiconductor have a very strong oxidizing ability and can oxidize electron donors such as water and many organic substances. At that time, electrons generated in the conduction band are consumed by reducing oxygen in the air. That is, the conduction band level must be more negative than the oxygen reduction level. A photocatalyst capable of generating hydrogen is a novel homogeneous photocatalyst having a potential to reduce oxygen, and can be expected to be applied to the above-mentioned fields.
[0008]
[Problems to be solved by the invention]
The present invention is intended to provide a photocatalyst that efficiently absorbs ultraviolet rays contained in sunlight and the like. By using this catalyst, the harmful substance or hydrogen-containing compound is irradiated with light, and the harmful substance or hydrogen It is intended to provide a method for detoxifying harmful substances or producing and producing hydrogen by decomposing contained compounds.
[0009]
[Means for Solving the Problems]
Therefore, as a result of intensive studies, the inventors have succeeded in solving and achieving the above object by the following means (1) to (10).
[0010]
(1) A photocatalyst comprising a vanadium (V) -containing composite oxide semiconductor represented by the general formula (I): RVO 4 ;
In the formula, R is a Y element or a lanthanoid element. A rare earth complex oxide semiconductor in which the number of moles of R is equal to the number of moles of V is used, and this component is included, thereby solving the problem.
(2) R is at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The photocatalyst according to (1), characterized in that it exists.
[0011]
(3) The rare earth complex oxide semiconductor represented by the general formula (I) is a complex oxide semiconductor having a zircon-type crystal structure belonging to the I 4 1 / amd space group, according to (1) or (2) photocatalyst.
(4) Pt, NiO x (x represents a value of more than 0 and 1 or less) comprising a promoter composed of one or more components selected from RuO 2 , The photocatalyst according to any one of (1) to (3).
(5) A photocatalyst for hydrogen production comprising the composite oxide semiconductor according to any one of (1) to (4).
(6) A method for producing hydrogen, comprising irradiating a hydrogen-containing compound with light containing ultraviolet rays and visible light in the presence of the photocatalyst for hydrogen production according to (5).
[0012]
(7) A photocatalyst for water splitting comprising the composite oxide semiconductor according to any one of (1) to (4).
(8) A method for producing hydrogen, wherein the water is irradiated with light containing ultraviolet rays and visible light in the presence of the photocatalyst for water splitting according to (7).
(9) A photocatalyst for decomposing a harmful chemical substance comprising the composite oxide semiconductor according to any one of (1) to (4).
(10) A method for decomposing a harmful chemical substance, comprising irradiating the hazardous chemical substance with light containing ultraviolet rays and visible light in the presence of a photocatalyst for decomposing the hazardous chemical substance according to (9).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail, but these all disclose one specific embodiment of the present invention, and the present invention is not limited to this.
[0014]
In the oxide RVO 4 according to claim 1 of the present invention, R is a Y element or a lanthanoid element. A photocatalyst using a complex oxide semiconductor in which the number of moles of R is equal to the number of moles of V. Although oxygen in the chemical formula is represented by four in terms of form, the number of oxygen obtained as a result of actual preparation does not need to be exactly 4 because there are oxygen defects and the like. The basic skeleton is a zircon type crystal belonging to the I4 1 / amd space group represented by the general formula R 3+ V 5+ O 4 (“International Tables for Crystallography”, vol. A, p. 472, Kluwer Academic Publishers, 1995). It is a compound having a structure, and its crystal structure may be maintained.
[0015]
The composite oxide semiconductor of the present invention can also be synthesized by a normal solid phase reaction method, that is, by mixing oxides of respective metal components as raw materials in a ratio of a target composition and firing in air under normal pressure. It is necessary to add a little more in the raw material which is easy to sublimate. Various methods such as various sol-gel methods, coprecipitation methods, and complex polymerization methods using metal alkoxides and metal salts as raw materials are also used. Among them, an oxide precursor is prepared and synthesized by firing.
[0016]
The shape of the photocatalyst of the present invention is preferably fine particles and has a large surface area in order to effectively use light. Although the oxide prepared by the solid phase reaction method has large particles and a small surface area, the particle diameter can be reduced by grinding with a ball mill or the like. In general, the size of the particles is 10 nm to 200 μm, preferably 50 μm or less. Further, fine particles can be molded and used as a plate. Alternatively, other materials can be coated in a thin film.
[0017]
Further, for the semiconductor of the present invention, a cocatalyst such as a noble metal such as Pt, a transition metal such as Ni, NiO x (x represents a value of more than 0 and 1 or less), IrO 2 , RuO 2, etc. Modifications commonly used in photocatalyst production such as oxide loading can be performed.
The supporting method can be performed by an impregnation method or a photo-deposition method. In the impregnation method, a semiconductor is impregnated with an aqueous solution of a photocatalytically active species such as chloride and nitrate, and then dried at 100 to 200 ° C. for about 2 to 5 hours to be 800 ° C. or less, preferably 200 to 200 ° C. Firing is performed at 500 ° C. in a reducing atmosphere and / or an oxidizing atmosphere for 2 to 5 hours. The amount of cocatalyst is 0.01 to 10 wt%, preferably 0.1 to 5 wt%.
[0018]
In addition, the reaction solution used for the water decomposition reaction is not limited to pure water. Usually, salts such as carbonates, hydrogen carbonates, iodine salts and bromine salts are used so that they are often used for water decomposition reactions. Mixed water may be used. And the photocatalyst of this invention is added to the said aqueous solution. The amount of catalyst added is basically selected so that incident light can be efficiently absorbed. 0.05~10g the irradiation area 25 cm 2, preferably 0.2 to 3 g. Thus, by irradiating light to the aqueous solution to which the photolysis catalyst is added, water is decomposed and hydrogen is generated. The wavelength of the light to be irradiated needs to include light having a wavelength in a region where the semiconductor is absorbed. In the present invention, sunlight may be irradiated.
[0019]
The photocatalyst of the present invention can be applied not only to water decomposition but also to many photocatalytic reactions.
For example, in the case of decomposition of organic substances, alcohol, agricultural chemicals, malodorous substances and the like generally act as electron donors, and are oxidatively decomposed by holes, and hydrogen is generated by electrons or oxygen is reduced. As a reaction form, the catalyst may be suspended in an aqueous solution containing an organic substance and irradiated with light, or the catalyst may be fixed to a substrate. A gas phase reaction may be used, such as decomposition of malodorous substances.
[0020]
(Example)
Hereinafter, the present invention will be described in detail. In the following examples, YVO 4 was synthesized using Y element and V element. The synthesis was performed by a solid phase method by preparing oxides of respective components in a stoichiometric ratio.
[0021]
Example 1
YVO 4 was synthesized using Y element and V element. In the synthesis, 1.0 mol Y 2 O 3 and 1.0 mol V 2 O 5 were prepared in a stoichiometric ratio per metal. (Figure 1)
For example, when synthesizing 10 g YVO 4 , 5.539 g of Y 2 O 3 and 4.461 g of V 2 O 5 were weighed. This was put into an alumina crucible and sintered at 700 ° C. for 12 hours in an electric furnace under normal pressure in air. After firing, the fired product was pulverized to a size of 10 mm or less with a mortar. The chemical composition and crystal structure of the catalyst were investigated using XRD and SEM-EDS. Rietveld structure analysis revealed that this system belongs to the tetragonal system and has a space group I4 1 / amd, lattice constant a = 0.7123, c = 0.6292 nm, and a zircon type crystal structure. From the ultraviolet-visible absorption spectrum measurement, it was found that the present photocatalyst showed absorption from the ultraviolet region to the visible light region with an upper limit of 600 nm, the band cap was estimated to be 2.1 eV or less, and had visible light responsiveness.
The oxide semiconductor was supported by 1.0 wt% NiO x by impregnation with an aqueous Ni (NO 3 ) 2 solution, dried at 200 ° C. for 5 hours, reduced by hydrogen at 500 ° C., and reoxidized at 200 ° C.
1 g of NiO x / YVO 4 was suspended in 370 ml of pure water and subjected to water photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen and oxygen were detected and quantified by gas chromatography. The result is shown in FIG.
As a result, it was found that hydrogen was constantly generated at a rate of 300 μmol / h and oxygen at a rate of 150 μmol / h.
[0022]
Example 2
In Example 1, RuO 2 was used as the supporting metal instead of NiO x . The YVO 4 semiconductor carrying 1.0 wt% RuO 2 was impregnated with an aqueous RuCl 4 solution, dried at 200 ° C. for 5 hours, and baked at 500 ° C. in an oxidizing atmosphere for 2 hours. 1 g of RuO 2 / YVO 4 was suspended in 370 ml of pure water, and water was subjected to photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer.
A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen and oxygen were detected and quantified by gas chromatography. The result is shown in FIG. Also in this case, it was found that hydrogen was constantly generated at a rate of 150 μmol / h and oxygen at a rate of 75 μmol / h.
[0023]
Example 3
In Example 1, Pt was used instead of NiO x as the supported metal. Platinum equivalent to 0.1 wt% with respect to the oxide was added with an aqueous chloroplatinic acid solution and supported on the oxide by photo-deposition. 1 g of RuO 2 / YVO 4 was suspended in 370 ml of pure water, and water was subjected to photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen and oxygen were detected and quantified by gas chromatography. The result is shown in FIG.
[0024]
Example 4
In Example 1, a catalyst without a supported metal was used. 1 g of YVO 4 was suspended in 370 ml of pure water and subjected to photolysis reaction of water. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen was detected and quantified by gas chromatography. The result is shown in FIG. Even in this case, steady hydrogen generation was observed.
As described above, when the results from Example 1 to Example 4 are seen, for the YVO 4 -based semiconductor photocatalyst, the catalyst having a supported metal (Example 1, Example 2, Example 3) is a catalyst having no supported metal ( It was found that the photocatalytic performance was superior to that of Example 4). It was also found that there was a great difference in the photocatalytic performance depending on the supported metal component. This YVO 4 -based semiconductor photocatalyst had the highest activity among the photocatalysts of the formulation designed to support 1.0 wt% NiO x .
[0025]
Example 5
In order to confirm whether decomposition of organic matter proceeded efficiently by light irradiation, methanol in an aqueous solution was decomposed. As the catalyst, the above oxide semiconductor carrying Pt (0.1 wt%) was used. 1 g of the catalyst was suspended in a mixed solution of 320 ml of pure water and 50 ml of methanol and subjected to a photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen was detected and quantified by gas chromatography. As a result, hydrogen was constantly generated at 1.5 mmol / h. Oxygen was not generated. This indicates that while the methanol is oxidatively decomposed by holes, the reaction in which electrons reduce water and generate hydrogen proceeds under light irradiation.
[0026]
Example 6
GdVO 4 was synthesized using Gd element and V element. In the synthesis, 1.0 mol Gd 2 O 3 and 1.0 mol V 2 O 5 were prepared in a stoichiometric ratio per metal (FIG. 1).
For example, when synthesizing 10 g GdVO 4 , 6.659 g of Gd 2 O 3 and 3.341 g of V 2 O 5 were weighed. Sample preparation is the same as in Example 1. This fired product was pulverized to a size of 10 μm or less in a mortar. The chemical composition and crystal structure of the catalyst were investigated using XRD and SEM-EDS. Rietveld structure analysis revealed that this system belongs to the tetragonal system and has a space group of I 4 1 / amd and a zircon type crystal structure. From the ultraviolet-visible absorption spectrum measurement, it was found that the present photocatalyst showed absorption from the ultraviolet region to the visible light region with an upper limit of 600 nm, the band cap was estimated to be 2.1 eV or less, and had visible light responsiveness.
The oxide semiconductor was supported by 1.0 wt% NiO x by impregnation with an aqueous Ni (NO 3 ) 2 solution, dried at 200 ° C. for 5 hours, reduced by hydrogen at 500 ° C., and reoxidized at 200 ° C.
1 g of NiO x / GdVO 4 was suspended in 370 ml of pure water and subjected to water photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen and oxygen were detected and quantified by gas chromatography. The result is shown in FIG.
As a result, it was found that hydrogen was constantly generated at a rate of 300 μmol / h and oxygen at a rate of 150 μmol / h.
[0027]
Example 7
In Example 6, RuO 2 was used as the supported metal instead of NiO x .
The GdVO 4 semiconductor loaded with 1.0 wt% RuO 2 was impregnated with an aqueous RuCl 4 solution, dried at 200 ° C. for 5 hours, and fired at 500 ° C. in an oxidizing atmosphere for 2 hours. 1 g of RuO 2 / GdVO 4 was suspended in 370 ml of pure water and subjected to water photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as the light source, and a reaction cell made of quartz glass was used. The generated hydrogen and oxygen were detected and quantified by gas chromatography. The result is shown in FIG. Also in this case, it was found that hydrogen is constantly generated at a rate of 250 μmol / h and oxygen is 125 μmol / h.
[0028]
Example 8
In order to confirm whether decomposition of organic matter proceeded efficiently by light irradiation, methanol in an aqueous solution was decomposed. As the catalyst, the above oxide semiconductor carrying Pt (0.1 wt%) was used. 1 g of the catalyst was suspended in a mixed solution of 320 ml of pure water and 50 ml of methanol and subjected to a photolysis reaction. Using a closed circulation system catalytic reactor, light was irradiated from the outside while stirring with a magnetic stirrer. A 400 W high-pressure mercury lamp was used as a light source, and a reaction cell made of quartz glass was used. The generated hydrogen was detected and quantified by gas chromatography. As a result, hydrogen was constantly generated at 2 mmol / h. Oxygen was not generated. This indicates that while the methanol is oxidatively decomposed by holes, the reaction in which electrons reduce water and generate hydrogen proceeds under light irradiation.
[0029]
The above results are summarized in FIG. That is, FIG. 1 shows the relationship between the used photocatalyst component, the component of the supported promoter and its presence, the type of reaction (reaction purpose), the light source used, the amount of hydrogen gas generated per unit time, and the like. Is.
[0030]
【The invention's effect】
As described above, RVO 4 oxidation having a zircon type crystal structure belonging to the I4 1 / amd space group of the present invention represented by the general formula (I); RVO 4 (wherein R represents a Y element or a lanthanoid element) Considering that the wavelength range in which photoresponse is possible extends to visible light with an upper limit of 600 nm, and that the conventional photocatalyst functioned only in the ultraviolet light range, the wavelength range that can be used effectively is greatly expanded, and the solar energy Its significance is extremely great because it can function for the light that occupies most of the main areas. In addition, holes and electrons generated by photoexcitation can quickly move to the surface of the catalyst, reducing the probability of recombination of holes and electrons, and exhibiting high catalytic activity for light. According to the present invention, hydrogen can be generated by decomposing water using visible light energy. In the future, if a photocatalyst is laid in an artificial pond, there is a possibility that hydrogen can be efficiently produced in large quantities with inexhaustible sunlight, which can overcome the energy problem. In addition, these photocatalysts may be used for other chemical reactions instead of water decomposition reactions. For example, it can be applied to organic substance decomposition reactions and metal ion reduction reactions. It can greatly contribute to environmental purification. As described above, the rare earth compound photocatalyst of the present invention has an activity for a wide area of light, and because of its characteristics, it is expected to be used in various applications other than the above-mentioned use examples, In the future, it will play a very important role.
[Brief description of the drawings]
FIG. 1 is a graph showing the amount of hydrogen generated by the decomposition reaction of water and methanol using the visible light-responsive rare earth compound photocatalyst of the present invention.

Claims (10)

一般式(I):RVO4で表されるバナジウム(V)含有複合酸化物
半導体からなる光触媒。
式中、RはY元素或いはランタノイド元素を表す。
General formula (I): A photocatalyst comprising a vanadium (V) -containing composite oxide semiconductor represented by RVO 4 .
In the formula, R represents a Y element or a lanthanoid element.
前記RがY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選択された少なくとも1種の元素であることを特徴とする請求項1に記載の光触媒。  R is at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The photocatalyst according to claim 1, wherein 一般式(I)で表される稀土類複合酸化物半導体がI41/amd空
間群に属するジルコンタイプ結晶構造を有する複合酸化物半導体であることを特徴とする請求項1又は2に記載の光触媒。
3. The photocatalyst according to claim 1, wherein the rare earth composite oxide semiconductor represented by the general formula (I) is a composite oxide semiconductor having a zircon-type crystal structure belonging to the I 4 1 / amd space group. .
Pt、NiOx(xは0を超え、1以下の値を表す。)、RuO2から選ばれた1種又は2種以上の成分からなる助触媒を含んでいることを特徴とする請求項1ないし3の何れか1項に記載の光触媒。2. A cocatalyst composed of one or more components selected from Pt, NiO x (x represents a value greater than 0 and less than 1) and RuO 2 is included. 4. The photocatalyst according to any one of 3 to 3. 請求項1ないし4の何れか1項に記載の複合酸化物半導体からなる水素製造用光触媒。  A photocatalyst for hydrogen production comprising the composite oxide semiconductor according to any one of claims 1 to 4. 請求項5に記載の水素製造用光触媒の存在下、水素含有化合物に紫外線および可視光線を含む光を照射することを特徴とする水素の製造方法。  A method for producing hydrogen, comprising irradiating a hydrogen-containing compound with light containing ultraviolet rays and visible light in the presence of the photocatalyst for hydrogen production according to claim 5. 請求項1ないし4の何れか1項に記載の複合酸化物半導体からなる水分解用光触媒。  A photocatalyst for water splitting comprising the composite oxide semiconductor according to any one of claims 1 to 4. 請求項7に記載の水分解用光触媒の存在下、水に紫外線および可視光線を含む光を照射することを特徴とする水素の製造方法。  A method for producing hydrogen, comprising irradiating water containing ultraviolet light and visible light in the presence of the photocatalyst for water splitting according to claim 7. 請求項1ないし4の何れか1項に記載の複合酸化物半導体からなる有害化学物質分解用光触媒A photocatalyst for decomposing harmful chemical substances, comprising the composite oxide semiconductor according to any one of claims 1 to 4. 請求項9に記載の有害化学物質分解用光触媒の存在下、有害化学物質に紫外線および可視光線を含む光を照射することを特徴とする有害化学物質を分解する方法。A method for decomposing a hazardous chemical substance, comprising irradiating the hazardous chemical substance with light containing ultraviolet rays and visible light in the presence of the photocatalyst for decomposing the hazardous chemical substance according to claim 9.
JP2002059804A 2002-03-06 2002-03-06 Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method Expired - Lifetime JP3735711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059804A JP3735711B2 (en) 2002-03-06 2002-03-06 Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059804A JP3735711B2 (en) 2002-03-06 2002-03-06 Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method

Publications (2)

Publication Number Publication Date
JP2003251197A JP2003251197A (en) 2003-09-09
JP3735711B2 true JP3735711B2 (en) 2006-01-18

Family

ID=28669356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059804A Expired - Lifetime JP3735711B2 (en) 2002-03-06 2002-03-06 Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method

Country Status (1)

Country Link
JP (1) JP3735711B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792739B2 (en) 2004-12-13 2011-10-12 三菱瓦斯化学株式会社 Tooth bleaching material and tooth bleaching method
JP4859217B2 (en) * 2006-08-30 2012-01-25 独立行政法人物質・材料研究機構 Metal oxide catalyst
JP5034046B2 (en) * 2006-12-22 2012-09-26 国立大学法人長岡技術科学大学 Photocatalyst for water splitting and method for producing the photocatalyst
CN101745380B (en) * 2008-12-08 2014-04-16 中国科学院福建物质结构研究所 Visible-light response vanadium-samarium composite oxide catalyst, preparation method thereof and application thereof
JP7355720B2 (en) 2020-10-11 2023-10-03 トヨタ自動車株式会社 Hydrogen gas production device using photocatalyst
CN112358001B (en) * 2020-10-30 2023-01-13 上海奥迪菲环境工程有限公司 Treatment method of dye wastewater
JP2023094488A (en) 2021-12-23 2023-07-05 トヨタ自動車株式会社 Hydrogen gas production apparatus using photocatalyst

Also Published As

Publication number Publication date
JP2003251197A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
CN109876841B (en) Method for preparing graphite-phase carbon nitride visible-light-driven photocatalyst by copolymerization of 2-amino terephthalic acid and amine compound
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
CN1899688A (en) Solid solution light catalyst capable of responding visible light
CN112023938B (en) Bimetallic ion doped nano composite photocatalyst and preparation method thereof
CN112076777B (en) For CO2Reduced photocatalyst and preparation method thereof
JP3742873B2 (en) Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances
Zhou et al. Synergistic effect of ZnO QDs and Sn4+ ions to control anatase-rutile phase of three-dimensional ordered hollow sphere TiO2 with enhanced photodegradation and hydrogen evolution
JP3735711B2 (en) Visible light-responsive rare earth compound photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
EP1724014A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
CN100464846C (en) Method for preparing solid solution light catalyst capable of responding visible light
JP3834625B2 (en) Indium barium composite oxide visible light responsive photocatalyst, method for producing hydrogen using this photocatalyst, and method for decomposing harmful chemical substances
An et al. The multiple roles of rare earth elements in the field of photocatalysis
JP2022094211A (en) Co2 methanation catalyst and method for producing the same, and method for producing methane
JPH10244165A (en) Photocatalyst having catalytic activity in visible light range
JP3870267B2 (en) Bismuth complex oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same
JP3718710B2 (en) Visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JP5229947B2 (en) Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen
CN114308034A (en) Strontium titanate semiconductor catalyst co-doped with (III) and (V) valence double transition metal ions and preparation method thereof
CN114192163A (en) SrTiO doped with K ions of externally tangent 36-plane {110} crystal face3Nano photocatalyst and preparation method thereof
JPH02172535A (en) New photolysis catalyst for water
JPH0889800A (en) Photocatalyst
CN1544144A (en) Visible light response photocatalyst and application thereof
JP3837548B2 (en) Bismuth complex oxide visible light responsive photocatalyst and method for decomposing and removing harmful chemicals using the same
JP3903179B2 (en) Indium complex oxide visible light responsive photocatalyst and oxidative decomposition method of materials using the same
Albukhari et al. Construction of nn heterojunction copper manganese spinel/mesoporous WO3 photocatalyst for efficient H2 evolution rate from aqueous glycerol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Ref document number: 3735711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term