JP2730111B2 - New water photolysis catalyst - Google Patents

New water photolysis catalyst

Info

Publication number
JP2730111B2
JP2730111B2 JP63328516A JP32851688A JP2730111B2 JP 2730111 B2 JP2730111 B2 JP 2730111B2 JP 63328516 A JP63328516 A JP 63328516A JP 32851688 A JP32851688 A JP 32851688A JP 2730111 B2 JP2730111 B2 JP 2730111B2
Authority
JP
Japan
Prior art keywords
catalyst
compound
hydrogen
water
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63328516A
Other languages
Japanese (ja)
Other versions
JPH02172535A (en
Inventor
孝治 大西
一成 堂免
健一 丸谷
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63328516A priority Critical patent/JP2730111B2/en
Publication of JPH02172535A publication Critical patent/JPH02172535A/en
Application granted granted Critical
Publication of JP2730111B2 publication Critical patent/JP2730111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水を光分解して水素を製造する際に使用す
る新規な不均一系触媒に関するものである。
Description: TECHNICAL FIELD The present invention relates to a novel heterogeneous catalyst used for producing hydrogen by photolyzing water.

〔従来の技術〕[Conventional technology]

石油危機以降、石油や石炭などの化石エネルギーの枯
渇が真剣に討議され、化石エネルギーの代替エネルギー
源として、また空気を汚さないクリーンなエネルギー源
として、水素の使用が提案されている。
Since the oil crisis, the depletion of fossil energy such as oil and coal has been seriously discussed, and the use of hydrogen as an alternative energy source for fossil energy and a clean energy source that does not pollute the air has been proposed.

そして、水素の製造方法として、水を太陽光で分解
(光分解)して製造する方法が有力視されている。この
方法は、極端に言えば水に太陽光を照射するだけのもの
で、ほかに電気、熱などのエネルギーを必要としない。
分解の化学式は次のとおりである。
As a method for producing hydrogen, a method for producing water by decomposing water (photolysis) with sunlight is considered to be promising. In extreme terms, this method merely irradiates water with sunlight, and does not require any additional energy such as electricity or heat.
The chemical formula of the decomposition is as follows.

H2O→H2+1/2O2↑ ただし、酸化され易いもの例えばアルコールその他の
有機物が共存しているときは、酸素は生成しない。
H 2 O → H 2 + 1 / 2O 2 ↑ However, when an easily oxidizable substance such as an alcohol or another organic substance is present, oxygen is not generated.

しかし、水の光分解には適当な触媒(光触媒)が必要
であり、これまで例えば、TiO2やSrTiO3粒子が提案され
ている。
However, photodecomposition of water requires an appropriate catalyst (photocatalyst), and for example, TiO 2 and SrTiO 3 particles have been proposed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、TiO2粒子は、還元力、酸化力ともに強
いが、活性点を作るためにPtやRuO2等の貴金属を担持さ
せなければ水素、酸素の生成はほとんど認められない。
従って、PtやRuO2等の貴金属を担持させるために触媒の
製造プロセスが2段階になることと貴金属という高価な
原料を使用することから製造コストが高いという欠点を
有していた。また、SrTiO3粒子もNiOやRhを担持させな
ければ、水素、酸素を生成させることができず、製造コ
スが高い、水素生成活性も余り高くない、という欠点を
有していた。
However, although TiO 2 particles have both strong reducing power and oxidizing power, generation of hydrogen and oxygen is hardly recognized unless a noble metal such as Pt or RuO 2 is supported to form active sites.
Therefore, there is a disadvantage that the production process of the catalyst is two-stage in order to support a noble metal such as Pt or RuO 2 , and that the production cost is high because an expensive raw material such as a noble metal is used. Also, SrTiO 3 particles cannot produce hydrogen and oxygen unless NiO or Rh is supported, and have the disadvantages of high production cost and not very high hydrogen generation activity.

従って、本発明の目的は、貴金属その他の担持成分を
担持させるプロセスが必要でなく、かつ貴金属を使用し
ないので製造コストが安価で、そして活性の高い「水を
光分解して水素を生成するための不均一系触媒」を提供
することにある。
Therefore, an object of the present invention is to eliminate the need for a process for supporting precious metals and other supporting components, and to reduce the production cost because no precious metals are used. To provide a "heterogeneous catalyst".

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、鋭意研究の結果、下記に説明する化合
物が目的とする触媒として極めて有用であることを見い
出し、本発明を成すに至った。
The present inventors have conducted intensive studies and found that the compounds described below are extremely useful as target catalysts, and have accomplished the present invention.

従って、本発明は、 「一般式I: 〔An-1BnO3n+1-u (式中、Aはアルカリ金属元素、アルカリ土類金属元
素、希土類金属元素及び遷移金属元素からなる群から選
択された1種又は2種以上の原子であり、 BはTi、Nb又はTaから選択された1種又は2種以上の
原子であり、 nは1〜7の整数であり、 uは原子団の価数である。) で表される層状のアニオン原子団と、 層間に存在する水素、アルカリ金属元素、アルカリ土
類金属元素及び3B族元素からなる群から選択された1種
又は2種以上のカチオンMとからなり、全体として、 分子式:Mm〔An-1BnO3n+1〕 で表される積層構造の化合物からなることを特徴とす
る水の光分解触媒」 を提供する。
Accordingly, the present invention provides a compound represented by the following general formula I: [A n-1 B n O 3n + 1 ] -u (where A is an alkali metal element, an alkaline earth metal element, a rare earth metal element and a transition metal element) B is one or more atoms selected from Ti, Nb or Ta, n is an integer of 1 to 7, and u is One or two selected from the group consisting of a layered anion atom group represented by the following formula: and hydrogen, an alkali metal element, an alkaline earth metal element and a group 3B element existing between layers. At least one kind of cation M, and as a whole, a compound having a laminated structure represented by a molecular formula: M m [A n-1 B n O 3n + 1 ]. provide.

但し、mは1又は2であり、カチオンMの価数にmを
掛けた積は、uに等しい。
Here, m is 1 or 2, and the product of valence of cation M and m is equal to u.

〔作用〕[Action]

一般式Iに於いてAで表したアルカリ金属元素、アル
カリ土類金属元素、希土類金属元素及び遷移金属元素か
らなる群から選択された元素としては、具体的には例え
ば、Na、Ca、Sr、La、Nd、Er、Cr、Fe、Co又はNiが含ま
れる。
As the element selected from the group consisting of the alkali metal element, the alkaline earth metal element, the rare earth metal element and the transition metal element represented by A in the general formula I, specifically, for example, Na, Ca, Sr, La, Nd, Er, Cr, Fe, Co or Ni are included.

また、カチオンMなる元素には、具体的には例えば
H、Li、Na、K、Rb、Cs、Sr、Tl等が含まれる。
Further, the element of the cation M specifically includes, for example, H, Li, Na, K, Rb, Cs, Sr, Tl, and the like.

分子式:Mm〔An-1BnO3n+1〕で表される 本発明の触媒のうち、特にMが水素であるものは活性
が高いので好ましい。
Among the catalysts of the present invention represented by the molecular formula: M m [A n-1 B n O 3n + 1 ], those in which M is hydrogen are particularly preferred because of their high activity.

分子式:Mm〔An-1BnO3n+1〕 なる化合物は、それ自体公知のものであるが、その製造
例の一例を説明すると以下の通りである。
The compound represented by the molecular formula: M m [A n-1 B n O 3n + 1 ] is a compound known per se, but an example of its production will be described below.

各元素の酸化物、炭酸塩又は硝酸塩等を目的化合物の
原子比通りに秤量し、アルミナ乳鉢で混合する。この混
合物を白金ルツボ中で1000〜1300℃で5〜30時間空気中
で焼成する。この焼成物をアルミナ乳鉢で粉砕混合す
る。これを更に上記条件で再焼成すると、目的物が得ら
れる。
Oxides, carbonates or nitrates of each element are weighed according to the atomic ratio of the target compound and mixed in an alumina mortar. The mixture is calcined in a platinum crucible at 1000-1300 ° C. for 5-30 hours in air. This calcined product is pulverized and mixed in an alumina mortar. When this is further refired under the above conditions, the desired product is obtained.

こうして得られた目的物は、粉末X線回折により層状
化合物であることが確認された。
The target product thus obtained was confirmed to be a layered compound by powder X-ray diffraction.

また、上記のような固相反応で合成された化合物を、
酸又は硝酸塩水溶液等でイオン交換を行なうことによ
り、層状構造を保ったまま別の化合物に変換(合成)す
ることができる。イオン交換の方法には、例えば、元の
化合物を交換しないイオンを含む適当な濃度の水溶液に
加え、室温又は加温下に10時間〜10日間撹拌する方法で
ある。
Further, the compound synthesized by the solid phase reaction as described above,
By performing ion exchange with an aqueous acid or nitrate solution, the compound can be converted (synthesized) into another compound while maintaining the layered structure. The method of ion exchange is, for example, a method in which an aqueous solution containing ions not exchanging the original compound and having an appropriate concentration is stirred at room temperature or under heating for 10 hours to 10 days.

本発明で使用される化合物の形状は、光を有効に利用
するために表面積の大きい粒子であるべきであり、その
粒径は出来るだけ小さいほうが好ましいが、現在の技術
では、0.1μ以下にすることは難しい。従って、一般に
は0.1〜10μ好ましくは0.1〜1μが適当である。
The shape of the compound used in the present invention should be particles having a large surface area in order to make effective use of light, and the particle size is preferably as small as possible. It is difficult. Therefore, in general, 0.1 to 10 µm, preferably 0.1 to 1 µm is appropriate.

粒子に粉砕するには、慣用的な粉砕手段例えばボール
ミルを用いれば容易である。
Particles can be easily crushed by using a conventional crushing means such as a ball mill.

また、製造コストの上昇が差支えなければ、本発明の
触媒粒子に前述のPtやRh等の貴金属などを担持させても
よい。その場合には、光触媒活性が一層高まるものもあ
る。
If the increase in the production cost is acceptable, the catalyst particles of the present invention may support the above-mentioned noble metals such as Pt and Rh. In such a case, the photocatalytic activity may be further increased in some cases.

本発明の触媒は、水を光分解するために使用される
が、その場合の水は、水の他に糞尿、有機廃棄物、有機
汚泥等の有機物あるいは無機物が含まれていてもよい。
The catalyst of the present invention is used for photodecomposing water. In this case, the water may contain organic substances or inorganic substances such as manure, organic waste, and organic sludge in addition to water.

以下、実施例により本発明を具体的に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

〔実施例1〕 K2CO3を7.08g、La2O3を16.70g、Nb2O5を27.25gそれぞ
れ秤量し、これらを乳鉢で混合した後、白金ルツボに入
れて、空気中で1100℃で20時間焼成した。
[Example 1] 7.08 g of K 2 CO 3 , 16.70 g of La 2 O 3 and 27.25 g of Nb 2 O 5 were weighed respectively, and they were mixed in a mortar. Firing at 20 ° C. for 20 hours.

この焼成物を、アルミナ乳鉢で粉砕混合した後、再度
上記条件で焼成した。
The fired product was pulverized and mixed in an alumina mortar, and fired again under the above conditions.

得られた焼成物を乳鉢で粒径10μm以下に粉砕した。 The obtained calcined product was ground in a mortar to a particle size of 10 μm or less.

こうして得られた粉末は、粉末X線回折によりK〔La
Nb2O7〕であることが同定された。
The powder thus obtained was analyzed by powder X-ray diffraction to obtain K [La
Nb 2 O 7 ].

〔実施例2〕 K2CO3を6.19g、CaCO3を17.94g、Nb2O5を35.72gそれぞ
れ秤量し、これらを乳鉢で混合した後、白金ルツボに入
れて、空気中で1200℃で10時間焼成した。
Example 2 6.19 g of K 2 CO 3 , 17.94 g of CaCO 3, and 35.72 g of Nb 2 O 5 were weighed and mixed in a mortar, then put in a platinum crucible, and placed in air at 1200 ° C. Fired for 10 hours.

この焼成物を、アルミナ乳鉢で粉砕混合した後、再度
上記条件で焼成した。
The fired product was pulverized and mixed in an alumina mortar, and fired again under the above conditions.

得られた焼成物を乳鉢で粒径10μm以下に粉砕した。 The obtained calcined product was ground in a mortar to a particle size of 10 μm or less.

こうして得られた粉末は、粉末X線回折によりK〔Ca
2Nb3O10〕であることが同定された。
The powder thus obtained was analyzed by powder X-ray diffraction to obtain K [Ca
2 Nb 3 O 10 ].

〔実施例3〕 実施例2のK〔Ca2Nb3O10〕粉末を11.16g、NaNbO3
3.28gそれぞれ秤量し、これらを乳鉢で混合した後、白
金ルツボに入れて、空気中で1300℃で10時間焼成した。
Example 3 11.16 g of K [Ca 2 Nb 3 O 10 ] powder of Example 2 and NaNbO 3
After weighing out 3.28 g each and mixing them in a mortar, they were put into a platinum crucible and fired at 1300 ° C. in air for 10 hours.

この焼成物を、アルミナ乳鉢で粉砕混合した後、再度
上記条件で焼成した。
The fired product was pulverized and mixed in an alumina mortar, and fired again under the above conditions.

得られた焼成物を乳鉢で粒径10μm以下に粉砕した。 The obtained calcined product was ground in a mortar to a particle size of 10 μm or less.

こうして得られた粉末は、粉末X線回折によりK〔Na
Ca2Nb4O13〕であることが同定された。
The powder thus obtained was analyzed by powder X-ray diffraction to obtain K [Na
Ca 2 Nb 4 O 13 ].

〔実施例4〕 実施例2のK〔Ca2Nb3O10〕粉末を5g取り、これを100
mlの5N硝酸水溶液に加えて、室温にて20時間撹拌し、イ
オン交換を行なった。
Example 4 5 g of K [Ca 2 Nb 3 O 10 ] powder of Example 2 was taken, and
The mixture was added to 5 ml of 5N nitric acid aqueous solution, stirred at room temperature for 20 hours, and ion-exchanged.

イオン交換した生成物をろ過し乾燥した。 The ion-exchanged product was filtered and dried.

こうして得られた粉末は、層状構造が保持されたH
〔Ca2Nb3O10〕であることが粉末X線回折により同定さ
れた。
The powder obtained in this way has a layered structure retained H
[Ca 2 Nb 3 O 10 ] was identified by powder X-ray diffraction.

そのほか同様にして下記第1表記載の触媒を調製し
た。
Other than that, the catalysts shown in Table 1 below were prepared.

〔触媒の評〕[Review of the catalyst]

500mlのフラスコにメタノール50mlと水300mlと触媒1g
を仕込み、マグネチックスターラーで撹拌しながら、50
0Wの高圧水銀ランプで光を照射した。
50 ml of methanol, 300 ml of water and 1 g of catalyst in a 500 ml flask
While stirring with a magnetic stirrer.
Light was irradiated with a 0 W high-pressure mercury lamp.

照射後、1時間毎に水素の生成量をガスクロマトグラ
フィーで測定し、定常活性を求めた。この結果を下記第
1表に示す。
After irradiation, the amount of generated hydrogen was measured every hour by gas chromatography to determine the steady-state activity. The results are shown in Table 1 below.

なお、ここでは、水にメタノールを添加しているが、
これは触媒の活性を評価し易いからである。
In this case, although methanol is added to water,
This is because the activity of the catalyst can be easily evaluated.

〔発明の効果〕 以上のとおり、本発明によれば、PtやRuO2等の貴金属
その他を担持させることなく、活性の高い触媒が得ら
れ、そのため触媒の製造コストが安価で済み、従って水
から安価に水素を製造することが可能になる。
[Effects of the Invention] As described above, according to the present invention, a catalyst having high activity can be obtained without supporting a noble metal such as Pt or RuO 2 and the like, and therefore, the production cost of the catalyst can be reduced, and therefore, water Hydrogen can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 彰 神奈川県相模原市麻溝台1773番地 株式 会社ニコン相模原製作所内 (56)参考文献 特開 昭62−74452(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Tanaka 1773 Asamizodai, Sagamihara City, Kanagawa Prefecture Nikon Sagamihara Works Co., Ltd. (56) References JP-A-62-74452 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式I:〔An-1BnO3n+1-u (式中、Aは少なくとも希土類金属元素を含む1種又は
2種以上の原子であり、 BはTi、Nb又はTaから選択された1種又は2種以上の原
子であり、 nは1〜7の整数であり、 uは原子団の価数である。) で表される層状のアニオン原子団と、 層間に存在する水素、アルカリ金属元素及びアルカリ土
類金属元素からなる群から選択された1種又は2種以上
のカチオンMとからなり、全体として、 分子式:Mm〔An-1BnO3n+1〕 で表される積層構造の化合物からなることを特徴とする
水の光分解触媒。
1. A compound of the general formula I: [A n-1 B n O 3n + 1 ] -u wherein A is one or more atoms containing at least a rare earth metal element, and B is Ti, One or two or more atoms selected from Nb or Ta, n is an integer of 1 to 7, and u is the valence of the atomic group.) It consists of one or more cations M selected from the group consisting of hydrogen, alkali metal elements and alkaline earth metal elements present between the layers, and has a molecular formula: M m [A n-1 B n O 3n + 1 ]. A water photolysis catalyst comprising a compound having a laminated structure represented by the following formula:
【請求項2】前記Mが水素であることを特徴とする請求
項第1項記載の水の光分解触媒。
2. The photocatalytic catalyst for water according to claim 1, wherein said M is hydrogen.
JP63328516A 1988-12-26 1988-12-26 New water photolysis catalyst Expired - Fee Related JP2730111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328516A JP2730111B2 (en) 1988-12-26 1988-12-26 New water photolysis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328516A JP2730111B2 (en) 1988-12-26 1988-12-26 New water photolysis catalyst

Publications (2)

Publication Number Publication Date
JPH02172535A JPH02172535A (en) 1990-07-04
JP2730111B2 true JP2730111B2 (en) 1998-03-25

Family

ID=18211151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328516A Expired - Fee Related JP2730111B2 (en) 1988-12-26 1988-12-26 New water photolysis catalyst

Country Status (1)

Country Link
JP (1) JP2730111B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681030B2 (en) * 1994-03-29 1997-11-19 科学技術庁無機材質研究所長 Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst
TW473400B (en) 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
EP2816087B1 (en) 2005-12-13 2016-11-09 Asahi Kasei Kabushiki Kaisha Aqueous organic-inorganic hybrid composition
JP4660766B2 (en) * 2006-02-22 2011-03-30 独立行政法人物質・材料研究機構 Visible light responsive complex oxide photocatalyst
EP2407521B1 (en) 2009-03-11 2015-07-29 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for production of laminate
EP2532721B1 (en) 2010-02-01 2016-12-07 Asahi Kasei Kabushiki Kaisha Coating material and layered body
EP3431561B1 (en) 2016-03-14 2020-12-30 Asahi Kasei Kabushiki Kaisha Highly durable antifogging coating film and coating composition
US11781037B2 (en) 2018-02-23 2023-10-10 Asahi Kasei Kabushiki Kaisha High-durability antifogging coating film and coating composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274452A (en) * 1985-09-27 1987-04-06 Nippon Kogaku Kk <Nikon> Photolytic catalyst of water

Also Published As

Publication number Publication date
JPH02172535A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
Rodionov et al. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions
Zou et al. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts
US5262023A (en) Method for producing hydrogen and oxygen from water
JP6644554B2 (en) Method for decomposing water under irradiation with visible light using silene-Aurivilius layered acid halide as photocatalyst
EP0070712A2 (en) Catalysts for photo-assisted oxidation-reduction reactions
JP2730111B2 (en) New water photolysis catalyst
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JP2000254508A (en) Catalyst for methanizing carbon dioxide
JP3742873B2 (en) Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances
JPS6274452A (en) Photolytic catalyst of water
Zou et al. Photocatalytic behavior of a new series of In0. 8M0. 2TaO4 (M= Ni, Cu, Fe) photocatalysts in aqueous solutions
JPH0889804A (en) Photocatalyst
EP1312412B1 (en) Process for producing hydrogen-containing gas
KR20030046950A (en) A method for preparaing ZnO nanopowder
JPH10244165A (en) Photocatalyst having catalytic activity in visible light range
JPH0889800A (en) Photocatalyst
JPH09248465A (en) Photocatalyst having catalytic activity in visible light region
EP1310301B1 (en) Photocatalysts made by using oxides containing metal ions of d10 electronic state
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP2681030B2 (en) Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst
JPH0889799A (en) Photocatalyst
Mitsuyama et al. Relationship between interlayer hydration and photocatalytic water splitting of A′ 1− xNaxCa2Ta3O10· nH2O (A′= K and Li)
JPH07313884A (en) Catalyst for photolysis of water and production of hydrogen using the same
JPH0970533A (en) Photocatalyst
Zou et al. Effect of Ni substitution on the structure and photocatalytic activity of InTaO 4 under visible light irradiation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees