JPS6274452A - Photolytic catalyst of water - Google Patents

Photolytic catalyst of water

Info

Publication number
JPS6274452A
JPS6274452A JP60213829A JP21382985A JPS6274452A JP S6274452 A JPS6274452 A JP S6274452A JP 60213829 A JP60213829 A JP 60213829A JP 21382985 A JP21382985 A JP 21382985A JP S6274452 A JPS6274452 A JP S6274452A
Authority
JP
Japan
Prior art keywords
water
hydrate
compound represented
group
water photolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213829A
Other languages
Japanese (ja)
Inventor
Koji Onishi
孝治 大西
Kenichi Akishika
研一 秋鹿
Kazunari Doumen
一成 堂免
Kenichi Marutani
健一 丸谷
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60213829A priority Critical patent/JPS6274452A/en
Publication of JPS6274452A publication Critical patent/JPS6274452A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To inexpensively prepare hydrogen from water by enhancing catalytic activity without supporting a noble metal such as Pt, by using a compound represented by a specific general formula or a hydrate thereof as a photolytic catalyst of water. CONSTITUTION:A compound represented by formula I (wherein R is an element ion-exchangeable with K of a compound represented by K4Nb6O17 or a hydrate thereof, a is valency of R and x is a numerical value satisfying an inequality 0<ax<=4) or a hydrate thereof is used as a photolytic catalyst of water. Or, a compound represented by formula II (wherein Q is an element ion- exchangeable with K of a compound represented by KNb3O8 or a hydrate thereof, b is a valency of Q and Y is a numerical value satisfying an inequality 0<bY<=1) or a hydrate thereof is used as the photolytic catalyst of water. Ion-exchangeable R and Q are hydrogen, an alkali metal element or an alkaline earth metal element.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、水を光分解して水素を製造する際に使用する
新規な不均一系触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a novel heterogeneous catalyst used in producing hydrogen by photolyzing water.

(発明の背景) 石油危機以降、石油や石炭などの化石エネルギーの枯渇
が真剣に討議され、化石エネルギーの代替エネルギー源
として、また空気をlηさないクリーンな工ふルギー源
として、水素の使用が堤塞されている。
(Background of the invention) After the oil crisis, the depletion of fossil energy such as oil and coal has been seriously discussed, and the use of hydrogen has been discussed as an alternative energy source to fossil energy and as a clean industrial energy source that does not consume air. It is embanked.

そして、水素の製造方法として、水を太陽光で分解(光
分解)して製造する方法が有力視されている。この方法
は、極端に言えば水に大陽光を照射するだけのもので、
ほかに電気、熱などのエネルギーを必要としない。分解
の化学式%式% ただし、酸化され易いもの例えばアルコールその他の有
機物が共存しているときは、酸素は生成しない。
As a method for producing hydrogen, a method of producing hydrogen by decomposing water using sunlight (photolysis) is considered to be a promising method. To put it in an extreme way, this method is simply irradiating the water with sunlight.
It does not require any other energy such as electricity or heat. Chemical formula for decomposition % Formula % However, if easily oxidized substances such as alcohol or other organic substances are present, oxygen will not be produced.

しかし、水の光分解には適当な触媒(光触媒)が必要で
あり、これまで例えば TiO□や5rTiOv粒子が
提案されている。
However, photodecomposition of water requires a suitable catalyst (photocatalyst), and so far, for example, TiO□ and 5rTiOv particles have been proposed.

しかしながら、TiO□粒子は、還元力、酸化ツノとも
に強いが、活性点を作るためにptやRu0z等の貴金
属を但持させなければ水素、酸素の生成はほとんど認め
られない。従って、PtJ?)RuO,等の貴金属を1
り持させるために触媒の製造プロセスが2段階になるこ
とと貴金属という高価な原料を使用することから製造コ
ストが高いという欠点を有していた。また、5rTi(
h粒子も NiOやRhを但持させなければ、水素、酸
素を生成させることができず、製造コストが高い、水素
生成活性も余り高くない、という欠点を有していた。
However, TiO□ particles have strong reducing power and oxidation horns, but unless noble metals such as pt and Ru0z are supported to create active sites, hydrogen and oxygen generation is hardly observed. Therefore, PtJ? )RuO, etc. 1
However, the production cost is high because the catalyst production process requires two steps to maintain the temperature of the catalyst, and expensive raw materials such as precious metals are used. In addition, 5rTi (
h-particles also have the disadvantages that hydrogen and oxygen cannot be produced unless NiO or Rh is present, the production cost is high, and the hydrogen production activity is not very high.

(発明の目的) 本発明の目的は、貴金属その他の(1持戒分を11持さ
せるプロセスが必要でなく、かつ貴金属を使用しないの
で製造コストが安価で、そして活性の高い「水を光分解
して水素を生成するための不均一系触媒」を提供するこ
とにある。
(Objective of the Invention) The object of the present invention is to eliminate the need for a process of converting precious metals or other (1-1 to 11-modified compounds), to reduce manufacturing costs because no precious metals are used, and to photolyze highly active "water". The object of the present invention is to provide a "heterogeneous catalyst for producing hydrogen through hydrogen production."

(発明の概要) 本発明者らは、鋭意研究の結果、下記一般式I及び■で
表される化合物又はその水和物が目的とする触媒として
極めて有用であることを見い出し、本発明を成すに至っ
た。
(Summary of the Invention) As a result of intensive research, the present inventors have discovered that the compounds represented by the following general formulas I and 3 or their hydrates are extremely useful as the desired catalyst, and have accomplished the present invention. reached.

従って、本発明は、第一に、 [一般式■: R−Kn−−1lNbsO+t (式中、Rは式: K = Nb5O+qで表される化
合物又はその水和物のKとイオ ン交換可能な元素であり、 aはRの価数であり、 Xは不等式: Q<a x≦4を満足する数値である。
Therefore, the present invention first provides the following features: [General formula (■): R-Kn--11NbsO+t (wherein, R is an element capable of ion exchange with K of the compound represented by the formula: K=Nb5O+q or its hydrate) , a is the valence of R, and X is a numerical value that satisfies the inequality: Q<a x≦4.

) で表される化合物又はその水和物からなることを特徴と
する水の光分解触媒」を提供する。
) or a hydrate thereof.

また、本発明は、第二に、 [一般式■: Qy  K+−byNb*on (式中、Qは式:KNb−、OIlで表される化合物の
Kとイオン交換可能な元素 であり、 bばQの価数であり、 Yは不等式:0くbY≦1を満足す る数イ直である。) で表される化合物からなることを特徴とする水の光分解
触媒」を提供する。
The present invention also provides, secondly, [General formula (■): Qy K+-byNb*on (wherein, Q is an element capable of ion exchange with K of the compound represented by the formula: KNb-, OIl, b is the valence of Q, and Y is a straight number that satisfies the inequality: 0 bY≦1.

前記一般式■及びHの化合物並びにその水和物、それ自
体は、一部分耕の物質であり、特に層状構造を有するも
のが本発明の目的にとって好ましく、このような層状構
造を有するものは、主にイオン交換体である。このイオ
ン交換体は、例えば「ニオブ八面体のプレートが層をな
し、その層間ににイオン及び場合により水和水が存在し
ている、式: K4NhsO7を又はKNbiOiで表
される化合物或いはその水和物」のにイオンをR又は−
Qとイオン交換することによって容易に得られる。
The compounds of the general formulas (1) and (H) and their hydrates are themselves partially cultivated substances, and those having a layered structure are particularly preferred for the purpose of the present invention, and those having such a layered structure are mainly It is an ion exchanger. This ion exchanger is, for example, a compound represented by the formula: K4NhsO7 or KNbiOi, or a hydrate thereof, in which niobium octahedral plates form layers, and ions and optionally hydration water exist between the layers. R or - for the ion of "object"
It can be easily obtained by ion exchange with Q.

イオン交換それ自体は、公知の技術であり、例えばR又
はQイオンを含む水溶液中に、式:K a N b 6
01 ?又はKNb*0*で表される化合物或いはその
水和物の粉末を添加して、しばらく撹拌し、ろ過し、得
られた固形分を必要に応して乾燥させることにより容易
にイオン交換体が得られる。
Ion exchange itself is a known technique, for example in an aqueous solution containing R or Q ions of the formula: K a N b 6
01? Or, by adding a powder of the compound represented by KNb*0* or its hydrate, stirring for a while, filtering, and drying the obtained solid content as necessary, the ion exchanger can be easily converted into an ion exchanger. can get.

イオン交換可能なR及びQは、例えば水素、アルカリ金
属元素、アルカリ土類金属元素、第■族典型元素、第■
族典型元素、第■族典型元素及び遷移金属元素からなる
群から選ばれた元素であり、特に好ましくは、H,Li
+Na+Mg、Ca、Sr。
Ion-exchangeable R and Q are, for example, hydrogen, alkali metal elements, alkaline earth metal elements, group Ⅰ typical elements, group ①
An element selected from the group consisting of Group typical elements, Group Ⅰ typical elements, and transition metal elements, particularly preferably H, Li
+Na+Mg, Ca, Sr.

Ba、AI、Ga、Sn、Bi、Cr、Mn、Fe、C
o、Ni、Cu。
Ba, AI, Ga, Sn, Bi, Cr, Mn, Fe, C
o, Ni, Cu.

Zn及びCeである。They are Zn and Ce.

前記一般式I及び■で表される化合物又はその水和物の
形状は、光を有効に利用するために表面積の大きい粒子
であるべきであり、その粒径は出来るだけ小さいほうが
好ましいが、現在の技術では、0.1μ以下にすること
は難しい。従って、一般には041〜lOμ好ましくは
0.1−1μが適当である。
The shape of the compound represented by the above general formulas I and (2) or its hydrate should be in the form of particles with a large surface area in order to utilize light effectively, and it is preferable that the particle size is as small as possible. With the above technology, it is difficult to reduce the thickness to 0.1μ or less. Therefore, in general, 041 to lOμ, preferably 0.1 to 1μ is appropriate.

粒子に粉砕するには、慣用的な粉砕手段例えばボールミ
ルを用いれば容易である。
Grinding into particles can be easily done using a conventional grinding means such as a ball mill.

また、製造コストの上昇が差支えなければ、本発明の触
媒粒子に前述のptやRh等の貴金属などを(す、持さ
せてもよい。その場合には、光触媒活性が一層高まるも
のもある。
Further, if an increase in production cost is not a problem, the catalyst particles of the present invention may contain noble metals such as the above-mentioned PT and Rh. In that case, the photocatalytic activity may be further enhanced.

本発明の触媒は、水を光分解するために使用されるが、
その場合の水は、水の他に糞尿、有機廃棄物、有機汚泥
等の有機物あるいは無機物が含まれていてもよい。
The catalyst of the present invention is used for photolyzing water,
In this case, the water may contain organic or inorganic substances such as excrement, organic waste, and organic sludge in addition to water.

以下、実施例により本発明を具体的に説明するが、本発
明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

(実施例1〜2) Ka NbaO+t’ 3 tri O粉末(粒径1(
lu以下)を2g取り、これを50mJの0.5 N硫
酸に加えて室温にて撹拌し、イオン交換反応を行なった
(Examples 1-2) Ka NbaO+t' 3 tri O powder (particle size 1 (
lu or less) was added to 50 mJ of 0.5 N sulfuric acid and stirred at room temperature to perform an ion exchange reaction.

イオン交換された生成物をろ過し乾燥さ−けることによ
り本実施例の触媒を調製した。このとき、ろ液中のに゛
イオンを原子吸光分析法により定量し、これにより生成
物つまりイオン交換体;HX  Kn−axNbao+
7   (a = 1)のXの値を決定した。
The catalyst of this example was prepared by filtering and drying the ion exchanged product. At this time, the ions in the filtrate are quantified by atomic absorption spectrometry, and the product, that is, the ion exchanger; HX Kn-axNbao+
7 (a = 1) was determined.

(実施例3) Ka NbbO+、・3H!0粉末(粒径10μ以下)
を2g取り、これを3Qmj!の0.5M硝酸第二鉄:
 Fe(No、)i水溶液に加えて室温にて撹拌し、イ
オン交換反応を行なった。
(Example 3) Ka NbbO+, 3H! 0 powder (particle size 10μ or less)
Take 2g and add 3Qmj! 0.5M ferric nitrate:
It was added to an aqueous Fe(No,)i solution and stirred at room temperature to perform an ion exchange reaction.

イオン交換された生成物をろ過し乾燥させることにより
本実施例の触媒を調製した。このとき、ろ液中のに゛イ
オンを原子吸光分析法により定量し、これにより生成物
つまりイオン交換体。
The catalyst of this example was prepared by filtering and drying the ion exchanged product. At this time, the ions in the filtrate are determined by atomic absorption spectrometry, and the product, ie, the ion exchanger, is determined.

Fe w Ka−mwNbbo+q   (a = 3
)のXの値を決定した。
Fe w Ka−mwNbbo+q (a = 3
) was determined.

そのほか同様にして下記第1表記載の触媒を調製した。Other catalysts listed in Table 1 below were prepared in the same manner.

(触媒の評価) 300ml のフラスコにメタノール50m1と水20
0m1と触媒0.2 gを仕込み、マグネチノクスクー
ラーで11 Pt’しながら、500Wのキセノン・ラ
ンプで光を照射した。
(Catalyst evaluation) 50 ml of methanol and 20 ml of water in a 300 ml flask.
0 ml and 0.2 g of catalyst were charged, and irradiated with light using a 500 W xenon lamp while adding 11 Pt' using a magnetinox cooler.

照射後、1時間毎に水素の生成油をガスクロマトグラフ
ィーで測定し、定常活性を求めた。この結果を下記第1
表に示す。
After irradiation, hydrogen produced oil was measured every hour by gas chromatography to determine steady-state activity. This result is shown in the first section below.
Shown in the table.

なお1、〕こては、水にメタノールを添加しているが、
これは触媒の活性を評価し易いからである。
Note 1: The trowel adds methanol to the water,
This is because it is easy to evaluate the activity of the catalyst.

第  1  表 (メーr:比較例の触媒も何も担持してない)(実施例
8) KNb、O1l粉末(粒径lOμ以下)を2g取り、こ
れを50mj!の0.5N硫酸に加えて室温にて撹拌し
、イオン交換反応を行なった。
Table 1 (Mer: No catalyst was supported in the comparative example) (Example 8) 2g of KNb, O1l powder (particle size 1Oμ or less) was taken and mixed with 50mj! The mixture was added to 0.5N sulfuric acid and stirred at room temperature to perform an ion exchange reaction.

イオン交換された生成物をろ過し乾燥させることにより
本実施例の触媒を調製した。このとき、ろ液中のに゛イ
オンを原子吸光分析法により定量し、これにより生成物
つまりイオン交換体:Hv K +−byNbsos 
   (b = 1 )のYの値を決定した。
The catalyst of this example was prepared by filtering and drying the ion exchanged product. At this time, the ions in the filtrate are quantified by atomic absorption spectrometry, and the product, that is, the ion exchanger: Hv K + -byNbsos
The value of Y for (b = 1) was determined.

そのほか、下記第2表記載の触媒を調製した。In addition, catalysts listed in Table 2 below were prepared.

そして、得られた触媒を前述の如く評価した。The resulting catalyst was then evaluated as described above.

この結果を第2表に示す。The results are shown in Table 2.

第2表 (発明の効果) 以上のとおり、本発明によれば、ptやRu O2等の
貴金属その他を担持させることなく、活性の高い触媒が
得られ、そのため触媒の製造コストが安価で済み、従っ
て水から安価に水素を製造することが可能になる。
Table 2 (Effects of the Invention) As described above, according to the present invention, a highly active catalyst can be obtained without supporting noble metals such as PT and RuO2, and therefore the production cost of the catalyst is low. Therefore, it becomes possible to produce hydrogen from water at low cost.

Claims (1)

【特許請求の範囲】 1 一般式 I : R_xK_4_−_a_xNb_6O_1_7(式中、
Rは式:K_4Nb_6O_1_7で表される化合物又
はその水和物のKとイオン交換可能な元素であり、 aはRの価数であり、 xは不等式:0<ax≦4を満足する数値である。) で表される化合物又はその水和物からなることを特徴と
する水の光分解触媒。 2 一般式II: Q_YK_1_−_b_YNb_3O_■ (式中、Qは式:KNb_3O_8で表される化合物の
Kとイオン交換可能な元素であり、 bはQの価数であり、 Yは不等式:0<bY≦1を満足する数値である。) で表される化合物からなることを特徴とする水の光分解
触媒。 3 前記一般式 I の化合物又はその水和物が層状構造
を有することを特徴とする特許請求の範囲第1項記載の
水の光分解触媒。 4 前記一般式IIの化合物が層状構造を有することを特
徴とする特許請求の範囲第2項記載の水の光分解触媒。 5 前記一般式 I の化合物又はその水和物が、K_4
Nb_6O_1_7で表される化合物又はその水和物の
イオン交換体であることを特徴とする特許請求の範囲第
1項記載の水の光分解触媒。 6 前記一般式IIの化合物が、KNb_3O_8で表さ
れる化合物のイオン交換体であることを特徴とする特許
請求の範囲第2項記載の水の光分解触媒。 7 前記Rが、水素、アルカリ金属元素、アルカリ土類
金属元素、第III族典型元素、第IV族典型元素、第V族
典型元素及び遷移金属元素からなる群から選ばれた1種
又は2種以上の元素であることを特徴とする特許請求の
範囲第1項記載の水の光分解触媒。 8 前記Qが、水素、アルカリ金属元素、アルカリ土類
金属元素、第III族典型元素、第IV族典型元素、第V族
典型元素及び遷移金属元素からなる群から選ばれた1種
又は2種以上の元素であることを特徴とする特許請求の
範囲第2項記載の水の光分解触媒。 9 前記Rが、H、Li、Na、Mg、Ca、Sr、B
a、Al、Ga、Sn、Bi、Cr、Mn、Fe、Co
、Ni、Cu、Zn及びCeからなる群から選ばれた1
種又は2種以上の元素であることを特徴とする特許請求
の範囲第1項記載の水の光分解触媒。 10 前記Qが、H、Li、Na、Mg、Ca、Sr、
Ba、Al、Ga、Sn、Bi、Cr、Mn、Fe、C
o、Ni、Cu、Zn及びCeからなる群から選ばれた
1種又は2種以上の元素であることを特徴とする特許請
求の範囲第2項記載の水の光分解触媒。
[Claims] 1 General formula I: R_xK_4_−_a_xNb_6O_1_7 (in the formula,
R is an element capable of ion exchange with K of the compound represented by the formula: K_4Nb_6O_1_7 or its hydrate, a is the valence of R, and x is a numerical value that satisfies the inequality: 0<ax≦4 . ) or a hydrate thereof. 2 General formula II: Q_YK_1_-_b_YNb_3O_■ (wherein, Q is an element capable of ion exchange with K of the compound represented by the formula: KNb_3O_8, b is the valence of Q, and Y is the inequality: 0<bY ≦1.) A water photolysis catalyst characterized by comprising a compound represented by: 3. The water photolysis catalyst according to claim 1, wherein the compound of general formula I or its hydrate has a layered structure. 4. The water photolysis catalyst according to claim 2, wherein the compound of general formula II has a layered structure. 5 The compound of general formula I or its hydrate is K_4
The water photolysis catalyst according to claim 1, which is an ion exchanger of a compound represented by Nb_6O_1_7 or a hydrate thereof. 6. The water photolysis catalyst according to claim 2, wherein the compound of general formula II is an ion exchanger of a compound represented by KNb_3O_8. 7 The R is one or two selected from the group consisting of hydrogen, an alkali metal element, an alkaline earth metal element, a Group III typical element, a Group IV typical element, a Group V typical element, and a transition metal element. The water photolysis catalyst according to claim 1, which is one of the above elements. 8 The above Q is one or two selected from the group consisting of hydrogen, an alkali metal element, an alkaline earth metal element, a Group III typical element, a Group IV typical element, a Group V typical element, and a transition metal element. The water photolysis catalyst according to claim 2, which is one of the above elements. 9 R is H, Li, Na, Mg, Ca, Sr, B
a, Al, Ga, Sn, Bi, Cr, Mn, Fe, Co
, 1 selected from the group consisting of Ni, Cu, Zn and Ce
The water photolysis catalyst according to claim 1, characterized in that the water photolysis catalyst is a species or two or more kinds of elements. 10 The Q is H, Li, Na, Mg, Ca, Sr,
Ba, Al, Ga, Sn, Bi, Cr, Mn, Fe, C
3. The water photolysis catalyst according to claim 2, wherein the water photolysis catalyst is one or more elements selected from the group consisting of Zn, Ni, Cu, Zn, and Ce.
JP60213829A 1985-09-27 1985-09-27 Photolytic catalyst of water Pending JPS6274452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213829A JPS6274452A (en) 1985-09-27 1985-09-27 Photolytic catalyst of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213829A JPS6274452A (en) 1985-09-27 1985-09-27 Photolytic catalyst of water

Publications (1)

Publication Number Publication Date
JPS6274452A true JPS6274452A (en) 1987-04-06

Family

ID=16645715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213829A Pending JPS6274452A (en) 1985-09-27 1985-09-27 Photolytic catalyst of water

Country Status (1)

Country Link
JP (1) JPS6274452A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172535A (en) * 1988-12-26 1990-07-04 Nikon Corp New photolysis catalyst for water
WO1996006675A1 (en) * 1994-08-30 1996-03-07 Korea Research Institute Of Chemical Technology Photocatalyst, method for preparing the same, and production of hydrogen using the same
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
JP2007222761A (en) * 2006-02-22 2007-09-06 National Institute For Materials Science Visible light responsive-type composite oxide photocatalyst
WO2010104146A1 (en) 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate
EP2816087A1 (en) 2005-12-13 2014-12-24 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
CN104487168A (en) * 2012-05-29 2015-04-01 Toto株式会社 Visible-light response-type photocatalyst particles and method for manufacturing same
JP2016159183A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
CN107149931A (en) * 2017-04-17 2017-09-12 天津理工大学 The preparation method of Zinc oxide quantum dot potassium niobate photochemical catalyst and the purposes of the catalyst
WO2017159564A1 (en) 2016-03-14 2017-09-21 旭化成株式会社 Highly durable antifogging coating film and coating composition
WO2019163918A1 (en) 2018-02-23 2019-08-29 旭化成株式会社 High-durability antifogging coating film and coating composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172535A (en) * 1988-12-26 1990-07-04 Nikon Corp New photolysis catalyst for water
WO1996006675A1 (en) * 1994-08-30 1996-03-07 Korea Research Institute Of Chemical Technology Photocatalyst, method for preparing the same, and production of hydrogen using the same
US5865960A (en) * 1994-08-30 1999-02-02 Korea Research Institute Of Chemical Technology Photocatalyst, method for preparing the same, and production of hydrogen using the same
EP1752218A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
EP1752217A2 (en) 1998-11-20 2007-02-14 Asahi Kasei Kabushiki Kaisha Sol of a modified photocatalyst
EP2816087A1 (en) 2005-12-13 2014-12-24 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
JP2007222761A (en) * 2006-02-22 2007-09-06 National Institute For Materials Science Visible light responsive-type composite oxide photocatalyst
JP4660766B2 (en) * 2006-02-22 2011-03-30 独立行政法人物質・材料研究機構 Visible light responsive complex oxide photocatalyst
US8916266B2 (en) 2009-03-11 2014-12-23 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for production of laminate
WO2010104146A1 (en) 2009-03-11 2010-09-16 旭化成イーマテリアルズ株式会社 Coating composition, coating film, laminate, and process for production of laminate
US9630208B2 (en) 2009-03-11 2017-04-25 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for manufacturing the laminate
US9833811B2 (en) 2009-03-11 2017-12-05 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate and process for manufacturing the laminate
CN104487168A (en) * 2012-05-29 2015-04-01 Toto株式会社 Visible-light response-type photocatalyst particles and method for manufacturing same
JP2016159183A (en) * 2015-02-26 2016-09-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor prepared therewith
WO2017159564A1 (en) 2016-03-14 2017-09-21 旭化成株式会社 Highly durable antifogging coating film and coating composition
CN107149931A (en) * 2017-04-17 2017-09-12 天津理工大学 The preparation method of Zinc oxide quantum dot potassium niobate photochemical catalyst and the purposes of the catalyst
CN107149931B (en) * 2017-04-17 2019-11-05 天津理工大学 Zinc oxide quantum dot-preparation method of potassium niobate photochemical catalyst and the purposes of the catalyst
WO2019163918A1 (en) 2018-02-23 2019-08-29 旭化成株式会社 High-durability antifogging coating film and coating composition

Similar Documents

Publication Publication Date Title
Hao et al. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis
CN109772355B (en) Preparation method of amorphous iron oxyhydroxide/bismuth vanadate composite photocatalytic material
JP4803414B2 (en) Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
US5262023A (en) Method for producing hydrogen and oxygen from water
Pavlik et al. Photocatalytic oxidations of lactams and N-acylamines
Boudjemaa et al. Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2− solutions (X2−= S2− and SO32-)
JPS6274452A (en) Photolytic catalyst of water
CN108033522B (en) Electrocatalysis coupling advanced oxidation system
AU679868B2 (en) Photocatalyst, method for preparing the same, and production of hydrogen using the same
JP4158850B2 (en) Carbon dioxide reduction method using photocatalyst
JPH0724329A (en) Photocatalyst
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method
JPH06126189A (en) Production of hydrogen and oxygen by using semiconductor photocatalyst and production of hydrogen, oxygen and carbon monoxide
Yadav et al. A brief review on key role of perovskite oxides as catalyst
JP3742873B2 (en) Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances
JP2730111B2 (en) New water photolysis catalyst
JPH0889804A (en) Photocatalyst
CN112657515A (en) 3D flower-shaped Z-shaped heterojunction photocatalyst Zn3In2S6@α-Fe2O3And preparation method and application thereof
CN115739103B (en) Visible light photocatalytic material CuOx@BiVO4Preparation method and application thereof
JPH07313884A (en) Catalyst for photolysis of water and production of hydrogen using the same
JPH0889800A (en) Photocatalyst
JP3834625B2 (en) Indium barium composite oxide visible light responsive photocatalyst, method for producing hydrogen using this photocatalyst, and method for decomposing harmful chemical substances
JP2003251197A (en) Visible light responding photocatalyst comprising rare- earth element, hydrogen manufacturing method using the same and decomposition method for harmful chemical substance
CN103586061A (en) Visible light response AgCl-Ag-Ag2CO3 composite photocatalyst, and preparation method and application thereof
JPH0889799A (en) Photocatalyst