JPH11214956A - Surface-acoustic-wave device - Google Patents

Surface-acoustic-wave device

Info

Publication number
JPH11214956A
JPH11214956A JP10017095A JP1709598A JPH11214956A JP H11214956 A JPH11214956 A JP H11214956A JP 10017095 A JP10017095 A JP 10017095A JP 1709598 A JP1709598 A JP 1709598A JP H11214956 A JPH11214956 A JP H11214956A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10017095A
Other languages
Japanese (ja)
Inventor
Takayuki Shimizu
貴之 清水
Akihiko Kataoka
明彦 片岡
Shin Murakami
慎 村上
Shinji Inoue
真司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10017095A priority Critical patent/JPH11214956A/en
Priority to US09/212,131 priority patent/US6084333A/en
Priority to EP98310326A priority patent/EP0924856A3/en
Publication of JPH11214956A publication Critical patent/JPH11214956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-acoustic-wave device, which is provided with an optimum crystal cutting angle of an LGN that is expected to surpass the quality of convention piezoelectric materials, and the propagation direction of a surface acoustic wave. SOLUTION: In this surface-acoustic-wave device 2, which provides an excitation electrode 2 that generates a surface acoustic wave on a substrate 1 that consists of La3 Ga5.5 Nb0.5 O14 single crystal, and a cutting angle of the substrate and the propagation direction of a surface acoustic wave satisfy ϕ=10 deg.+60 deg.×n1, θ=125 deg.+180 deg.×n2, ψ=70 deg.+180×n3 (where, n1 to n3 are integers) in Eulerian angle representation (ϕ, θand ψ).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ランタン−ガリウ
ム−ニオブ系酸化物単結晶であるLa3 Ga5.5Nb
0.5 14単結晶を基板材料として用いた弾性表面波装置
に関するものである。
The present invention relates to a single crystal of lanthanum-gallium-niobium oxide La 3 Ga 5.5 Nb.
The present invention relates to a surface acoustic wave device using a 0.5 O 14 single crystal as a substrate material.

【0002】[0002]

【従来の技術とその課題】従来より、弾性表面波を発生
させる励振電極を圧電基板上に設けた弾性表面波装置が
知られているが、この弾性表面波装置の基板材料とし
て、水晶,ニオブ酸リチウム,タンタル酸リチウム等の
単結晶が使用され実用化されている。
2. Description of the Related Art Conventionally, a surface acoustic wave device in which an excitation electrode for generating a surface acoustic wave is provided on a piezoelectric substrate has been known. Quartz, niobium is used as a substrate material of the surface acoustic wave device. Single crystals such as lithium oxide and lithium tantalate have been used and put to practical use.

【0003】これら単結晶材料のうち水晶は、温度変化
に対する特性の変化が小さいので、携帯電話等のフィル
タ,レゾネータなどに好適に用いられているが、通過帯
域幅が小さいという欠点を有している。
[0003] Of these single crystal materials, quartz has a small change in characteristics with respect to temperature change, and thus is suitably used for filters, resonators and the like of mobile phones, etc., but has the drawback of having a small pass bandwidth. I have.

【0004】一方、ニオブ酸リチウム,タンタル酸リチ
ウムは通過帯域幅が大きいという利点を有しており、携
帯電話,VTR等のフィルタなどに好適に用いられてい
るが、温度変化に対する特性の変化が大きいという欠点
を有している。
[0004] On the other hand, lithium niobate and lithium tantalate have the advantage of having a large pass band width, and are suitably used for filters of mobile phones, VTRs and the like. It has the disadvantage of being large.

【0005】上記材料の欠点を補うものとして、四ほう
酸リチウム単結晶が知られているが、四ほう酸リチウム
単結晶に特有な潮解性の問題等により要求を十分に満足
するものではなかった。
[0005] Lithium tetraborate single crystals are known as a supplement to the above-mentioned disadvantages of the materials, but the requirements have not been sufficiently satisfied due to the deliquescence problem peculiar to lithium tetraborate single crystals.

【0006】近年、上記要求を満たす材料として、圧電
材料の性能評価として用いられる電気機械結合係数(k
2 )が大きく、かつ群遅延時間温度係数(TCD)が小
さいカット面,伝搬方向を有したランガサイト(La3
Ga5 SiO14)が注目されている(例えば、H.satoh
and A.Mori:Jpn.J.Appl.Phys. Vol.36(1997)pp.3071-30
63等を参照)。
In recent years, as a material satisfying the above requirements, an electromechanical coupling coefficient (k) used as a performance evaluation of a piezoelectric material has been proposed.
2 ) Langasite (La 3 ) having a large cut surface and propagation direction with a large group delay time temperature coefficient (TCD)
Ga 5 SiO 14 ) (for example, H.satoh
and A.Mori: Jpn.J.Appl.Phys.Vol.36 (1997) pp.3071-30
63).

【0007】さらに最近では、このランガサイトと同様
な結晶構造を有するLa3 Ga5.5Nb0.5 14単結晶
(以下、LGNと略記する)が圧電材料として注目され
ており、TCDが水晶並みに小さく、しかもk2 が上記
ランガサイトより大きいものとして大いに期待されてい
る。
[0007] More recently, a single crystal of La 3 Ga 5.5 Nb 0.5 O 14 (hereinafter abbreviated as LGN) having a crystal structure similar to this langasite has attracted attention as a piezoelectric material, and has a TCD as small as quartz. Moreover, it is highly expected that k 2 is larger than the above-mentioned langasite.

【0008】しかしながら、これまで上記LGNの最適
な結晶カット角、および弾性表面波の伝搬方向に関して
は報告が無く不明のままであった。
However, there has been no report on the optimum crystal cut angle of the above-mentioned LGN and the propagation direction of the surface acoustic wave, and it has been unknown.

【0009】そこで本発明は、従来の圧電材料より優れ
た性質を有するものとして期待されているLGNの最適
な結晶カット角、および弾性表面波の伝搬方向を備えた
弾性表面波装置を提供することを目的とする。
Accordingly, the present invention provides a surface acoustic wave device having an optimum crystal cut angle of LGN and a propagation direction of surface acoustic waves, which are expected to have properties superior to conventional piezoelectric materials. With the goal.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明者等は実際に育成したLa3 Ga5.5 Nb
0.5 14単結晶(LGN)の特性値に基づいて行ったコ
ンピュータシミュレーションにより、電気機械結合係
数,群遅延時間温度係数等の基本特性値が最適となるカ
ット面、および弾性表面波の伝搬方向を探索し、実際に
作製したLGNの基板上に弾性表面波を発生させる励振
電極を形成した弾性表面波装置において、基板のカット
角,弾性表面波が伝搬する方向を、右手系オイラー角表
示(φ,θ,ψ)で、φ=10°+60°×n1 、θ=
125°+180°×n2 、ψ=70°+180°×n
3 (ただし、n1,n2,n3 は整数)を満足するものであ
ることが判明した。ここで、各パラメータφ,θ,ψは
誤差範囲としてそれぞれ±5°,±10°,±10°程
度許容されるものとする。
In order to achieve the above object, the present inventors have developed La 3 Ga 5.5 Nb which has been actually grown.
By computer simulation performed based on the characteristic values of 0.5 O 14 single crystal (LGN), the cut surface where the basic characteristic values such as the electromechanical coupling coefficient and the group delay time temperature coefficient are optimal, and the propagation direction of the surface acoustic wave are determined. In a surface acoustic wave device in which an excitation electrode for generating a surface acoustic wave is formed on an LGN substrate that has been searched and actually manufactured, the cut angle of the substrate and the direction in which the surface acoustic wave propagates are represented by a right-handed Euler angle display (φ , Θ, ψ), φ = 10 ° + 60 ° × n1, θ =
125 ° + 180 ° × n2, ψ = 70 ° + 180 ° × n
3 (where n1, n2 and n3 are integers). Here, it is assumed that the parameters φ, θ, and さ れ る are allowed as error ranges of about ± 5 °, ± 10 °, and ± 10 °, respectively.

【0011】なお、図1に示すように結晶軸をX,Y,
Zとし、弾性表面波の伝搬方向をa、基板に垂直な方向
をcとし、aおよびcに垂直な方向をbとした場合に表
示した(φ,θ,ψ)をオイラー角表示という。ただ
し、特にX軸を<11・0>方向と定義する。
As shown in FIG. 1, the crystal axes are X, Y,
(Φ, θ, ψ) displayed when Z is Z, the propagation direction of the surface acoustic wave is a, the direction perpendicular to the substrate is c, and the direction perpendicular to a and c is b, is referred to as Euler angle display. However, the X axis is particularly defined as the <11.0> direction.

【0012】また、上記オイラー角表示は、点群P32
1のLGNの対称性や弾性表面波に対する周期性等を考
慮して上述したように種々の値をとりうる。
The above-mentioned Euler angle display is based on the point group P32.
As described above, various values can be taken in consideration of the symmetry of one LGN, the periodicity with respect to the surface acoustic wave, and the like.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施形態につい
て図面に基づき詳細に説明する。La3 Ga5.5 Nb
0.5 14単結晶(LGN)は、高周波加熱方式あるいは
抵抗加熱方式の単結晶育成炉内において、単結晶の原料
(La2 3 ,Ga2 3,およびNb2 5 の混合
物、あるいはLa3 Ga5.5 Nb0.5 14等)を入れた
坩堝を所定温度に加熱することにより、原料を溶融し、
この融液に種子結晶を浸し、この種子結晶を融液に対し
て所定の回転数、引き上げ速度で結晶の育成を行う。
Embodiments of the present invention will be described below in detail with reference to the drawings. La 3 Ga 5.5 Nb
The 0.5 O 14 single crystal (LGN) is mixed with a single crystal raw material (a mixture of La 2 O 3 , Ga 2 O 3 , and Nb 2 O 5 , or La) in a high-frequency heating or resistance heating single crystal growing furnace. 3 Ga 5.5 Nb 0.5 O 14 ) is heated to a predetermined temperature to melt the raw material.
The seed crystal is immersed in the melt, and the seed crystal is grown at a predetermined rotation speed and pulling speed with respect to the melt.

【0014】次に、得られた育成単結晶からオイラー角
表示(φ,θ,ψ)で、φ=10°(ただし、5°〜1
5°の範囲で許容),θ=35°(ただし、25°〜4
5°の範囲で許容)のカット面の基板を切り出し、鏡面
研磨を行い、この基板上に弾性表面波が伝搬する方向、
すなわち、ψ=70°(ただし、60°〜80°の範囲
で許容)に一致するように励振電極を形成して、例えば
図2に示すような伝搬型の弾性表面波装置Sを作製す
る。
Next, from the obtained grown single crystal, in terms of Euler angles (φ, θ, ψ), φ = 10 ° (5 ° to 1 °).
5 °), θ = 35 ° (25 ° to 4 °)
Cut out a substrate with a cut surface of 5 °), perform mirror polishing, and propagate the surface acoustic wave on this substrate,
That is, the excitation electrode is formed so as to coincide with ψ = 70 ° (however, allowable in the range of 60 ° to 80 °), and the propagation type surface acoustic wave device S as shown in FIG.

【0015】すなわち、基板1のカット面1a上にアル
ミニウム等の金属を真空蒸着法により被着形成した後、
リフトオフ法および/またはエッチング法により櫛歯状
の励振電極2a(入力側),2b(出力側)を形成す
る。なお、図中Aは入力側の励振電極に交流信号を入力
するための電源であり、Bは電気信号を検出するための
検出器である。
That is, after a metal such as aluminum is formed on the cut surface 1a of the substrate 1 by vacuum evaporation,
Comb-shaped excitation electrodes 2a (input side) and 2b (output side) are formed by a lift-off method and / or an etching method. In the figure, A is a power supply for inputting an AC signal to the excitation electrode on the input side, and B is a detector for detecting an electric signal.

【0016】ここで、φ,θ,およびψを上記角度に決
定したのは、コンピュータシミュレーションにより、上
記範囲の基板面の結晶方位および伝搬方向が、バンドパ
スフィルタとしての基本特性が最も良好であるものと予
想されたからである。
Here, the reason why φ, θ, and ψ are determined to be the above-mentioned angles is that, according to the computer simulation, the crystal orientation and the propagation direction of the substrate surface in the above-mentioned range have the best basic characteristics as a bandpass filter. Because it was expected.

【0017】このコンピュータシミュレーションの解析
方法は、上記のようにして育成した単結晶の物性値を用
い、さらにCambell等の方法(例えば、J.J.Camb
ellet al:IEEE.Trans.Sonics.Ultrason.15(1968)209を
参照)を用いて行った。なお、パラメータとしては、c
定数(N/m2 ),e定数(C/m2 ),比誘電率,線
膨張係数,密度(Kg/m3 ),およびそれらの一次温
度係数(/℃),二次温度係数(/℃2 )を使用した。
This computer simulation analysis method uses the physical properties of the single crystal grown as described above, and further uses a method such as Cambell (for example, JJCamb).
ellet al: see IEEE.Trans.Sonics.Ultrason.15 (1968) 209). The parameter is c
Constant (N / m 2 ), e constant (C / m 2 ), relative permittivity, linear expansion coefficient, density (Kg / m 3 ), and their primary temperature coefficient (/ ° C.) and secondary temperature coefficient (/ ° C 2 ) was used.

【0018】上記コンピュータシミュレーションの結果
によれば、図3〜図4に示すように、電気機械結合係数
(k2 )が大きく、しかも室温における群遅延時間温度
係数(TCD)も約0℃/ppmであるカット面,弾性
表面波の伝搬方向は、(φ,θ,ψ)= (10°+6
0°×n1 ,125°+180°×n2 ,70°+18
0°×n3 )であることが判明した。なお、n1 〜n3
は整数である。
According to the results of the computer simulation, as shown in FIGS. 3 and 4, the electromechanical coupling coefficient (k 2 ) is large and the group delay time temperature coefficient (TCD) at room temperature is about 0 ° C./ppm. And the propagation direction of the surface acoustic wave is (φ, θ, ψ) = (10 ° + 6)
0 ° × n1, 125 ° + 180 ° × n2, 70 ° + 18
0 ° × n 3). Note that n1 to n3
Is an integer.

【0019】また、図3に示す結果によれば、ψが70
°前後(70°±10°)の場合で、TCDがほぼ零と
なるφは3°〜17°、θは112°〜135°であ
り、また、図4に示す結果によれば、ψが70°前後の
場合で、k2 が0.80%以上となるφは5°〜17
°、θは25〜45°であった。なお、k2 は高い値ほ
どよいが、この基準値を0.80%としたのは、実用化
されているLiTaO3 単結晶や四ホウ酸リチウム単結
晶におけるk2 のほぼ下限が0.80%程度だからであ
る。
Also, according to the results shown in FIG.
When the TCD is approximately zero (70 ° ± 10 °), φ at which the TCD becomes almost zero is 3 ° to 17 °, θ is 112 ° to 135 °, and according to the results shown in FIG. In the case of about 70 °, φ at which k 2 is 0.80% or more is 5 ° to 17 °.
° and θ were 25 to 45 °. The higher the value of k 2 , the better, but the reference value is set to 0.80% because the lower limit of k 2 in a practically used LiTaO 3 single crystal or lithium tetraborate single crystal is approximately 0.80%. %.

【0020】なお、上記オイラー角表示は、点群P32
1のLGNの対称性や弾性表面波に対する周期性等によ
り上記各数値をとりうる。
Note that the above Euler angles are indicated by the point group P32.
The above numerical values can be taken according to the symmetry of LGN 1 and the periodicity of the surface acoustic wave.

【0021】すなわち、例えば第1の結晶ではφ=10
°,70°,130°,190°,250°,310°
およびθ=125°,305°は、それぞれ同等の角度
として扱える。
That is, for example, in the first crystal, φ = 10
°, 70 °, 130 °, 190 °, 250 °, 310 °
And θ = 125 ° and 305 ° can be treated as equivalent angles.

【0022】上記のように作製した弾性表面波装置につ
いて、k2 ,TCDの測定を行い、バンドパスフィルタ
として良好な伝搬方向の実測を行なったところ、上記シ
ミュレーション結果ときわめて整合性のよい結果が得ら
れた。また、La3 Ga5.5Nb0.5 14単結晶は、そ
の弾性表面波の速度が2700m/秒程度で比較的小さ
く、低周波フィルタとして用いる場合に小型化が可能と
なり、バンドパスフィルタとして好適に使用可能であ
る。
With respect to the surface acoustic wave device manufactured as described above, k 2 and TCD were measured, and a good measurement of the propagation direction was performed as a band-pass filter. Obtained. Further, the La 3 Ga 5.5 Nb 0.5 O 14 single crystal has a relatively small surface acoustic wave speed of about 2700 m / sec, and can be miniaturized when used as a low-frequency filter, and is suitably used as a band-pass filter. It is possible.

【0023】なお、弾性表面波装置は伝搬型だけでなく
共振器型など各種タイプのフィルタや振動子等に適用が
可能であり、本発明の要旨を逸脱しない範囲で適宜変更
し実施が可能である。
The surface acoustic wave device can be applied not only to the propagation type but also to various types of filters and vibrators such as a resonator type, and can be appropriately modified and implemented without departing from the gist of the present invention. is there.

【0024】[0024]

【実施例】次に、本発明のより具体的な実施例について
説明する。 〔例1〕調和組成比に混合されたLa3 Ga5.5 Nb
0.5 14単結晶の原料2500gを、内径φ100m
m、高さ90mmのIr製坩堝に充填し、高周波式単結
晶育成炉にて、Ar:O2 =90:10となるように調
整した雰囲気ガスを流しながら、上記原料を約1500
℃で融解した後、この融液面に種子結晶を接触させて単
結晶を成長させた。
Next, more specific embodiments of the present invention will be described. [Example 1] La 3 Ga 5.5 Nb mixed in a harmonic composition ratio
2500 g of a raw material of 0.5 O 14 single crystal, inner diameter φ100 m
m and a height of 90 mm, and charged in a high-frequency single crystal growing furnace while flowing an atmosphere gas adjusted so that Ar: O 2 = 90: 10.
After melting at ° C, a single crystal was grown by bringing a seed crystal into contact with the melt surface.

【0025】次に、この育成結晶から上記コンピュータ
シミュレーションで得た最適なカット面、すなわち、図
1に示すようなオイラー角表示でφ=10°,θ=12
5°,ψの面が得られるように切り出し、鏡面研磨を行
って、図2に模式的に示すように、基板1上に電極指幅
約3μm 、入力側電極1aの電極指本数280本、出力
側電極1bの電極指本数60本からなる励振電極等を所
定の方向となるように形成して、伝搬型の弾性表面波装
置Sを作製した。なお、Aは交流電源、Bは電流検出器
である。
Next, the optimum cut plane obtained from the grown crystal by the computer simulation, that is, φ = 10 ° and θ = 12 in Euler angle display as shown in FIG.
A surface of 5 ° and 5 is cut out and mirror-polished, and as schematically shown in FIG. 2, an electrode finger width of about 3 μm, an input electrode 1a having 280 electrode fingers, as schematically shown in FIG. Excitation electrodes and the like consisting of 60 electrode fingers of the output side electrode 1b were formed so as to be in a predetermined direction, and a propagation type surface acoustic wave device S was manufactured. A is an AC power supply, and B is a current detector.

【0026】なお、上記励振電極はアルミニウムを真空
蒸着法により厚み約3500Åに被着形成後、リフトオ
フ法により櫛形状に形成したものである。
The excitation electrode is formed by depositing aluminum to a thickness of about 3500 ° by a vacuum evaporation method and then forming it in a comb shape by a lift-off method.

【0027】次に、上述のように作製した弾性表面波装
置について、群遅延時間温度係数(TCD)、電気機械
結合係数(k2 )を求めた。
Next, the group delay time temperature coefficient (TCD) and the electromechanical coupling coefficient (k 2 ) of the surface acoustic wave device manufactured as described above were determined.

【0028】ここで、TCDの測定は中心周波数(ここ
では、約79MGHz とした)の温度に対する変化率か
ら、またk2 はネットワークアナライザを用いて次の式
より算出した。
Here, the measurement of TCD was calculated from the rate of change of the center frequency (here, about 79 MGHz) with respect to the temperature, and k 2 was calculated by the following equation using a network analyzer.

【0029】 TCD(ppm/℃)=α−(∂VO /∂T)VOT 〔ppm/℃〕 ・・・ (1) k2 =2×(VO −Vm )/VO ×100 〔%〕 ・・・ (2) ただし、αは伝搬方向の線膨張係数、VO は基板表面が
電気的に開放状態の場合の伝搬速度、Vm は基板表面が
電気的に短絡状態の場合の伝搬速度、VOTは25℃のと
きの伝搬速度である。
TCD (ppm / ° C.) = Α− (ΔV O / ΔT) V OT [ppm / ° C.] (1) k 2 = 2 × (V O −V m ) / V O × 100 [%] (2) where α is the coefficient of linear expansion in the propagation direction, V O is the propagation speed when the substrate surface is electrically open, and V m is the case when the substrate surface is electrically short-circuited. , And V OT is the propagation speed at 25 ° C.

【0030】この測定の結果、オイラー角表示(φ,
θ,ψ)で、φ=10°,θ=35°,ψ=70°で表
される伝搬方向の弾性表面波装置のTCD、k2 は、そ
れぞれほぼ0(ppm/℃),0.88(%)となり、
非常に良好な結果を得ることができた。
As a result of this measurement, the Euler angle display (φ,
θ, ψ), TCD and k 2 of the surface acoustic wave device in the propagation direction represented by φ = 10 °, θ = 35 °, ψ = 70 ° are almost 0 (ppm / ° C.) and 0.88, respectively. (%),
Very good results could be obtained.

【0031】[0031]

【発明の効果】以上説明したように、本発明の弾性表面
波装置によれば、最適なカット面の基板上に励振電極を
形成したので、群遅延時間温度係数(TCD)がほぼ零
であり、しかも電気機械結合係数(k2 )が非常に大き
な優れた基板を有する弾性表面波装置を提供することが
できる。
As described above, according to the surface acoustic wave device of the present invention, the group delay time temperature coefficient (TCD) is almost zero because the excitation electrode is formed on the substrate having the optimum cut surface. In addition, it is possible to provide a surface acoustic wave device having an excellent substrate having a very large electromechanical coupling coefficient (k 2 ).

【0032】また、La3 Ga5.5 Nb0.5 14単結晶
は弾性表面波の速度が比較的小さく低周波フィルタとし
て用いる場合に小型化が容易であり、しかも特にバンド
パスフィルタとして優れた弾性表面波装置を提供するこ
とができる。
The La 3 Ga 5.5 Nb 0.5 O 14 single crystal has a relatively small surface acoustic wave velocity and can be easily miniaturized when used as a low-frequency filter. An apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オイラー角表示を説明するための摸式図であ
る。
FIG. 1 is a schematic diagram for explaining Euler angle display.

【図2】本発明に係る弾性表面波装置を摸式的に示した
斜視図である。
FIG. 2 is a perspective view schematically showing a surface acoustic wave device according to the present invention.

【図3】ψ=70°の場合のカット面とTCDとの関係
を表すグラフである。
FIG. 3 is a graph showing a relationship between a cut surface and TCD when ψ = 70 °.

【図4】ψ=70°の場合のカット面とk2 との関係を
表すグラフである。
FIG. 4 is a graph showing a relationship between a cut plane and k 2 when ψ = 70 °.

【符号の説明】[Explanation of symbols]

1:基板 1a:カット面 2:励振電極 S:弾性表面波装置 1: substrate 1a: cut surface 2: excitation electrode S: surface acoustic wave device

フロントページの続き (72)発明者 井上 真司 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内Continuation of front page (72) Inventor Shinji Inoue 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Kyocera Corporation Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 La3 Ga5.5 Nb0.5 14単結晶から
成る基板上に、弾性表面波を発生させる励振電極を設け
て成る弾性表面波装置であって、前記基板のカット角お
よび弾性表面波の伝搬方向を示すオイラー角表示(φ,
θ,ψ)の各パラメータが、下記式を満足することを特
徴とする弾性表面波装置。 φ=10°+60°×n1 、 θ=125°+180°×n2 、 ψ=70°+180°×n3 (ただし、n1,n2,n3 は整数)
1. A surface acoustic wave device comprising a substrate made of a La 3 Ga 5.5 Nb 0.5 O 14 single crystal and an excitation electrode for generating a surface acoustic wave, wherein the substrate has a cut angle and a surface acoustic wave. Euler angle display (φ,
A surface acoustic wave device wherein each parameter of θ, ψ) satisfies the following equation. φ = 10 ° + 60 ° × n1, θ = 125 ° + 180 ° × n2, ψ = 70 ° + 180 ° × n3 (where n1, n2 and n3 are integers)
JP10017095A 1997-12-16 1998-01-29 Surface-acoustic-wave device Pending JPH11214956A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10017095A JPH11214956A (en) 1998-01-29 1998-01-29 Surface-acoustic-wave device
US09/212,131 US6084333A (en) 1997-12-16 1998-12-15 Surface acoustic wave device
EP98310326A EP0924856A3 (en) 1997-12-16 1998-12-16 A surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017095A JPH11214956A (en) 1998-01-29 1998-01-29 Surface-acoustic-wave device

Publications (1)

Publication Number Publication Date
JPH11214956A true JPH11214956A (en) 1999-08-06

Family

ID=11934451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017095A Pending JPH11214956A (en) 1997-12-16 1998-01-29 Surface-acoustic-wave device

Country Status (1)

Country Link
JP (1) JPH11214956A (en)

Similar Documents

Publication Publication Date Title
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
CN1902817B (en) Boundary acoustic wave device
Assila et al. High-frequency resonator using A 1 Lamb wave mode in LiTaO 3 plate
JP3278167B2 (en) Surface acoustic wave device
Liu et al. A Spurious-Free SAW Resonator With Near-Zero TCF Using LiNbO 3/SiO 2/quartz
JP2000068782A (en) Surface wave resonator, surface wave filter, shared device and communication device
JP2006074136A (en) Surface acoustic wave element chip and surface acoustic wave device
JP3255502B2 (en) Highly stable surface acoustic wave device
US6084333A (en) Surface acoustic wave device
Huang et al. Influence of Coupling Between Rayleigh and SH SAWs on Rotated $ Y $-Cut LiNbO 3 to Their Propagations
JPH11214956A (en) Surface-acoustic-wave device
JPH11261369A (en) Surface acoustic wave device
JP2000022490A (en) Surface acoustic wave device
JP2000068778A (en) Surface wave resonator, surface wave filter, shared device, communication device, surface wave device and production of the resonator
JPH11340782A (en) Surface acoustic wave device
JPH1131942A (en) Surface acoustic wave module element and its production
Yamanouch High coupling and zero TCF SH-SAW and SH-Boundary SAW using electrodes/Rotated YX LiTaO 3 and SiO 2/electrodes/Rotated YX LiTaO 3
Adachi et al. Leaky SAW propagation properties on Li/sub 2/B/sub 4/O/sub 7/substrates
JPS5930332B2 (en) surface acoustic wave device
Liu et al. Exploring Transverse Mode Suppression with Tilted IDTs in TF-SAW Resonators
Fujishima Piezoelectric devices for frequency control and selection in Japan
Shan et al. Suppression of Spurious Modes on LGS with Euler Angle of (0°, 22°, 30°)
JPH10190407A (en) Surface acoustic wave element
JPH1127089A (en) Surface acoustic wave device
JPH1155064A (en) Wafer and piezoelectric element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees