JPH11214421A - Method for forming electrode of semiconductor element - Google Patents

Method for forming electrode of semiconductor element

Info

Publication number
JPH11214421A
JPH11214421A JP28762498A JP28762498A JPH11214421A JP H11214421 A JPH11214421 A JP H11214421A JP 28762498 A JP28762498 A JP 28762498A JP 28762498 A JP28762498 A JP 28762498A JP H11214421 A JPH11214421 A JP H11214421A
Authority
JP
Japan
Prior art keywords
solution
electrode
plating
aluminum electrode
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28762498A
Other languages
Japanese (ja)
Inventor
喜久 ▲高▼瀬
Yoshihisa Takase
Naoki Okazaki
直毅 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28762498A priority Critical patent/JPH11214421A/en
Publication of JPH11214421A publication Critical patent/JPH11214421A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PROBLEM TO BE SOLVED: To provide electroless nickel plating and gold plating methods on an aluminum electrode for forming a highly reliable electrode. SOLUTION: Zinc is deposited 14 on the aluminum electrode 12 with zincate treating liquid containing sodium hydroxide and zinc oxide. Then, sodium hypophosphite being a reducing agent is dissolved in pure water. Pure water is added while it is adjusted to pH 9.0-12.0 with sodium hydroxide solution and it is immersed into solution 15 which is set to be 1000 mL in total. Then, nickel plating is executed with the condition of pH 4.0-6.8 at 80-90 deg.C by using oxidation-reduction reaction electroless nickel plating liquid containing sulfur compound with the aluminum electrode 12 of the semiconductor element as reaction accelerator. Thus, a nickel film 16 containing phosphorus and gold plating films 17 and 18 are obtained in all the aluminum electrodes 12 of the semiconductor element by executing substitution reaction electroless gold plating and oxidation reduction-type electroless plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子をフリッ
プチップ方式やフィルムキャリア方式などのワイヤレス
ボンデイング方式を用いて実装する場合に必要な半導体
素子の電極形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming electrodes of a semiconductor device which is necessary when a semiconductor device is mounted by using a wireless bonding method such as a flip chip method or a film carrier method.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い、IC,
LSIなどの半導体素子は高密度、高集積化が進められ
ている。また、半導体素子の実装面からみても電極間隔
の狭ピッチ化、入出力電極数の増大といった傾向にあ
る。さらに電卓、ノートパソコン、携帯電話にみられる
ように薄型化が要求されている。
2. Description of the Related Art In recent years, with the miniaturization of electronic equipment, ICs,
2. Description of the Related Art High density and high integration of semiconductor elements such as LSIs are being promoted. Also, from the viewpoint of the mounting surface of the semiconductor element, there is a tendency that the pitch between the electrodes is reduced and the number of input / output electrodes is increased. Furthermore, thinner devices such as calculators, notebook computers, and mobile phones are required.

【0003】これらの要求に対して、フリップチップ方
式やTAB方式などのワイヤレスボンデイング方式が一
括接合や位置合わせ精度からくる信頼性、実装の薄型
化、高密度化などの面からマッチしており、今後の半導
体素子の実装技術における一つの大きな柱となることが
予想され多くの研究開発がなされている。
[0003] To meet these demands, wireless bonding methods such as the flip chip method and the TAB method are matched from the viewpoints of reliability resulting from collective joining and alignment accuracy, thinner mounting, higher density, and the like. It is expected to become one of the major pillars in the mounting technology of semiconductor devices in the future, and much research and development has been made.

【0004】ワイヤレスボンデイング方式では、一般に
半導体素子のアルミニウム電極上に突起電極あるいはバ
ンプと呼ばれる金属突起物が形成される。
In the wireless bonding method, generally, a metal projection called a bump electrode or a bump is formed on an aluminum electrode of a semiconductor element.

【0005】このような半導体素子のアルミニウム電極
上に突起電極を形成する方法としては、多くの方式が提
案され事業化されているものもある。こうした方式の中
で低コストが期待される無電解めっき法によるバンプ形
成方法が研究されている。例えば特開昭63−3055
32号公報、特開昭64−81344号公報、特開平9
−69524号公報に開示されているパラジウム核付け
法がその例としてあげられる。
As a method of forming a protruding electrode on an aluminum electrode of such a semiconductor device, many methods have been proposed and some of them have been commercialized. Among these methods, a method of forming a bump by electroless plating, which is expected to be low in cost, has been studied. For example, JP-A-63-3055
32, JP-A-64-81344,
An example thereof is a palladium nucleation method disclosed in JP-A-69524.

【0006】この方法について図4を用いて説明する。
図4(a)に示すようにシリコン基板1からなる半導体
素子2のアルミニウム電極3の表面を硝酸(またはりん
酸)の希釈液により前処理した後洗浄する。4はパッシ
ベーション膜である。続いて、図4(b)に示すように
塩化パラジウム1g、塩酸100cc及び水9.54Lか
らなるパラジウム活性化剤に前記半導体素子2を30〜
60秒間浸漬して露出するアルミニウム電極3の表面に
パラジウムの析出物5を付着させる。
This method will be described with reference to FIG.
As shown in FIG. 4A, the surface of the aluminum electrode 3 of the semiconductor element 2 made of the silicon substrate 1 is pretreated with a dilute solution of nitric acid (or phosphoric acid) and then washed. 4 is a passivation film. Subsequently, as shown in FIG. 4 (b), the semiconductor element 2 was placed in a palladium activator consisting of 1 g of palladium chloride, 100 cc of hydrochloric acid and 9.54 L of water.
The precipitate 5 of palladium is adhered to the surface of the aluminum electrode 3 exposed by immersion for 60 seconds.

【0007】次いで、図4(c)に示すように半導体素
子のアルミニウム電極3の表面に析出したパラジウム5
が除去されない程度に洗浄した後、半導体素子2をpH
が4〜6、温度が80〜90℃の無電解ニッケルめっき
液中に浸漬して約1時間の無電解めっきを施して露出す
るアルミニウム電極3を含む周辺に厚さ20μmのニッ
ケルバンプ6を形成する。続いて、半導体素子2を洗浄
した後、半導体素子2を無電解金めっき液中に浸漬して
無電解金めっきを施し、ニッケルバンプ6の表面に1μ
mの金層7を形成するというものである。
Next, as shown in FIG. 4C, palladium 5 deposited on the surface of the aluminum electrode 3 of the semiconductor device
After the semiconductor element 2 has been washed to such an extent that
Is immersed in an electroless nickel plating solution having a temperature of 4 to 6 and a temperature of 80 to 90 ° C., and subjected to electroless plating for about 1 hour to form a nickel bump 6 having a thickness of 20 μm around the exposed aluminum electrode 3. I do. Subsequently, after cleaning the semiconductor element 2, the semiconductor element 2 is immersed in an electroless gold plating solution to perform electroless gold plating, and a 1 μm
m of the gold layer 7 is formed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来例ではパラジウム活性化剤による触媒化処理では金属
であるアルミニウム以外の半導体素子表面(不導体部
分:例えばパッシベーション膜)上にもパラジウムが析
出し、ニッケルめっきを行うとその析出したパラジウム
を核にめっき反応がスタートする可能性が生じるため、
反応の選択性に欠け、不導体の表面の電気絶縁性を悪く
するあるいは電極ピッチが狭くなると電極間でめっき皮
膜がブリッジし、電極間でショートするなどの弊害があ
った。また半導体以外の用途で、一般的にアルミニウム
金属板へのめっき方法として行われているジンケート処
理による無電解ニッケルめっき仕様では、半導体素子の
電極として使われているアルミニウム表面へのニッケル
めっきはアルミニウム電極のアルミニウムが例えばAl
−1%Si等の合金の場合、めっき皮膜の表面凹凸が非
常に大きくまた密着強度も弱く半導体素子と回路基板接
続用電極としては不十分であった。また実際のワーキン
グ半導体素子に無電解ニッケルめっきを行うといかなる
金属も付着しない電極(特定電極:例えばGND、ある
いはVccなど)が観察された。この傾向は多くの種類の
半導体素子上の電極で発生し、しかも同じ位置の電極に
めっきが付かないという現象であった。
However, in the above conventional example, palladium is deposited on the surface of a semiconductor element other than aluminum (non-conductive portion: for example, a passivation film) by catalyzing treatment with a palladium activator, When nickel plating is performed, there is a possibility that the plating reaction starts with the precipitated palladium as a nucleus,
If the selectivity of the reaction is lacking and the electrical insulation on the surface of the nonconductor is deteriorated or the electrode pitch is narrowed, the plating film is bridged between the electrodes, resulting in a short circuit between the electrodes. In applications other than semiconductors, in the electroless nickel plating specification by zincate treatment, which is generally performed as a plating method on aluminum metal plates, nickel plating on the aluminum surface used as the electrode of the semiconductor element is an aluminum electrode Of aluminum is, for example, Al
In the case of an alloy such as -1% Si, the surface unevenness of the plating film is extremely large and the adhesion strength is weak, and thus it is insufficient as an electrode for connecting a semiconductor element and a circuit board. When electroless nickel plating was performed on the actual working semiconductor element, an electrode (specific electrode: for example, GND or Vcc ) to which no metal adhered was observed. This tendency is a phenomenon that occurs on many types of electrodes on semiconductor elements, and that the electrodes at the same position are not plated.

【0009】また一方、フリップチップ実装あるいはT
AB実装においては、実装の方式により突起電極の高さ
精度の要求が非常に高い場合があり、その場合、突起電
極を上から圧力をかけてつぶし高さを揃えるという、レ
ベリングという方法が取られている。しかし前記のよう
なニッケル突起電極では、ニッケルの硬度が高いためつ
ぶれないという課題があり、硬度の低い金のめっき皮膜
が必要である。
On the other hand, flip chip mounting or T
In AB mounting, the height accuracy of the protruding electrodes may be extremely high depending on the mounting method. In this case, a method called leveling is used, in which the protruding electrodes are pressed from above to make the heights uniform. ing. However, the above-mentioned nickel projection electrode has a problem that it is not crushed due to high hardness of nickel, and a gold plating film having low hardness is required.

【0010】この課題を解決するために酸化還元反応型
の金めっき液の検討がなされてきた。しかし、従来の水
素化ホウ素カリウムあるいはジメチルアミンボラン(D
MAB)などを還元剤とし、ジシアノ金(I)酸カリウ
ムなどのシアン化金塩を金属塩とする無電解金めっき液
では、液が強アルカリ性(pH13〜13.6)であ
り、液温も60〜80℃と比較的高いため、半導体のパ
ッシベーション膜を侵したり、耐金めっき性のレジスト
材料がないために、金のような硬度の低い金属を無電解
めっきでめっきして突起電極を形成することができなか
った。また、この金めっき液は、シアン化合物を含むた
め作業環境、廃液処理にも問題があった。
[0010] In order to solve this problem, studies have been made on an oxidation-reduction reaction type gold plating solution. However, conventional potassium borohydride or dimethylamine borane (D
MAB) or the like as a reducing agent, and an electroless gold plating solution using a metal cyanide such as potassium dicyanoaurate (I) as a metal salt, the solution is strongly alkaline (pH 13 to 13.6) and the solution temperature is low. Since the temperature is relatively high at 60 to 80 ° C., the bump electrode is formed by electroless plating a metal having low hardness, such as gold, because the passivation film of the semiconductor is eroded and there is no resist material resistant to gold plating. I couldn't. Further, since this gold plating solution contains a cyanide compound, there is also a problem in working environment and waste liquid treatment.

【0011】本発明は上記従来の課題を解決し、低コス
トで半導体素子の基板やアルミニウム電極あるいはパッ
シベーション膜に悪影響を及ぼすことなく、信頼性の高
い電極あるいは突起電極を半導体素子のアルミニウム電
極面上に形成する方法を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a highly reliable electrode or protruding electrode on an aluminum electrode surface of a semiconductor element at a low cost without adversely affecting a substrate, an aluminum electrode or a passivation film of the semiconductor element. It is an object of the present invention to provide a method for forming the same.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明による半導体素子の電極形成方法は、半導体素
子のアルミニウム電極表面にバリアメタルあるいは突起
電極としてニッケルめっきを施すにあたり、上記素材を
酸性液あるいはアルカリ性液によりエッチング処理した
後、スマット除去液でデスマット処理を行い、次にアル
カリ性金属酸塩溶液でアルミニウム電極表面からアルミ
ニウムの酸化膜を除去すると同時に、アルミニウムと亜
鉛を置換するジンケート処理を1〜3回行い、アルミニ
ウム電極表面にZnの微粒子を析出させ、次に還元剤を
溶かしたアルカリ性溶液に浸漬することにより前記アル
ミニウム電極表面を活性化し、さらに前記還元剤溶液を
アルミニウム電極に付着させた状態で反応促進剤を考慮
した酸化還元反応型の無電解ニッケルめっき液に浸漬す
ることによりニッケルめっきを行い、その上に置換反応
型の無電解金めっき液でフラッシュ金めっきを行うもの
である。実装方式によっては、さらに中性でノンシアン
系の酸化還元反応型無電解金めっき液に浸漬することに
より厚付けの金めっきを行う方法としたものである。
In order to solve the above-mentioned problems, a method for forming an electrode of a semiconductor device according to the present invention provides a method for forming a metal on a surface of an aluminum electrode of a semiconductor device by applying nickel plating as a barrier metal or a projection electrode. After performing an etching treatment with a liquid or an alkaline liquid, a desmutting treatment is performed with a smut removing liquid, and then a zincate treatment for replacing aluminum and zinc is performed simultaneously with removing an aluminum oxide film from the aluminum electrode surface with an alkaline metal salt solution. ~ 3 times, to precipitate Zn fine particles on the aluminum electrode surface, and then activate the aluminum electrode surface by immersing it in an alkaline solution in which a reducing agent is dissolved, and further attach the reducing agent solution to the aluminum electrode. Oxidation-Reduction Reaction Considering the Reaction Accelerator in the State Perform nickel plating by immersing in an electroless nickel plating solution, and performs flash gold plated with an electroless gold plating solution of the substitution reaction type thereon. Depending on the mounting method, a thicker gold plating method is adopted by further immersing in a neutral, non-cyanide-based oxidation-reduction type electroless gold plating solution.

【0013】この方法によって、極めて簡単な設備かつ
手法によりパッシベーション膜やアルミニウム電極が腐
食されることなく電気的導通も良好なニッケルめっき膜
を、さらには厚付けの金めっき膜を半導体素子の全ての
アルミニウム電極上に形成することが可能となる。
According to this method, a nickel plating film having good electrical conduction without corroding the passivation film and the aluminum electrode by a very simple facility and method, and a thick gold plating film can be used for all of the semiconductor elements. It can be formed on an aluminum electrode.

【0014】[0014]

【発明の実施の形態】本発明によるアルミニウム電極上
へのニッケルめっき法の基本は、アルミニウム電極を有
する半導体電極をまず酸性液あるいはアルカリ性液でエ
ッチング処理をした後、スマット除去液でデスマット処
理を行い、次に水酸化ナトリウム溶液中に酸化亜鉛を溶
解させた液をベースとし、その中に金属添加剤と錯化剤
を添加したアルカリ性亜鉛酸塩溶液を用いてジンケート
処理を行いアルミニウム電極の表面にアルミニウムとの
置換反応により亜鉛を析出させ、次に次亜りん酸ナトリ
ウムのような次工程の酸化還元反応型無電解ニッケルめ
っき液に使用する還元剤を溶かし、さらにpHを9.0
〜12.0に調整したアルカリ性溶液に浸漬し、この後
上記還元剤を含むアルカリ性溶液を表面に付着させた状
態で前記素材をイオウ化合物からなる反応促進剤を考慮
した酸化還元反応型の無電解ニッケルめっき液に浸漬し
た後、置換反応型の無電解金めっき液でフラッシュ金め
っきを行う。その後、実装方式によっては、アスコルビ
ン酸またはその塩と亜硫酸金またはその塩または塩化金
酸またはその塩とからなる酸化還元反応型の無電解金め
っき液に浸漬することを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The nickel plating method on an aluminum electrode according to the present invention is based on the following. First, a semiconductor electrode having an aluminum electrode is etched with an acidic solution or an alkaline solution and then desmutted with a smut removing solution. Then, based on a solution obtained by dissolving zinc oxide in a sodium hydroxide solution, a zincate treatment was performed using an alkaline zincate solution in which a metal additive and a complexing agent were added, and a zincate treatment was performed on the surface of the aluminum electrode. Zinc is precipitated by a substitution reaction with aluminum, and then a reducing agent such as sodium hypophosphite used in a redox reaction type electroless nickel plating solution in the next step is dissolved, and the pH is further adjusted to 9.0.
The material is immersed in an alkaline solution adjusted to ~ 12.0, and then the above-mentioned material is attached to the surface of the alkaline solution containing the reducing agent. After immersion in a nickel plating solution, flash gold plating is performed with a substitution reaction type electroless gold plating solution. Thereafter, depending on the mounting method, the substrate is immersed in an oxidation-reduction type electroless gold plating solution composed of ascorbic acid or a salt thereof and gold sulfite or a salt thereof or chloroauric acid or a salt thereof.

【0015】一般にアルミニウムは酸あるいはアルカリ
でエッチングすることにより表面酸化膜を取り除いて
も、その後に行う水洗処理や次のめっき処理までの間に
再び酸化膜を生じ易くめっきが付きにくくなることがあ
る。さらに半導体素子の特徴として半導体素子の電極で
あるVcc,GND,I/O等各端子がトランジスタ、抵
抗、コンデンサ、PN接合等機能素子とつながっていた
り、あるいは半導体素子によってはVccあるいはGND
が半導体素子のベースであるシリコン基板にショートし
ていたりするため、各電極間では電位差が生じる。この
ため、通常のめっき方法では電極間で局部電池を形成す
るため局部電池形成の仕方によってはめっきが付かない
現象が発生する。
In general, even if aluminum is etched with an acid or an alkali to remove a surface oxide film, an oxide film is easily formed again before the subsequent water washing treatment or the next plating treatment, and plating may not be easily attached. . Further, as a feature of the semiconductor element, each terminal such as Vcc , GND, I / O, etc., which is an electrode of the semiconductor element, is connected to a functional element such as a transistor, a resistor, a capacitor, a PN junction, or Vcc or GND depending on the semiconductor element.
Is short-circuited to the silicon substrate, which is the base of the semiconductor element, so that a potential difference occurs between the electrodes. For this reason, in a usual plating method, a local battery is formed between the electrodes, and a phenomenon occurs in which plating is not applied depending on the method of forming the local battery.

【0016】そこで無電解ニッケルめっきの反応の駆動
力を考えたとき、Ni2+の還元電位は、酸性側ではpH
4付近まではほぼ一定であるが、アルカリ側ではNi錯
イオンの安定のために相当変動する。一方還元剤の酸化
還元電位は全pH域にわたって直線的に変化する。従っ
て、めっき反応、すなわち還元反応の駆動力の値はpH
によっても変化することがわかった。
Therefore, considering the driving force of the reaction of electroless nickel plating, the reduction potential of Ni 2+ is pH on the acidic side.
It is almost constant up to around 4, but fluctuates considerably on the alkali side due to the stability of Ni complex ions. On the other hand, the redox potential of the reducing agent changes linearly over the entire pH range. Therefore, the value of the driving force of the plating reaction, that is, the reduction reaction is pH
Was also changed by

【0017】例えば、無電解ニッケルめっきにおいて
は、 pH4で Ni2++2e-=Ni………Eo=−0.250V H2PO2 -+H2O=H2PO3 -+2H++2e- ………Eo′=−0.750V Eo′−Eo=−0.5V pH12で Ni−cit+2e-=Ni………Eo=−0.4V H2PO2 -+H2O=H2PO3 -+2H++2e- ………Eo′=−1.25V Eo′−Eo=−0.85V であり、pHが高いほど還元反応の駆動力が大きくなる
ことがわかる。
For example, in electroless nickel plating, Ni 2+ + 2e = Ni at pH 4... E o = −0.250 V H 2 PO 2 + H 2 O = H 2 PO 3 + 2H + + 2e . ...... E o '= -0.750V E o ' -E o = -0.5V pH12 in the Ni-cit + 2e - = Ni ......... E o = -0.4V H 2 PO 2 - + H 2 O = H 2 PO 3 - + 2H + + 2e - a ......... E o '= -1.25V E o ' -E o = -0.85V, it can be seen that the driving force of the reduction reaction higher pH increases.

【0018】従って、この反応の駆動力を生かし、半導
体素子の各電極間の電位差を上回る還元力を発生させる
ことが重要である。つまり、各アルミニウム電極の表面
をe -(H2PO2 -+H2O=H2PO3 -+2H++2e-
がリッチな状態にし、Ni2++2e-=Niの反応を促
進するには、各アルミニウム電極の表面のpHを高く
(アルカリ側)にするとともに還元剤である次亜りん酸
ナトリウムの量もリッチな状態にしておくことが重要で
ある。
Therefore, by utilizing the driving force of this reaction, the semiconductor
Generates reducing power that exceeds the potential difference between the electrodes of the body element
This is very important. In other words, the surface of each aluminum electrode
To e -(HTwoPOTwo -+ HTwoO = HTwoPOThree -+ 2H++ 2e-)
Is rich and Ni2++ 2e-= Promote Ni reaction
To proceed, raise the pH of the surface of each aluminum electrode.
(Alkali side) and hypophosphorous acid as a reducing agent
It is important to keep the amount of sodium rich
is there.

【0019】本発明では、アルミニウム酸化物を溶解す
る働きがあるとともに、次のニッケルめっきに持ち込ん
でもめっき作用に支障を与えることのない水酸化ナトリ
ウム溶液にニッケルめっき液中に含まれる還元剤(例え
ば次亜りん酸ナトリウム)を溶かし、半導体素子のアル
ミニウム電極にそのまま付着させた状態で直ちに酸化還
元型無電解ニッケルめっきをすれば電極表面に酸化膜を
生じることもなく大きな還元力を得ることができ、アル
ミニウム電極上に先に析出した亜鉛の粒子を中心にニッ
ケル膜が析出する。このように前記処理を施すことによ
り、アルミニウム電極を有する半導体素子がめっき液の
中に入った際初期のニッケル析出を容易にする。また、
このニッケルめっきができれば、このニッケル膜の上に
は無電解金めっき等のめっき処理は問題なくできること
も確認した。
According to the present invention, a reducing agent (for example, such as sodium hydroxide solution) contained in the nickel plating solution is added to the sodium hydroxide solution which has a function of dissolving the aluminum oxide and does not hinder the plating operation even when brought into the next nickel plating. If redox electroless nickel plating is performed immediately after dissolving sodium hypophosphite) and directly adhering to the aluminum electrode of the semiconductor element, a large reducing power can be obtained without forming an oxide film on the electrode surface. Then, a nickel film is deposited around zinc particles previously deposited on the aluminum electrode. By performing the above-described treatment, the initial nickel deposition is facilitated when the semiconductor element having the aluminum electrode enters the plating solution. Also,
It was also confirmed that if this nickel plating could be performed, plating treatment such as electroless gold plating could be performed on this nickel film without any problem.

【0020】上記無電解めっき液としては、例えば無電
解Ni−Pめっき液、無電解Ni−Bめっき液を用いる
ことができる。
As the electroless plating solution, for example, an electroless Ni-P plating solution or an electroless Ni-B plating solution can be used.

【0021】また、無電解ニッケルめっき液としては次
亜りん酸ナトリウムを還元剤とするアルカリ性めっき液
はもちろん酸性めっき液でも可能である。本発明におい
ては酸性めっき液としては、pH4.0〜6.8が各ア
ルミニウム電極に均一にニッケルめっき皮膜を形成する
のに重要であることが実験でわかっており、また、pH
が7を超えるとニッケルの水酸化物が析出し白濁する
が、上記本発明の還元剤を含むアルカリ溶液はpHを
9.0〜12.0に調整しているので、本発明の処理で
はpHは7を超えることはなく非常にうまくめっきでき
る。さらにめっきが進みニッケルイオンが消費されると
pHが下がるが、このpHの低下に対しても上記処理に
よるアルカリ液の持ち込みによりpHの低下をある程度
抑えめっき付着に良い結果を示した。また上記還元剤を
含むアルカリ溶液のpHを12.0以上にすると半導体
素子のパッシベーション膜を侵す等の悪い影響がでる。
なお厚くめっきする際には、半導体素子をめっき液中で
充分に揺動することにより安定した形状のバンプを形成
することができる。
As the electroless nickel plating solution, not only an alkaline plating solution using sodium hypophosphite as a reducing agent but also an acidic plating solution can be used. In the present invention, it has been experimentally found that the pH of the acidic plating solution is important to uniformly form a nickel plating film on each aluminum electrode.
Exceeds 7, the nickel hydroxide precipitates and becomes cloudy. However, the pH of the alkaline solution containing the reducing agent of the present invention is adjusted to 9.0 to 12.0. Can be plated very well without exceeding 7. Further, as the plating progresses and the nickel ions are consumed, the pH drops. However, even with this drop in pH, the pH was suppressed to some extent by bringing in the alkaline solution by the above treatment, and good results were obtained for plating adhesion. Further, if the pH of the alkaline solution containing the reducing agent is set to 12.0 or more, a bad effect such as attacking the passivation film of the semiconductor element occurs.
When plating thick, a bump having a stable shape can be formed by sufficiently swinging the semiconductor element in a plating solution.

【0022】さらに上記無電解ニッケルめっき処理にあ
たっては使用する実装形態によって析出するニッケルそ
のものを厚くめっき(10〜15μm)し、バンプ本体
としてもよいしバンプの一部として形成してもよい。
Further, in the electroless nickel plating process, nickel itself deposited according to the mounting form to be used may be thickly plated (10 to 15 μm) to form a bump body or a part of a bump.

【0023】即ち、相手側回路基板の電極リードとはん
だ接合する場合には、半導体素子のアルミニウム電極上
には無電解ニッケルめっき2〜5μmを施し、その表面
に0.05μm程度の置換型無電解金めっきを行いその
上に例えばはんだワイヤを用いてワイヤボンディング方
式ではんだバンプを形成すればよい。
That is, when soldering to an electrode lead of a counterpart circuit board, electroless nickel plating is applied to the aluminum electrode of the semiconductor element by 2 to 5 μm, and the surface of the aluminum electrode is replaced with an electroless nickel plating of about 0.05 μm. Gold plating may be performed, and solder bumps may be formed thereon by wire bonding using, for example, a solder wire.

【0024】一方、TAB実装のように相手側回路基板
のSnめっきされた電極リードとAu−Sn共晶を形成
して接合する場合には、半導体素子のアルミニウム電極
上にはニッケルめっき10〜15μmを施し、その表面
に0.05μm程度の置換型無電解金めっきを行い、さ
らにその上に2μm程度の酸化還元型無電解金めっき膜
を形成してバンプを形成すればよい。
On the other hand, when the Au-Sn eutectic is formed and joined to the Sn-plated electrode lead of the mating circuit board as in TAB mounting, nickel plating is 10 to 15 μm on the aluminum electrode of the semiconductor element. Then, the surface may be subjected to substitutional electroless gold plating of about 0.05 μm, and further a redox electroless gold plating film of about 2 μm may be formed thereon to form bumps.

【0025】また、相手側回路基板の電極リードをバン
プに対して異方性導電ゴムや導電性接着剤により接合す
る場合には、半導体素子のアルミニウム電極上には無電
解ニッケルめっき10〜15μmを施し、その表面に
0.05μm程度の置換型無電解金めっきを行いバンプ
として使用してもよい。
When the electrode leads of the counterpart circuit board are bonded to the bumps by anisotropic conductive rubber or conductive adhesive, electroless nickel plating of 10 to 15 μm is applied on the aluminum electrodes of the semiconductor element. Then, the surface may be subjected to substitution type electroless gold plating of about 0.05 μm to be used as a bump.

【0026】この方法によって、極めて簡単な設備およ
び手法によりパッシベーション膜やアルミニウム電極が
腐食されることなく電気的導通も良好なニッケルめっき
膜および金めっき膜を半導体素子の全てのアルミニウム
電極上に形成することが可能となる。
According to this method, a nickel plating film and a gold plating film having good electrical continuity without corrosion of the passivation film and the aluminum electrode are formed on all the aluminum electrodes of the semiconductor element by extremely simple equipment and method. It becomes possible.

【0027】以下、本発明の具体的な実施の形態につい
て図1(a)〜(d)、図2、図3を参照しながら説明
する。
Hereinafter, specific embodiments of the present invention will be described with reference to FIGS. 1 (a) to 1 (d), 2 and 3.

【0028】先ず、図1(a)に示すように従来の方法
により各種のトランジスタ、配線等が形成されたシリコ
ン基板11上にアルミニウム(Al−1%Si)電極1
2を形成した後、全面にSi34からなるパッシベーシ
ョン膜13を形成し、更にパッシベーション膜13を選
択的にエッチング除去してアルミニウム電極12の大部
分が露出した半導体素子を準備した。
First, as shown in FIG. 1A, an aluminum (Al-1% Si) electrode 1 is formed on a silicon substrate 11 on which various transistors and wirings are formed by a conventional method.
After the formation of No. 2 , a passivation film 13 made of Si 3 N 4 was formed on the entire surface, and the passivation film 13 was selectively removed by etching to prepare a semiconductor device in which most of the aluminum electrode 12 was exposed.

【0029】次に、図1(b)に示すように前記半導体
素子のアルミニウム電極12の表面をフッ化化合物を含
む酸性液でソフトエッチングを行った後純水で洗浄し
た。次にスマット除去液によりデスマット処理を行い、
続いて金属添加剤としてFeを含む水酸化ナトリウム溶
液中に酸化亜鉛を溶解させた液をベースにしたジンケー
ト処理液に前記半導体素子を20秒間浸漬して置換反応
により露出したアルミニウム電極12の表面に亜鉛の析
出物14を析出させた後純水で洗浄した。
Next, as shown in FIG. 1B, the surface of the aluminum electrode 12 of the semiconductor element was soft-etched with an acidic solution containing a fluorinated compound and then washed with pure water. Next, desmut treatment is performed with a smut removing liquid,
Subsequently, the semiconductor element was immersed in a zincate treatment solution based on a solution in which zinc oxide was dissolved in a sodium hydroxide solution containing Fe as a metal additive for 20 seconds, and the surface of the aluminum electrode 12 exposed by the substitution reaction was removed. After depositing zinc deposit 14, the precipitate was washed with pure water.

【0030】次に50%硝酸溶液に30秒間浸漬し析出
した亜鉛の剥離処理を行い水洗後、2回目のジンケート
処理および剥離処理を行い、さらに3回目のジンケート
処理を行った後純水で洗浄した。
Next, the deposited zinc is immersed in a 50% nitric acid solution for 30 seconds to remove the deposited zinc, washed with water, subjected to a second zincate treatment and peeling treatment, further subjected to a third zincate treatment, and then washed with pure water. did.

【0031】次いで、図1(c)に示すように還元剤で
ある次亜りん酸ナトリウム25gを750mLの水に溶
かした後、水酸化ナトリウム溶液でpH9.0〜12.
0に調整しながら純水を加えトータルで1000mLに
した溶液15に10秒間浸漬した後、直ちにあるいは純
水にさっと浸漬した後、前記半導体素子を下記の組成か
らなり、さらにイオウ化合物(例えば、チオジグリコー
ル酸など)を反応促進剤として数ppm添加し、pHを
4.0〜6.8に調整し、温度80〜90℃の酸化還元
反応型の無電解ニッケルめっき液に約10分間浸漬して
アルミニウム電極12上に4〜5μmのリンを含むニッ
ケル膜16を形成した。
Next, as shown in FIG. 1C, 25 g of sodium hypophosphite as a reducing agent was dissolved in 750 mL of water, and then pH 9.0 to 12.1 was dissolved with a sodium hydroxide solution.
After immersing for 10 seconds in a solution 15 made up to a total of 1000 mL by adding pure water while adjusting the concentration to 0, or immediately or immersed in pure water, the semiconductor element is made of the following composition, and further containing a sulfur compound (for example, thiol A few ppm as a reaction accelerator, adjust the pH to 4.0 to 6.8, and immerse in an oxidation-reduction type electroless nickel plating solution at a temperature of 80 to 90 ° C. for about 10 minutes. Thus, a nickel film 16 containing phosphorus of 4 to 5 μm was formed on the aluminum electrode 12.

【0032】なお、アルミニウム電極がAl−1%Si
ではジンケート処理を3回行うことにより表面形状およ
び物性的に優れためっき皮膜を得ることができたが、ア
ルミニウム電極にCuを含む場合、例えばAl−1%S
i−2%Cuではジンケート処理が1回でもニッケルめ
っき皮膜は実装上問題のない表面凹凸1μm以下および
シェア強度20gf/25×45μm以上を有してい
た。
The aluminum electrode is made of Al-1% Si
By performing the zincate treatment three times, a plating film excellent in surface shape and physical properties could be obtained. However, when the aluminum electrode contains Cu, for example, Al-1% S
In the case of i-2% Cu, the nickel plating film had a surface roughness of 1 μm or less and a shear strength of 20 gf / 25 × 45 μm or more which had no problem in mounting even if the zincate treatment was performed once.

【0033】また、ジンケート処理液にFeを添加する
ことにより密着力が向上した。さらにFeを添加するこ
とにより表面の粒状析出物(亜鉛−鉄系合金皮膜)は、
緻密になる傾向が認められた。
Further, the adhesion was improved by adding Fe to the zincate treatment liquid. Further, by adding Fe, the granular precipitates on the surface (zinc-iron-based alloy film) become
There was a tendency to be dense.

【0034】また、酸化還元反応ニッケルめっき液にお
いて、反応促進剤としてイオウ化合物(例えば、チオジ
グリコール酸など)を数ppm添加することにより優れ
ためっき皮膜形状が得られた。また、このイオウ化合物
からなる反応促進剤の添加量によってめっき皮膜形状に
大きな影響を及ぼすことが認められた。
In addition, an excellent plating film shape was obtained by adding a sulfur compound (eg, thiodiglycolic acid) as a reaction accelerator to the oxidation-reduction reaction nickel plating solution at a concentration of several ppm. It was also found that the amount of the reaction accelerator composed of the sulfur compound had a large effect on the shape of the plating film.

【0035】更に、図1(d)に示すように半導体素子
を純水で洗浄するとともに置換反応型の無電解金めっき
液(例えば奥野製薬工業(株)製のOPCムデンゴール
ド、pH5.8、液温90℃)中に約10分間浸漬し、
ニッケル膜16の表面に厚さ0.05μmのフラッシュ
金めっき膜17を形成した。
Further, as shown in FIG. 1 (d), the semiconductor element is washed with pure water, and a substitution reaction type electroless gold plating solution (for example, OPC Muden Gold manufactured by Okuno Pharmaceutical Co., Ltd., pH 5.8) , Liquid temperature 90 ° C) for about 10 minutes,
A flash gold plating film 17 having a thickness of 0.05 μm was formed on the surface of the nickel film 16.

【0036】ここで、本実験例に用いた酸化還元反応型
の無電解ニッケルめっき液の組成を次に示す。
Here, the composition of the oxidation-reduction reaction type electroless nickel plating solution used in this experimental example is shown below.

【0037】(酸化還元反応型の無電解ニッケルめっき
液の組成) 硫酸ニッケル 7.4g/L 次亜りん酸ナトリウム 13g/L ロッセル塩 14g/L リンゴ酸 10g/L 酢酸ナトリウム 6g/L チオグリコール酸 300mg/L 水酸化ナトリウム水溶液を加えてpH4.0〜pH6.
8に調整 以上のめっき処理により、半導体素子の全てのアルミニ
ウム電極12の表面にNi(4〜5μm)−Au(0.
05μm)のめっき膜が形成された。このめっき膜18
はアルミニウム電極12に対して極めて強固に密着され
ていた。また、このめっき膜18に図2に示すようには
んだワイヤをワイヤボンディング法ではんだバンプ19
を形成し、この半導体素子をセラミック基板上に配線さ
れたAg−Pd電極にフェイスダウン方式で実装したと
ころ良好な接合が確認された。
(Composition of Redox Reaction Type Electroless Nickel Plating Solution) Nickel sulfate 7.4 g / L sodium hypophosphite 13 g / L Rossel salt 14 g / L malic acid 10 g / L sodium acetate 6 g / L thioglycolic acid A 300 mg / L aqueous sodium hydroxide solution was added to adjust the pH to 4.0 to 6.0.
Adjusted to 8 By the above plating process, Ni (4 to 5 μm) -Au (0.
(05 μm). This plating film 18
Was extremely firmly adhered to the aluminum electrode 12. As shown in FIG. 2, a solder wire is formed on the plating film 18 by a wire bonding method.
Was formed, and this semiconductor element was mounted on an Ag-Pd electrode wired on a ceramic substrate by a face-down method, and good bonding was confirmed.

【0038】なお、上記実施の形態では、Ni;4〜5
μm、Au;0.05μmのめっき膜の応用を示した
が、図3に示すように前記実施の形態と同様な無電解め
っき処理でニッケルめっき処理を30分行い、ニッケル
膜16(12〜14μm)−置換反応型の無電解金めっ
き膜17(0.05μm)のめっき膜を形成した後、更
に、下記の組成からなり、pH7.0、温度60℃の酸
化還元反応型の無電解金めっき液に120分浸漬するこ
とにより2μm程度の厚付けの金めっき膜20を形成し
て、高さ15μm程度のバンプ21とすることにより錫
(Sn)めっきされたTAB用テープキャリアのインナ
ーリードとAu−Sn共晶を形成して接合するTAB実
装も可能であった。
In the above embodiment, Ni;
The application of a plating film of 0.05 μm in thickness of Au and 0.05 μm was shown. However, as shown in FIG. 3, nickel plating was performed for 30 minutes by the same electroless plating as in the above embodiment, and the nickel film 16 (12 to 14 μm) was formed. )-After forming a plating film of the substitution-reaction type electroless gold plating film 17 (0.05 μm), it is further composed of the following composition, and has a pH of 7.0 and a temperature of 60 ° C. A gold plating film 20 having a thickness of about 2 μm is formed by immersion in a liquid for 120 minutes, and a bump 21 having a height of about 15 μm is formed to form an inner lead of a tin (Sn) -plated TAB tape carrier and Au. TAB mounting in which -Sn eutectic was formed and joined was also possible.

【0039】(酸化還元反応型の無電解金めっき液の組
成) 塩化金酸ナトリウム 10g/L 亜硫酸ナトリウム 25g/L チオ硫酸ナトリウム 50g/L アスコルビン酸ナトリウム 80g/L 塩化アンモニウム 5g/L
(Composition of redox reaction type electroless gold plating solution) Sodium chloroaurate 10 g / L sodium sulfite 25 g / L sodium thiosulfate 50 g / L sodium ascorbate 80 g / L ammonium chloride 5 g / L

【0040】[0040]

【発明の効果】以上のように本発明によれば、極めて簡
単な操作で従来のめっきが困難であった半導体素子のG
ND、Vcc等特定のパッドも含めアルミニウム電極上に
ニッケル膜を低コストで安定的に形成できる。従って、
本発明によるニッケルの膜形成がベースとなり、その膜
上に金めっき処理あるいははんだワイヤボンディング等
の技術を用いて電極どうしの短絡のない信頼性の高い突
起電極を高歩留まりで形成し得るため、いろいろなフェ
イスダウン実装方法が実現できる等工業的価値は大なる
ものである。
As described above, according to the present invention, the G of a semiconductor element, which has been difficult to perform by conventional plating, with an extremely simple operation.
A nickel film can be stably formed at low cost on an aluminum electrode including specific pads such as ND and Vcc . Therefore,
Based on the nickel film formation according to the present invention, it is possible to form a highly reliable protruding electrode with no short-circuit between electrodes at a high yield on the film by using a technique such as gold plating or solder wire bonding. The industrial value is great, such as realizing a simple face-down mounting method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態におけるアルミニウム電
極上への各めっき処理工程における半導体素子の断面図
FIG. 1 is a cross-sectional view of a semiconductor element in each plating process on an aluminum electrode according to an embodiment of the present invention.

【図2】同実施の形態におけるニッケル膜形成後、置換
反応型の無電解金めっきを行っためっき膜上にはんだワ
イヤをワイヤボンディングしたときの半導体素子の断面
FIG. 2 is a cross-sectional view of a semiconductor element when a solder wire is wire-bonded on a plating film on which a substitution reaction type electroless gold plating has been performed after a nickel film is formed in the same embodiment.

【図3】同実施の形態におけるニッケル膜形成−置換反
応型の無電解金めっき形成後、酸化還元反応型金めっき
を行いTAB実装用のバンプを形成したときの半導体素
子の断面図
FIG. 3 is a cross-sectional view of the semiconductor device when a nickel film formation-substitution reaction type electroless gold plating is formed and then a redox reaction type gold plating is performed to form a TAB mounting bump in the embodiment.

【図4】従来のアルミニウム電極上への各めっき処理工
程における半導体素子の断面図
FIG. 4 is a cross-sectional view of a semiconductor element in each conventional plating process on an aluminum electrode.

【符号の説明】[Explanation of symbols]

12 アルミニウム電極 14 亜鉛の析出物 15 還元剤を含むアルカリ溶液 16 ニッケル膜 17 フラッシュ金めっき膜 19 はんだワイヤによるバンプ 20 厚付けの金めっき膜 12 Aluminum electrode 14 Zinc precipitate 15 Alkaline solution containing reducing agent 16 Nickel film 17 Flash gold plating film 19 Solder wire bump 20 Thick gold plating film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子のアルミニウム電極表面にバ
リアメタルあるいは突起電極としてニッケルめっきを施
すにあたり、上記素材を酸性液あるいはアルカリ性液に
よりエッチング処理するライトエッチング工程と、アル
カリ性亜鉛酸塩溶液を用いてジンケート処理を行うジン
ケート処理工程と、還元剤を溶かしたアルカリ性溶液に
浸漬することにより前記アルミニウム電極表面を活性化
する活性化工程と、前記還元剤溶液をアルミニウム電極
に付着させた状態で前記アルミニウム電極を酸化還元反
応型の無電解ニッケルめっき液に浸漬する無電解ニッケ
ルめっき工程とを有する半導体素子の電極形成方法。
When a nickel plating is applied to a surface of an aluminum electrode of a semiconductor element as a barrier metal or a projection electrode, a light etching step of etching the above material with an acidic solution or an alkaline solution, and a zincate using an alkaline zincate solution. A zincate treatment step of performing a treatment, an activation step of activating the aluminum electrode surface by immersing the aluminum electrode in an alkaline solution in which a reducing agent is dissolved, and the aluminum electrode in a state where the reducing agent solution is adhered to the aluminum electrode. An electroless nickel plating step of immersing in an oxidation-reduction type electroless nickel plating solution.
【請求項2】 還元剤を溶かしたアルカリ性溶液が次亜
りん酸ナトリウムと水酸化ナトリウムからなりpHが
9.0〜12.0であることを特徴とする請求項1記載
の半導体素子の電極形成方法。
2. The electrode formation of a semiconductor device according to claim 1, wherein the alkaline solution in which the reducing agent is dissolved comprises sodium hypophosphite and sodium hydroxide and has a pH of 9.0 to 12.0. Method.
【請求項3】 ジンケート処理を複数回行うことを特徴
とする請求項1記載の半導体素子の電極形成方法。
3. The method according to claim 1, wherein the zincate treatment is performed a plurality of times.
【請求項4】 ジンケート処理液が酸化亜鉛、水酸化ナ
トリウムからなり、金属添加剤としてFeを含むことを
特徴とする請求項1記載の半導体素子の電極形成方法。
4. The method according to claim 1, wherein the zincate treatment liquid comprises zinc oxide and sodium hydroxide, and contains Fe as a metal additive.
【請求項5】 無電解ニッケルめっき液にイオウ化合物
からなる反応促進剤を加えることを特徴とする請求項1
記載の半導体素子の電極形成方法。
5. The method according to claim 1, wherein a reaction accelerator comprising a sulfur compound is added to the electroless nickel plating solution.
The method for forming an electrode of a semiconductor device according to the above.
【請求項6】 イオウ化合物がチオジグリコール酸であ
ることを特徴とする請求項5記載の半導体素子の電極形
成方法。
6. The method according to claim 5, wherein the sulfur compound is thiodiglycolic acid.
【請求項7】 無電解ニッケルめっき工程後、置換反応
型の無電解金めっき液でフラッシュ金めっきした後、酸
化還元反応型の無電解金めっき液が、アスコルビン酸ま
たはその塩と、亜硫酸金またはその塩または塩化金酸ま
たはその塩とからなる金めっき液に浸漬し、厚付けの金
めっきをすることを特徴とする請求項1記載の半導体素
子の電極形成方法。
7. After the step of electroless nickel plating, after flash gold plating with a substitution reaction type electroless gold plating solution, an oxidation-reduction reaction type electroless gold plating solution is mixed with ascorbic acid or a salt thereof, gold sulfite or 2. The method for forming an electrode of a semiconductor device according to claim 1, wherein the electrode is immersed in a gold plating solution comprising the salt or chloroauric acid or a salt thereof to perform thick gold plating.
JP28762498A 1997-10-13 1998-10-09 Method for forming electrode of semiconductor element Withdrawn JPH11214421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28762498A JPH11214421A (en) 1997-10-13 1998-10-09 Method for forming electrode of semiconductor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27837097 1997-10-13
JP9-278370 1997-10-13
JP28762498A JPH11214421A (en) 1997-10-13 1998-10-09 Method for forming electrode of semiconductor element

Publications (1)

Publication Number Publication Date
JPH11214421A true JPH11214421A (en) 1999-08-06

Family

ID=26552842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28762498A Withdrawn JPH11214421A (en) 1997-10-13 1998-10-09 Method for forming electrode of semiconductor element

Country Status (1)

Country Link
JP (1) JPH11214421A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045167A2 (en) * 1999-12-14 2001-06-21 Atmel Corporation Integrated circuit package formed at a wafer level
WO2001082361A3 (en) * 2000-04-25 2002-05-16 Atmel Corp Method of forming an integrated circuit package at a wafer level
JP2002151537A (en) * 2000-11-10 2002-05-24 Nippon Steel Corp Under bump metal or bump of semiconductor element and its forming method
US6686660B2 (en) 2002-05-20 2004-02-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2006114827A (en) * 2004-10-18 2006-04-27 Denso Corp Semiconductor device
JP2008021950A (en) * 2006-07-14 2008-01-31 Fujitsu Ltd Semiconductor device, and manufacturing method thereof
US7436062B2 (en) 1999-10-20 2008-10-14 Fujitsu Limited Semiconductor chip element, semiconductor chip element mounting structure, semiconductor chip element mounting device and mounting method
US7452749B2 (en) 2005-03-02 2008-11-18 Nec Electronics Corporation Method for manufacturing flip-chip type semiconductor device featuring nickel electrode pads, and plating apparatus used in such method
KR100894929B1 (en) * 2001-11-15 2009-04-27 후지쯔 가부시끼가이샤 Method of making semiconductor device
US7638421B2 (en) 2003-10-03 2009-12-29 Rohm Co., Ltd. Manufacturing method for semiconductor device and semiconductor device
JP2010047802A (en) * 2008-08-21 2010-03-04 C Uyemura & Co Ltd Surface treatment method for aluminum or aluminum alloy
JP2011040535A (en) * 2009-08-10 2011-02-24 Sony Corp Semiconductor light emitting device, and method for manufacturing the same
JP4647159B2 (en) * 2001-09-21 2011-03-09 シチズンホールディングス株式会社 Formation method of electroless plating film
US8044511B2 (en) 2004-07-29 2011-10-25 Kyocera Corporation Function element and function element mounting structure
WO2011160754A1 (en) * 2010-06-24 2011-12-29 Merck Patent Gmbh Process for modifying electrodes in an organic electronic device
US8338954B2 (en) 2009-08-20 2012-12-25 Fuji Electric Co., Ltd. Semiconductor apparatus and fabrication method thereof
WO2014005246A1 (en) * 2012-07-05 2014-01-09 璩泽明 Chemical nickel plating bump structure of wafer soldering pad and manufacturing method therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436062B2 (en) 1999-10-20 2008-10-14 Fujitsu Limited Semiconductor chip element, semiconductor chip element mounting structure, semiconductor chip element mounting device and mounting method
WO2001045167A3 (en) * 1999-12-14 2002-05-23 Atmel Corp Integrated circuit package formed at a wafer level
WO2001045167A2 (en) * 1999-12-14 2001-06-21 Atmel Corporation Integrated circuit package formed at a wafer level
WO2001082361A3 (en) * 2000-04-25 2002-05-16 Atmel Corp Method of forming an integrated circuit package at a wafer level
JP2002151537A (en) * 2000-11-10 2002-05-24 Nippon Steel Corp Under bump metal or bump of semiconductor element and its forming method
JP4703835B2 (en) * 2000-11-10 2011-06-15 新日鉄マテリアルズ株式会社 Under bump metal, bump for semiconductor device, semiconductor device with conductive ball
JP4647159B2 (en) * 2001-09-21 2011-03-09 シチズンホールディングス株式会社 Formation method of electroless plating film
KR100963372B1 (en) * 2001-11-15 2010-06-15 후지쯔 가부시끼가이샤 Method of making semiconductor device
KR100894929B1 (en) * 2001-11-15 2009-04-27 후지쯔 가부시끼가이샤 Method of making semiconductor device
US6686660B2 (en) 2002-05-20 2004-02-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7638421B2 (en) 2003-10-03 2009-12-29 Rohm Co., Ltd. Manufacturing method for semiconductor device and semiconductor device
US8044511B2 (en) 2004-07-29 2011-10-25 Kyocera Corporation Function element and function element mounting structure
JP2006114827A (en) * 2004-10-18 2006-04-27 Denso Corp Semiconductor device
JP4604641B2 (en) * 2004-10-18 2011-01-05 株式会社デンソー Semiconductor device
US7452749B2 (en) 2005-03-02 2008-11-18 Nec Electronics Corporation Method for manufacturing flip-chip type semiconductor device featuring nickel electrode pads, and plating apparatus used in such method
JP2008021950A (en) * 2006-07-14 2008-01-31 Fujitsu Ltd Semiconductor device, and manufacturing method thereof
JP4605409B2 (en) * 2008-08-21 2011-01-05 上村工業株式会社 Surface treatment method of aluminum or aluminum alloy
JP2010047802A (en) * 2008-08-21 2010-03-04 C Uyemura & Co Ltd Surface treatment method for aluminum or aluminum alloy
US8414711B2 (en) 2008-08-21 2013-04-09 C. Uyemura & Co., Ltd. Method of surface treatment for aluminum or aluminum alloy
JP2011040535A (en) * 2009-08-10 2011-02-24 Sony Corp Semiconductor light emitting device, and method for manufacturing the same
CN101997072A (en) * 2009-08-10 2011-03-30 索尼公司 Semiconductor light emitting device and method for manufacturing the same
US8436379B2 (en) 2009-08-10 2013-05-07 Sony Corporation Semiconductor light emitting device and method for manufacturing the same
US8338954B2 (en) 2009-08-20 2012-12-25 Fuji Electric Co., Ltd. Semiconductor apparatus and fabrication method thereof
WO2011160754A1 (en) * 2010-06-24 2011-12-29 Merck Patent Gmbh Process for modifying electrodes in an organic electronic device
CN102959756A (en) * 2010-06-24 2013-03-06 默克专利股份有限公司 Process for modifying electrodes in an organic electronic device
WO2014005246A1 (en) * 2012-07-05 2014-01-09 璩泽明 Chemical nickel plating bump structure of wafer soldering pad and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6028011A (en) Method of forming electric pad of semiconductor device and method of forming solder bump
JPH11214421A (en) Method for forming electrode of semiconductor element
US6396148B1 (en) Electroless metal connection structures and methods
KR100894929B1 (en) Method of making semiconductor device
US4970571A (en) Bump and method of manufacturing the same
US3761309A (en) Ctor components into housings method of producing soft solderable contacts for installing semicondu
KR20050060032A (en) Wafer level electroless copper metallization and bumping process, and plating solutions for semiconductor wafer and microchip
TW200849428A (en) Under bump metallurgy structure and die structure using the same and method of manufacturing die structure
US20090246911A1 (en) Substrate for mounting electronic components and its method of manufacture
US6972152B2 (en) Use of direct gold surface finish on a copper wire-bond substrate, methods of making same, and methods of testing same
JP3156417B2 (en) Method for forming electrodes of semiconductor device
EP0479373B1 (en) Method of manufacturing a semiconductor device by electroless metallisation
JPH077243A (en) Bonding pad for printed wiring board and electroless gold plating method for conductor pattern
JPH0969524A (en) Method for nickel plating onto aluminum electrode
JP3274381B2 (en) Method for forming bump electrode of semiconductor device
JPS63305532A (en) Forming method for bump
KR101137757B1 (en) Method for forming projection electrode and substituted gold plating solution
JPH07263493A (en) Chip mounting method
JP2633580B2 (en) Bump, bump forming method, and semiconductor element
JP2004103706A (en) Tape carrier for semiconductor devices, and its manufacturing method
JP2002536845A (en) Method of forming an electrically conducting connection
JP3242827B2 (en) Method for manufacturing semiconductor device
JP2839513B2 (en) Method of forming bump
JP4025322B2 (en) Manufacturing method of semiconductor device
KR20020070584A (en) Method of forming under bump metallurgy and structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061101