JPH11214039A - N0naqueous secondary battery - Google Patents

N0naqueous secondary battery

Info

Publication number
JPH11214039A
JPH11214039A JP10015238A JP1523898A JPH11214039A JP H11214039 A JPH11214039 A JP H11214039A JP 10015238 A JP10015238 A JP 10015238A JP 1523898 A JP1523898 A JP 1523898A JP H11214039 A JPH11214039 A JP H11214039A
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
battery
copolymer
film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10015238A
Other languages
Japanese (ja)
Other versions
JP4227209B2 (en
Inventor
Yuzuru Ishibashi
譲 石橋
Shoichi Takamura
正一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP01523898A priority Critical patent/JP4227209B2/en
Publication of JPH11214039A publication Critical patent/JPH11214039A/en
Application granted granted Critical
Publication of JP4227209B2 publication Critical patent/JP4227209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a polymeric battery having low short-circuit occurrence ratio and superior temperature characteristic even when it is exposed to a high temperature. SOLUTION: In this secondary battery having a positive electrode, a negative electrode, a diaphragm, and a nonaqueous electrolyte, the diaphragm consists of (A) a vinylidene fluoride based resin, consisting of vinylidene fluoride based homopolymer and copolymer and 90 wt.% to 98 wt.% of the entire composed of a vinylidene fluoride monomer units, and (B) an organic solvent containing a lithium salt. Thereby, a battery less causing internal short-circuit during battery assembling and having its superior low-temperature characteristics and high-temperature storage properties can be provided, and a polymeric battery with safety superior to a conventional nonaqueous secondary battery can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池等の非水系二次電池、更に詳しくは、イオン導電性ポ
リマー薄膜を隔膜に用いた非水系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery such as a lithium ion battery, and more particularly, to a non-aqueous secondary battery using an ion conductive polymer thin film as a diaphragm.

【0002】[0002]

【従来の技術】最近、携帯電話やパソコン等の小型化、
軽量化のために高エネルギー密度の電池が要求され、こ
れに対応する電池として非水系のリチウムイオン電池が
開発されている。この電池の正極及び負極の電極間には
電解液に膨潤することのない、ポリオレフィン製多孔質
隔膜が配置されている。該ポリオレフィン製隔膜を用い
た場合には、電解液の漏出が起こりやすいため、電池構
造体全体を重厚な金属容器でパッケージして電解液の漏
出を防止している。
2. Description of the Related Art Recently, miniaturization of mobile phones, personal computers, and the like,
A battery with a high energy density is required for weight reduction, and a non-aqueous lithium-ion battery has been developed as a corresponding battery. A porous polyolefin diaphragm, which does not swell in the electrolytic solution, is disposed between the positive and negative electrodes of the battery. When the polyolefin diaphragm is used, leakage of the electrolyte is likely to occur. Therefore, the entire battery structure is packaged in a heavy metal container to prevent leakage of the electrolyte.

【0003】これに対して最近、電解液の漏液がなく、
非金属製パッケージの採用が可能で電池の薄型化や軽量
化の点で優れた、いわゆる『ポリマー電池』の開発が行
われている。このような電池として、ポリオレフィン製
隔膜の代わりにリチウムイオン導電性ポリマーを用いた
電池が提案されている。(以下、本明細書において、ポ
リマー電池とは、『リチウムイオン導電性ポリマーを隔
膜に用いた電池』を意味する。) 例えば、特開平8−195220号公報では、ポリアク
リロニトリルに電解液を含有させた、多孔度が10%か
ら80%の該多孔膜を隔膜部分に用いることによって、
充放電効率が優れた電池ができることが開示されてい
る。該多孔性リチウムイオン導電性ポリマー膜の製法と
して、予め多孔性ポリマー膜を作成し、リチウム塩を含
有する非水電解液中に浸漬することによって、孔中に該
電解液を保持させる方法が提案されている。また、特開
平8−250127号公報では、フッ化ビニリデン系樹
脂製多孔質膜に電解液を含浸させた膜を隔膜部分に用い
ることによって、電池を構成することができることが開
示されている。
On the other hand, recently, there has been no electrolyte leakage,
A so-called “polymer battery” has been developed which can adopt a non-metallic package and is excellent in terms of reducing the thickness and weight of the battery. As such a battery, a battery using a lithium ion conductive polymer instead of a polyolefin diaphragm has been proposed. (Hereinafter, in this specification, a polymer battery means a "battery using a lithium ion conductive polymer for a diaphragm.") For example, in Japanese Patent Application Laid-Open No. 8-195220, polyacrylonitrile contains an electrolytic solution. Further, by using the porous membrane having a porosity of 10% to 80% for the diaphragm portion,
It is disclosed that a battery having excellent charge / discharge efficiency can be obtained. As a method for producing the porous lithium ion conductive polymer membrane, a method has been proposed in which a porous polymer membrane is prepared in advance and immersed in a non-aqueous electrolyte containing a lithium salt to hold the electrolyte in pores. Have been. Japanese Patent Application Laid-Open No. 8-250127 discloses that a battery can be formed by using a membrane in which a porous membrane made of a vinylidene fluoride-based resin is impregnated with an electrolytic solution for a diaphragm portion.

【0004】更に、特開平9−259923号公報で
は、いわゆる『湿式製膜法』によって得られた多孔質膜
を電解液で湿潤または膨潤させたイオン導電性有機高分
子膜を隔膜部分に用いることによって、低温での充放電
容量が室温での充放電容量と同程度である低温特性に優
れた電池が得られることが開示されている。(以後、室
温での容量に対する低温での容量の比を低温特性と記
す。)該有機高分子材料としては、ポリフッ化ビニリデ
ン、ポリアクリロニトリル、ポリ塩化ビニルが特に好ま
しいとされている。
Further, in Japanese Patent Application Laid-Open No. 9-259923, an ion-conductive organic polymer membrane obtained by wetting or swelling a porous membrane obtained by a so-called "wet film forming method" with an electrolytic solution is used for a diaphragm portion. It is disclosed that a battery having excellent low-temperature characteristics in which the charge-discharge capacity at low temperature is almost equal to the charge-discharge capacity at room temperature can be obtained. (Hereinafter, the ratio of the capacity at low temperature to the capacity at room temperature is referred to as low-temperature characteristics.) As the organic polymer material, polyvinylidene fluoride, polyacrylonitrile, and polyvinyl chloride are particularly preferred.

【0005】しかしながら、フッ化ビニリデン系ホモポ
リマーを用いた膜の場合には、脆い膜しか得られないた
め、電池組立時に内部短絡を起こし易いという欠点を有
していた。一方、膜の柔軟性を上げる目的でコポリマー
を使用した場合には、フッ化ビニリデンモノマー単位の
含有量をかなり低下させたコポリマーの場合に十分な機
械的強度特性を示すが、この場合には高温(例えば60
℃)に曝された後の低温での放電特性(以後、高温保存
特性と記す)が低下する欠点を有していた。また、ポリ
アクリロニトリルやポリ塩化ビニルの場合は、膜自体の
機械的強度特性が充分とはいえず、電池の組立歩留まり
が低かったり、高温保存特性が低下する欠点を有してい
た。
However, in the case of a film using a vinylidene fluoride-based homopolymer, only a brittle film is obtained, so that it has a disadvantage that an internal short-circuit is likely to occur during battery assembly. On the other hand, when the copolymer is used for the purpose of increasing the flexibility of the film, the copolymer having sufficient reduction in the content of the vinylidene fluoride monomer unit exhibits sufficient mechanical strength characteristics. (For example, 60
C.), the discharge characteristics at low temperatures (hereinafter referred to as high-temperature storage characteristics) are reduced. Further, in the case of polyacrylonitrile or polyvinyl chloride, the mechanical strength characteristics of the film itself cannot be said to be sufficient, and there are drawbacks in that the assembly yield of the battery is low and the high-temperature storage characteristics are deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、短絡発生率
が低く、かつ、高温に曝された場合にも優れた低温特性
を有するポリマー電池を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polymer battery having a low short-circuit occurrence rate and excellent low-temperature characteristics even when exposed to high temperatures.

【0007】[0007]

【課題を解決するための手段】本発明者らは、組成の異
なる多孔質膜の膜物性とそれを用いた電池特性を検討し
たところ、フッ化ビニリデン系樹脂においては同一組成
であっても、ホモポリマーとコポリマーとをブレンドし
た場合の方がコポリマー単体の場合よりも優れた膜が得
られることを見出し、本発明に至った。
Means for Solving the Problems The present inventors have examined the film physical properties of porous films having different compositions and the battery characteristics using the same. As a result, even if the vinylidene fluoride resin has the same composition, The inventors have found that a better film can be obtained when a homopolymer and a copolymer are blended than when only a copolymer is used alone, and the present invention has been achieved.

【0008】すなわち、本発明は、(1)正極、負極、
隔膜および非水系電解質を有する二次電池において、該
隔膜が、(A)フッ化ビニリデン系のホモポリマーとコ
ポリマーとから成り、かつ、それら全体の90wt%〜
98wt%がフッ化ビニリデンモノマー単位で構成され
たフッ化ビニリデン系樹脂と、(B)リチウム塩含有有
機溶媒とから成ることを特徴とする非水系二次電池、
(2)フッ化ビニリデン系コポリマーが、フッ化ビニリ
デン−ヘキサフロロプロピレン共重合体である上記
(1)記載の非水系二次電池、(3)フッ化ビニリデン
系コポリマーが、フッ化ビニリデン−ヘキサフロロプロ
ピレン共重合体であって、フッ化ビニリデンモノマー単
位の含有量が80wt%〜90wt%である上記(1)
記載の非水系二次電池、(4)フッ化ビニリデン系樹脂
が架橋されている上記(1)記載の非水系二次電池、に
関する。
That is, the present invention provides (1) a positive electrode, a negative electrode,
In a secondary battery having a diaphragm and a non-aqueous electrolyte, the diaphragm is composed of (A) a vinylidene fluoride-based homopolymer and a copolymer, and 90 wt% or more of the whole.
A non-aqueous secondary battery comprising 98% by weight of a vinylidene fluoride resin composed of vinylidene fluoride monomer units and (B) a lithium salt-containing organic solvent;
(2) The non-aqueous secondary battery according to the above (1), wherein the vinylidene fluoride copolymer is a vinylidene fluoride-hexafluoropropylene copolymer, and (3) the vinylidene fluoride copolymer is a vinylidene fluoride-hexafluorofluoropolymer. (1) The propylene copolymer, wherein the content of the vinylidene fluoride monomer unit is from 80 wt% to 90 wt%.
(4) The nonaqueous secondary battery according to (1), wherein the vinylidene fluoride resin is crosslinked.

【0009】以下、本発明を詳細に説明する。本発明に
おける隔膜を構成する(A)成分のポリマー種として
は、フッ化ビニリデン系樹脂であり、ホモポリマーとコ
ポリマーとの両者から構成されている必要がある。ホモ
ポリマーのみの場合には、膜の引張破断伸度が低く脆い
膜しか得られないため、電池組立て時での内部短絡発生
率が高くなってしまう。また、コポリマーのみでは、実
用上充分な膜強度を得るためにはフッ化ビニリデンモノ
マー単位の含有量が90wt%未満のコポリマーである
必要があるが、この場合には膜の耐熱性や耐溶媒膨潤性
が著しく低下してしまうため、高温保存特性が低くなっ
てしまう。
Hereinafter, the present invention will be described in detail. The polymer species of the component (A) constituting the diaphragm in the present invention is a vinylidene fluoride resin, and needs to be composed of both a homopolymer and a copolymer. In the case of using only a homopolymer, only a brittle film having a low tensile elongation at break is obtained, so that an internal short circuit occurrence rate during battery assembly increases. In addition, in order to obtain a practically sufficient film strength using only the copolymer, it is necessary that the copolymer has a vinylidene fluoride monomer unit content of less than 90 wt%. In this case, however, the heat resistance and the solvent swelling resistance of the film are required. , The high-temperature storage characteristics are lowered.

【0010】本発明でいうホモポリマーとは、フッ化ビ
ニリデンモノマー単位の含有量が98.5wt%を超え
る量である樹脂をいう。本発明に用いられるコポリマー
としては、フッ化ビニリデンと共重合可能なモノマーと
の共重合体であり、具体的には、フッ化ビニリデン−ヘ
キサフルオロプロピレン共重合体、フッ化ビニリデン−
トリフルオロプロピレン共重合体、フッ化ビニリデン−
テトラフルオロエチレン共重合体、フッ化ビニリデン−
トリフルオロエチレン共重合体、フッ化ビニリデン−フ
ルオロエチレン共重合体、フッ化ビニリデン−プロピレ
ン共重合体、フッ化ビニリデン−エチレン共重合体、フ
ッ化ビニリデン−ヘキサフルオロアセトン共重合体、フ
ッ化ビニリデン−パーフルオロビニルエーテル共重合
体、フッ化ビニリデン−エチレン−テトラフルオロエチ
レン共重合体、フッ化ビニリデン−テトラフルオロエチ
レン−ヘキサフルオロプロピレン共重合体等を例示する
ことができる。これらのポリマー種の中では、フッ化ビ
ニリデン−ヘキサフルオロプロピレン共重合体が、膜の
機械的強度と耐熱性や耐溶媒膨潤性とのバランスが良好
であるので特に好ましい。さらに、フッ化ビニリデン−
ヘキサフルオロプロピレン共重合体の場合では、フッ化
ビニリデン含有量が80wt%〜90wt%であること
が好ましい。80wt%未満では、膜の耐熱性や耐溶媒
膨潤性が低下するため、高温保存特性の悪化傾向が見ら
れるし、90wt%を越える範囲では、膜の機械的強度
が低下する。
The term "homopolymer" as used herein means a resin having a vinylidene fluoride monomer unit content of more than 98.5% by weight. The copolymer used in the present invention is a copolymer of vinylidene fluoride and a copolymerizable monomer, specifically, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-
Trifluoropropylene copolymer, vinylidene fluoride
Tetrafluoroethylene copolymer, vinylidene fluoride
Trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride- Examples thereof include a perfluorovinyl ether copolymer, a vinylidene fluoride-ethylene-tetrafluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, and the like. Among these polymer types, a vinylidene fluoride-hexafluoropropylene copolymer is particularly preferable because of a good balance between the mechanical strength of the film, heat resistance and solvent swelling resistance. Further, vinylidene fluoride
In the case of a hexafluoropropylene copolymer, the content of vinylidene fluoride is preferably from 80 wt% to 90 wt%. If the amount is less than 80 wt%, the heat resistance and solvent swelling resistance of the film will be reduced, so that the high-temperature storage characteristics tend to be deteriorated. If it exceeds 90 wt%, the mechanical strength of the film will be reduced.

【0011】本発明における隔膜を構成するポリマー
は、構成するフッ化ビニリデン系樹脂全体の90wt%
〜98wt%がフッ化ビニリデンモノマー単位である必
要がある。90wt%未満では、膜の機械的強度特性は
良好であるものの、耐熱性や耐溶媒膨潤性が著しく低下
するため、高温保存特性の悪化傾向が見られる。また、
98wt%を超える量では、引張破断伸度が著しく低く
脆い膜になってしまう。ホモポリマーやコポリマーの組
成にしたがって各々の配合量を設定することにより、上
記範囲に調整することができる。
In the present invention, the polymer constituting the diaphragm is 90 wt% of the whole vinylidene fluoride resin.
9898 wt% must be vinylidene fluoride monomer units. If the content is less than 90 wt%, the mechanical strength characteristics of the film are good, but the heat resistance and the solvent swelling resistance are significantly reduced, so that the high-temperature storage characteristics tend to deteriorate. Also,
If the amount exceeds 98 wt%, the tensile elongation at break is extremely low, resulting in a brittle film. The above ranges can be adjusted by setting the amount of each compound according to the composition of the homopolymer or copolymer.

【0012】また、その特性を損なうことのない範囲に
おいて、上記のフッ化ビニリデン系樹脂以外のポリマー
をその構成成分として含有することもできる。その許容
量の範囲は、ポリマー種にもより一概に言えないが、全
構成ポリマー量の10wt%以下が好ましく、5wt%
以下がより好ましい。本発明における隔膜のポリマー組
成は、NMR測定等によって容易に確認することができ
る。また、構成するポリマーがブレンド物であること
は、FT−IRやXPS等によって、膜最表面と内部の
組成を比較する方法や、溶解分別法によって分離したポ
リマーを分析・比較する方法等によって確認することが
できる。
In addition, a polymer other than the above-mentioned vinylidene fluoride resin may be contained as a constituent component within a range that does not impair its properties. Although the range of the allowable amount cannot be unconditionally determined by the type of the polymer, it is preferably 10% by weight or less of the total amount of the constituent polymers, and more preferably 5% by weight.
The following is more preferred. The polymer composition of the diaphragm in the present invention can be easily confirmed by NMR measurement or the like. In addition, the fact that the constituent polymer is a blend is confirmed by a method of comparing the composition of the outermost surface and the inner portion of the film by FT-IR or XPS, or a method of analyzing and comparing the polymer separated by a solution fractionation method. can do.

【0013】本発明における隔膜のポリマーは、構成す
るフッ化ビニリデン系樹脂を架橋することによって、そ
の機械的強度特性と、耐熱性や耐溶媒膨潤性とのバラン
スを更に改善し、電池特性を向上させることができる。
一般にフッ化ビニリデン系樹脂は、高温においてリチウ
ム塩含有有機溶媒によって著しく膨潤したり、溶解して
しまう傾向がある。架橋構造を有することで、高い高温
安定性が得られる。この架橋構造は重合時、多孔質薄膜
の形成前、形成後のどの段階でも導入することができ
る。架橋の方法としては重合時に多官能のモノマーを用
いる方法、重合後に電子線、γ線、X線、紫外線等の輻
射エネルギーを照射する方法、また、重合後にラジカル
開始剤を含有させて熱や輻射エネルギー照射により反応
させる方法等を用いることができる。重合後に架橋構造
を導入する場合、新たに単官能または/および多官能の
モノマー成分を共存させておくこともできる。これらの
方法の中でも、夾雑物や未反応官能基が残存しにくいの
で、重合後に電子線、γ線、X線、紫外線等の輻射エネ
ルギーを照射する方法が好ましい。なかでも、多孔膜の
膜厚が100μm以下の場合には、電子線照射による架
橋が経済的であり、特に好ましい。電子線照射により架
橋を行う場合には、照射量は5〜100Mradの範囲
であることが好ましく、さらに好ましくは8〜50Mr
adの範囲である。5Mrad未満では架橋の効果が十
分でなく、100Mradを超えるとポリマーの崩壊が
顕著になる。
[0013] The polymer of the diaphragm in the present invention further improves the balance between the mechanical strength characteristics and the heat resistance and solvent swelling resistance by crosslinking the constituent vinylidene fluoride resin, thereby improving the battery characteristics. Can be done.
Generally, a vinylidene fluoride resin tends to swell or dissolve significantly at a high temperature with a lithium salt-containing organic solvent. By having a crosslinked structure, high high-temperature stability is obtained. This crosslinked structure can be introduced at any stage during polymerization, before or after formation of the porous thin film. As a crosslinking method, a method of using a polyfunctional monomer during polymerization, a method of irradiating radiant energy such as an electron beam, γ-ray, X-ray, or ultraviolet light after polymerization, or a method of containing a radical initiator after polymerization to generate heat or radiation A method of causing a reaction by energy irradiation or the like can be used. When a crosslinked structure is introduced after the polymerization, a monofunctional or / and polyfunctional monomer component may be newly allowed to coexist. Among these methods, a method in which radiation energy such as an electron beam, γ-ray, X-ray, or ultraviolet ray is irradiated after polymerization is preferable since impurities and unreacted functional groups hardly remain. In particular, when the thickness of the porous film is 100 μm or less, crosslinking by electron beam irradiation is economical, and is particularly preferable. When crosslinking is performed by electron beam irradiation, the irradiation amount is preferably in the range of 5 to 100 Mrad, and more preferably 8 to 50 Mr.
range of ad. If it is less than 5 Mrad, the effect of crosslinking is not sufficient, and if it exceeds 100 Mrad, the collapse of the polymer becomes remarkable.

【0014】この架橋構造形成の確認は、未架橋ポリマ
ーが可溶の溶剤への溶解性により確認することができ
る。即ち、架橋構造を有する重合体は可溶性溶剤に溶解
しない成分を有し、均一溶解しないことから架橋構造形
成を判別することができる。この可溶性溶剤は、ポリマ
ーの組成によって異なるため、特に限定されないが、通
常、N−メチル−2−ピロリドン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド、ク
ロロホルム、ジクロロメタン、ジクロロエタン、アセト
ン、テトラヒドロフラン、エチレンカーボネート、プロ
ピレンカーボネートなどが使用できる。溶解に際して
は、加温して促進することもできる。
The formation of the crosslinked structure can be confirmed by the solubility of the uncrosslinked polymer in a soluble solvent. That is, since the polymer having a crosslinked structure has a component that is insoluble in a soluble solvent and does not dissolve uniformly, formation of a crosslinked structure can be determined. This soluble solvent is not particularly limited because it varies depending on the composition of the polymer. Carbonate and the like can be used. The dissolution can be promoted by heating.

【0015】本発明における隔膜は、(A)成分のポリ
マー膜に(B)成分のリチウム塩含有有機溶媒を含浸さ
せることによって得ることができ、優れたリチウムイオ
ン導電性を有する。この含浸を行う前の段階でのポリマ
ー膜は、連通孔を有する多孔質膜であることが、含浸を
速やかに実施するうえで好適である。多孔膜の製造にあ
たって、製膜条件を適宜調整することによって、膜の連
通性を制御することができる。孔の連通性は、後記の透
水量を測定することによって評価できるが、公知の製膜
方法により、透水量が数十〜数万(リットル/m2 /h
r/0.1MPa、25℃)の膜を得ることができる。
また、製膜条件を適宜選択することによって孔径を制御
することが可能であり、0.01〜10μmの任意の値
の平均孔径を有する膜を得ることができる。透水量が1
00リットル/m2 /hr/0.1MPa、25℃以上
の膜が、リチウム塩含有有機溶媒を含浸させる速度が速
いので特に好ましい。また、平均孔径が0.1〜5μm
の膜が特に好ましい。0.1μm未満では、含浸速度が
遅い傾向が見られ、5μmを超えると内部短絡が起こり
易い傾向がでてくる。
The membrane of the present invention can be obtained by impregnating the polymer membrane of the component (A) with the organic solvent containing the lithium salt of the component (B), and has excellent lithium ion conductivity. It is preferable that the polymer membrane before the impregnation is a porous membrane having communication holes in order to quickly perform the impregnation. In producing the porous membrane, the continuity of the membrane can be controlled by appropriately adjusting the film forming conditions. The continuity of the pores can be evaluated by measuring the amount of water permeation described later, and the permeation amount is from several tens to several tens of thousands (liter / m 2 / h) by a known film forming method.
r / 0.1 MPa, 25 ° C.).
Further, the pore size can be controlled by appropriately selecting the film forming conditions, and a membrane having an average pore size of an arbitrary value of 0.01 to 10 μm can be obtained. Permeability is 1
A film of 00 liter / m 2 /hr/0.1 MPa and 25 ° C. or higher is particularly preferable because the rate of impregnation with the lithium salt-containing organic solvent is high. Further, the average pore size is 0.1 to 5 μm
Is particularly preferred. If it is less than 0.1 μm, the impregnation rate tends to be low, and if it exceeds 5 μm, an internal short circuit tends to occur.

【0016】本発明における隔膜を構成する(B)成分
であるリチウム塩含有有機溶媒は、リチウム塩を非水系
有機溶媒に溶解させたものである。リチウム塩として
は、電気化学的に安定なリチウム塩が好ましく、この例
として、CF3 SO3 Li、C4 9 SO3 Liなどの
フルオロアルキルスルホン酸リチウム塩、(CF3 SO
2 2 NLi等のスルホニルイミドリチウム塩、LiB
4 、LiPF6 、LiClO4 、LiAsF6 等を挙
げることができる。これらを単独で用いることもできる
し、2種以上の混合物を用いることもできる。
The lithium salt-containing organic solvent as the component (B) constituting the diaphragm in the present invention is obtained by dissolving a lithium salt in a non-aqueous organic solvent. As the lithium salt, an electrochemically stable lithium salt is preferable. Examples of the lithium salt include lithium fluoroalkylsulfonic acid salts such as CF 3 SO 3 Li and C 4 F 9 SO 3 Li, and (CF 3 SO
2) 2-sulfonyl imide lithium salts such NLi, LiB
F 4 , LiPF 6 , LiClO 4 , LiAsF 6 and the like can be mentioned. These can be used alone or as a mixture of two or more.

【0017】次に、これらのリチウム塩を溶解する非水
系有機溶媒としては、化学的に安定でリチウム塩を溶解
するものであればよく、例えば、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート等の
カーボネート化合物、テトラヒドロフラン、ジメトキシ
エタン、ジグライム、トリグライム、テトラグライム、
オリゴエチレンオキシド等のエーテル化合物、ブチロラ
クトン、プロピオラクトン等のラクトン化合物、アセト
ニトリル、プロピオニトリル等のニトリル化合物等を挙
げることができる。これらを単独で用いることもできる
し、2種以上の混合物を用いることもできる。これらの
溶媒の中でも、上記Li塩を0.2モル/リットル以上
の濃度で溶解し得るものが好ましく、更には、粘度の低
い溶媒がポリマー膜への含浸性が高いので好ましい。
The non-aqueous organic solvent for dissolving these lithium salts may be any solvent which is chemically stable and dissolves lithium salts. Examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, and the like.
Diethyl carbonate, carbonate compounds such as methyl ethyl carbonate, tetrahydrofuran, dimethoxyethane, diglyme, triglyme, tetraglyme,
Examples include ether compounds such as oligoethylene oxide, lactone compounds such as butyrolactone and propiolactone, and nitrile compounds such as acetonitrile and propionitrile. These can be used alone or as a mixture of two or more. Among these solvents, those capable of dissolving the above-mentioned Li salt at a concentration of 0.2 mol / liter or more are preferable, and solvents having low viscosity are preferable because they have high impregnating properties into the polymer film.

【0018】本発明における隔膜の膜厚は、10〜30
0μmであり、20〜100μmの範囲が特に好まし
い。300μmを越える膜厚では、実効電気抵抗が高く
なりすぎるうえ、電池の体積当たりのエネルギー密度が
低くなる。一方、10μm未満では膜強度が不足し、電
池組立歩留まりが低下する傾向がある。本発明における
隔膜の構造は、特に限定されるものではなく、たとえば
正極側から負極側に連通する孔を有している構造、
膜内部に独立した孔を有している構造、実質的に孔を
有さない構造をとることができる。これらの構造の中で
も、電池の低温特性が良好であるのでおよびの構造
が好ましく、の構造が最も好ましい。上記の構造は、
リチウム塩含有有機溶媒を含有させる前の段階でのポリ
マー膜の構造を反映するが、含有させた後に加熱等の手
段によって、その構造を変化させることもできる。即
ち、リチウム塩含有有機溶媒を含有させた後に、40〜
100℃程度に短時間加熱することによって、ポリマー
を膨潤させて表面孔径を小さくしたり、更には、実質的
に無孔の状態にすることもできる。
In the present invention, the thickness of the diaphragm is 10 to 30.
0 μm, with a range of 20 to 100 μm being particularly preferred. If the thickness exceeds 300 μm, the effective electric resistance becomes too high, and the energy density per volume of the battery becomes low. On the other hand, when the thickness is less than 10 μm, the film strength is insufficient, and the battery assembly yield tends to decrease. The structure of the diaphragm in the present invention is not particularly limited, for example, a structure having a hole communicating from the positive electrode side to the negative electrode side,
A structure having independent holes inside the film or a structure having substantially no holes can be adopted. Among these structures, the structure is preferable because the battery has good low-temperature characteristics, and the structure is most preferable. The above structure
The structure reflects the structure of the polymer film before the lithium salt-containing organic solvent is contained, but the structure can be changed by means such as heating after the inclusion. That is, after containing a lithium salt-containing organic solvent, 40 to
By heating to about 100 ° C. for a short time, the polymer can be swollen to reduce the surface pore diameter, or it can be made substantially non-porous.

【0019】[0019]

【発明の実施の形態】以下、実施例によって本発明をさ
らに詳細に説明する。なお、各測定は、下記の方法によ
り行った。 (1)構成フッ化ビニリデン系樹脂中のVdF含量の測
定 製造例の多孔膜サンプルをd化−ジメチルスルホキシド
に溶解して10wt%溶液とし、19F−NMR測定(日
本電子製NMR:JNM−LAMBDA400型を使
用)を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. In addition, each measurement was performed by the following method. (1) Measurement of VdF Content in Constitution Vinylidene Fluoride Resin The porous membrane sample of the production example was dissolved in d-dimethylsulfoxide to form a 10 wt% solution, and 19 F-NMR measurement (NMR: JNM-LAMBDA400 manufactured by JEOL Ltd.) Using a mold).

【0020】ヘキサフルオロプロピレンのCF3 基に由
来する−78ppm前後のシグナル強度と、ビニリデン
フルオライドのCF2 基に由来する−95ppm前後と
−110〜−125ppmの複数本のシグナル強度とか
ら、常法によりCF2 基モル%を求め、重量%に換算し
た。 (2)断面構造の観察 多孔膜サンプルにエタノールを含浸した状態で液体窒素
に浸漬して凍結させた後に割断し、その断面をSEM
(日立製作所製SEM S−800型)を用いて観察し
た。 (3)空隙率の測定 多孔膜サンプルをエタノール(特級試薬)に浸漬して親
水化処理を行った後、室温で2時間以上純水に浸漬して
空隙内を完全に純水で置換した。次いで、膜表面の水を
拭き取った後、空隙に純水を含む多孔膜の重量(A)を
測定した。続いて、該多孔膜サンプルを真空中で60℃
で4時間以上乾燥して、空隙内の水を除去し、ポリマー
部のみの重量(B)を測定した。これらの重量と膜の構
成ポリマー及び水の真比重(dp、dw)とから、次式
によって計算で求めた。
The signal intensity around -78 ppm derived from the CF 3 group of hexafluoropropylene and the signal intensity of a plurality of signals around -95 ppm and -110 to -125 ppm derived from the CF 2 group of vinylidene fluoride are usually determined. The molar percentage of CF 2 groups was determined by the method and converted to weight%. (2) Observation of the cross-sectional structure The porous membrane sample was immersed in liquid nitrogen in a state of being impregnated with ethanol, frozen, then cut, and the cross section was SEM.
(SEM S-800, manufactured by Hitachi, Ltd.). (3) Measurement of Porosity The porous membrane sample was immersed in ethanol (special grade reagent) to perform a hydrophilic treatment, and then immersed in pure water at room temperature for 2 hours or more to completely replace the inside of the void with pure water. Next, after wiping off the water on the membrane surface, the weight (A) of the porous membrane containing pure water in the voids was measured. Subsequently, the porous membrane sample was placed in a vacuum at 60 ° C.
For 4 hours or more to remove water in the voids and measure the weight (B) of only the polymer part. From these weights and the true specific gravity (dp, dw) of the constituent polymer of the membrane and water, it was calculated by the following equation.

【0021】空隙率(%)=100×((A−B)/d
w)/(B/dp+(A−B)/dw) なお、構成ポリマー及び水の真比重は、各々1.77、
1.0とした。 (4)透水量(連通性)の測定 多孔膜サンプルを直径25mmに打ち抜いた後、エタノ
ール(特級試薬)中に浸漬して親水化した。次いで、超
純水中に浸漬して純水に置換し、該多孔膜を有効面積
3.5cm2 のメンブランフィルターホルダーに組み込
んで超純水を充たした。5分間0.1MPaの静水圧を
かけ、透過した水の重量を測定した。この時の超純水の
温度を測定し、その温度での純水の真密度と粘度から、
25℃における1時間当たり且つ1m2 当たりの透水量
(リットル/m2 /hr/0.1MPa、25℃)を計
算した。 (5)引張強度特性 多孔膜サンプルをJIS5号ダンベル状にカットして試
験片を作成し、インストロン型万能試験機(島津製作所
製)を用いて、引張破断強度と引張破断伸度を測定し
た。繰り返し数を5とし、その平均値を採った。なお、
チャック間距離を80mm、ヘッド速度を50mm/m
inの条件で測定した。 (6)耐溶媒膨潤性 50mm×50mmにカットした多孔膜サンプルを、2
3℃に調整したプロピレンカーボネート(特級試薬)に
浸漬して1昼夜放置した。その後、取り出して速やかに
膜の2辺の長さ(L1、L2)を測定した。その面積変
化率を次式から求めた。
Porosity (%) = 100 × ((A−B) / d)
w) / (B / dp + (AB) / dw) The true specific gravity of the constituent polymer and water is 1.77, respectively.
1.0. (4) Measurement of Water Permeability (Communication) After punching out a porous membrane sample to a diameter of 25 mm, it was immersed in ethanol (special grade reagent) to make it hydrophilic. Subsequently, the porous membrane was immersed in ultrapure water and replaced with pure water, and the porous membrane was incorporated into a membrane filter holder having an effective area of 3.5 cm 2 and filled with ultrapure water. A hydrostatic pressure of 0.1 MPa was applied for 5 minutes, and the weight of the permeated water was measured. Measure the temperature of the ultrapure water at this time, and from the true density and viscosity of the pure water at that temperature,
The amount of water permeated at 25 ° C. per hour and per m 2 (liter / m 2 /hr/0.1 MPa, 25 ° C.) was calculated. (5) Tensile strength properties A test piece was prepared by cutting a porous membrane sample into a JIS No. 5 dumbbell shape, and tensile strength at break and tensile elongation at break were measured using an Instron universal testing machine (manufactured by Shimadzu Corporation). . The number of repetitions was set to 5, and the average value was taken. In addition,
The chuck distance is 80 mm and the head speed is 50 mm / m
It was measured under the conditions of "in". (6) Solvent swelling resistance The porous membrane sample cut into 50 mm x 50 mm was
It was immersed in propylene carbonate (special grade reagent) adjusted to 3 ° C. and left for one day. Thereafter, the film was taken out and the lengths of two sides (L1, L2) of the film were measured immediately. The area change rate was determined from the following equation.

【0022】面積変化率(%)=100×(L1×L2
−2500)/2500
Area change rate (%) = 100 × (L1 × L2)
-2500) / 2500

【0023】[0023]

【製造例1】フッ化ビニリデン系ホモポリマー(エルフ
アトケム製 Kynar761)13重量部、フッ化
ビニリデン−ヘキサフルオロプロピレン共重合体(エル
フアトケム製 Kynar2801:フッ化ビニリデン
88wt%含有品)4重量部、ポリビニルピロリドン
(BASF製K−30)15重量部、および、N−メチ
ル−2−ピロリドン(東京化成社製特級試薬)68重量
部からなる溶液を調製し、50℃でガラス板上にキャス
トした。直ちに30℃の75wt%N−メチル−2−ピ
ロリドン水溶液中に浸漬して凝固させ、水、エタノール
で洗浄後加熱乾燥した。
[Production Example 1] 13 parts by weight of vinylidene fluoride homopolymer (Kynar 761 manufactured by Elf Atochem), 4 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer (Kynar 2801 manufactured by Elphatochem: a product containing 88% by weight of vinylidene fluoride), polyvinylpyrrolidone A solution consisting of 15 parts by weight (K-30 manufactured by BASF) and 68 parts by weight of N-methyl-2-pyrrolidone (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared and cast on a glass plate at 50 ° C. Immediately, it was immersed in a 75% by weight aqueous solution of N-methyl-2-pyrrolidone at 30 ° C. to solidify it, washed with water and ethanol, and dried by heating.

【0024】この多孔膜についてFT−IR測定を行っ
たところ、約2wt%ポリビニルピロリドンの存在が認
められた。次いで、この多孔膜に電子線照射(照射量1
0Mrad)して架橋した多孔膜を得た。この多孔膜の
断面構造を観察したところ、5μm以下の空孔が三次元
的に連続しており、スポンジ状の構造をしていた。この
多孔膜の物性を表2に示す。なお、構成フッ化ビニリデ
ン系樹脂中のVdF含量は、電子線照射前の膜について
測定した。また、架橋処理した膜を約1gサンプリング
し、N−メチル−2−ピロリドン(東京化成社製特級試
薬)50g中に浸漬して24時間攪拌したところ、大部
分が未溶解で残っており、架橋していることが確認でき
た。
When this porous membrane was subjected to FT-IR measurement, the presence of about 2 wt% polyvinylpyrrolidone was confirmed. Next, the porous film was irradiated with an electron beam (irradiation amount 1
0 Mrad) to obtain a crosslinked porous membrane. Observation of the cross-sectional structure of this porous film revealed that pores of 5 μm or less were continuous three-dimensionally, and had a sponge-like structure. Table 2 shows the physical properties of this porous membrane. The VdF content in the constituent vinylidene fluoride resin was measured for the film before electron beam irradiation. Further, about 1 g of the crosslinked membrane was sampled, immersed in 50 g of N-methyl-2-pyrrolidone (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.), and stirred for 24 hours. I was able to confirm that.

【0025】[0025]

【製造例2〜7】原液のポリマー種と配合量、凝固液組
成及び電子線照射量を表1に記載のようにした他は、製
造例1と同様にして多孔膜を得た。架橋処理した膜につ
いては、製造例1と同様にして架橋していることを確認
した。この多孔膜の物性を表2に示す。
Production Examples 2 to 7 A porous membrane was obtained in the same manner as in Production Example 1, except that the kind and amount of polymer in the stock solution, the composition of the coagulating solution and the amount of electron beam irradiation were as shown in Table 1. It was confirmed that the crosslinked film was crosslinked in the same manner as in Production Example 1. Table 2 shows the physical properties of this porous membrane.

【0026】[0026]

【実施例1】製造例1の多孔膜を用いて、下記のように
して二次電池を組立てた。まず、平均粒径10μmのL
iCoO2 粉末とカーボンブラックを、ポリフッ化ビニ
リデン(呉羽化学工業製、KF#1100)のN−メチ
ル−2−ピロリドン溶液(5重量%)に混合分散してス
ラリーを作製した。なお、スラリー中の固形分重量組成
は、LiCoO2 (89%)、カーボンブラック(8
%)、ポリマー(3%)とした。このスラリーをアルミ
箔上にドクターブレード法で塗布、乾燥した後、プレス
して膜厚110μmの正極シートを作製した。
Example 1 Using the porous membrane of Production Example 1, a secondary battery was assembled as follows. First, L having an average particle size of 10 μm
The iCoO 2 powder and carbon black were mixed and dispersed in an N-methyl-2-pyrrolidone solution (5% by weight) of polyvinylidene fluoride (KF # 1100, manufactured by Kureha Chemical Industry) to prepare a slurry. The weight composition of the solid content in the slurry was LiCoO 2 (89%), carbon black (8%).
%) And a polymer (3%). This slurry was applied on an aluminum foil by a doctor blade method, dried, and then pressed to produce a positive electrode sheet having a thickness of 110 μm.

【0027】次に、平均粒径10μmのニードルコーク
ス粉末をカルボキシメチルセルロース溶液とスチレンブ
タジエンラテックス(旭化成工業製、L1571)分散
液混合体に分散してスラリーを作製した。なお、スラリ
ー中の固形分重量組成は、ニードルコークス/カルボキ
シメチルセルロース/スチレンブタジエン=100/
0.8/2とした。該スラリーを金属銅シートにドクタ
ーブレード法で塗布、乾燥した後、プレスして膜厚12
0μmの負極シートを作製した。
Next, needle coke powder having an average particle size of 10 μm was dispersed in a carboxymethyl cellulose solution and a styrene-butadiene latex (L1571 manufactured by Asahi Kasei Kogyo Co., Ltd.) dispersion mixture to prepare a slurry. The solid content weight composition in the slurry was as follows: needle coke / carboxymethyl cellulose / styrene butadiene = 100 /
0.8 / 2. The slurry was applied to a metal copper sheet by a doctor blade method, dried, and then pressed to form a film having a thickness of 12 mm.
A 0 μm negative electrode sheet was produced.

【0028】上記の様にして準備した正極シート、多孔
膜、負極シートを重ねて巻き、プレスして偏平にした
後、幅34mm、高さ47mm、厚み8.6mmのSU
S製容器に挿入した。次いで、リチウム塩含有有機溶媒
(エチレンカーボネート/プロピレンカーボネート/γ
−ブチロラクトンの1:1:2混合溶媒にLiBF4
1.5mol/リットルの濃度で溶かした溶液)を注入
して、角型電池を組み立てた。
The positive electrode sheet, the porous film, and the negative electrode sheet prepared as described above are stacked and wound, pressed and flattened. Then, the SU having a width of 34 mm, a height of 47 mm, and a thickness of 8.6 mm is obtained.
It was inserted into an S container. Then, a lithium salt-containing organic solvent (ethylene carbonate / propylene carbonate / γ
-A solution in which LiBF 4 was dissolved in a 1: 1: 2 mixed solvent of butyrolactone at a concentration of 1.5 mol / liter) was injected to assemble a prismatic battery.

【0029】該電池について、1mA/cm2 の電流密
度で充放電を行った。充電は定電流充電後4.2V定電
位充電で行い、放電はカットオフ電圧2.7V定電流放
電で行った。下記の方法により、該電池の低温特性と高
温保存特性を測定した。その結果を表3に示す。また、
該電池20個について以下の操作を行ない、短絡発生率
を調べたところ0%であった。 (a)低温特性 まず、20℃において20回充放電を繰り返した。引き
続き、0℃において充放電を5回繰り返した。このとき
の20℃での20回目の放電容量に対する0℃での5回
目の放電容量の百分率を求めた。
The battery was charged and discharged at a current density of 1 mA / cm 2 . Charging was performed at 4.2V constant potential charging after constant current charging, and discharging was performed at 2.7V constant current discharging with a cutoff voltage of 2.7V. The low-temperature characteristics and high-temperature storage characteristics of the battery were measured by the following methods. Table 3 shows the results. Also,
The following operation was performed for 20 of the batteries, and the short-circuit occurrence rate was determined to be 0%. (A) Low temperature characteristics First, charging and discharging were repeated 20 times at 20 ° C. Subsequently, charge / discharge was repeated 5 times at 0 ° C. At this time, the percentage of the fifth discharge capacity at 0 ° C. to the 20th discharge capacity at 20 ° C. was determined.

【0030】低温特性(%)=(0℃の放電容量)/
(20℃の放電容量)×100 (b)電高温保存特性 まず、20℃において20回充放電を繰り返した。次い
で、60℃にて24時間保存した後に20℃に戻し、0
℃での充放電を5回繰り返した。60℃保存前での20
回目の放電量に対する60℃保存後の0℃での5回目の
放電量の百分率を求めた。
Low temperature characteristics (%) = (discharge capacity at 0 ° C.) /
(Discharge capacity at 20 ° C.) × 100 (b) High-temperature storage characteristics First, charge and discharge were repeated 20 times at 20 ° C. Then, after storing at 60 ° C. for 24 hours, the temperature was returned to 20 ° C.
The charge and discharge at ℃ was repeated 5 times. 20 before storage at 60 ° C
The percentage of the fifth discharge amount at 0 ° C. after the storage at 60 ° C. with respect to the fifth discharge amount was determined.

【0031】高温保存特性(%)=(保存後0℃での放
電容量)/(保存前の20℃での放電容量)×100 (c)短絡発生率 まず、20℃において20回充放電を行なった後、60
℃環境下で24時間放置した。次いで、20℃に戻して
100回充放電を行った後、更に1回充電して20℃で
48時間放置した。その48時間放置前後における電圧
の低下が0.2V以上あったものを内部短絡品として見
做し、その百分率を算出した。
High-temperature storage characteristics (%) = (discharge capacity at 0 ° C. after storage) / (discharge capacity at 20 ° C. before storage) × 100 (c) Short-circuit occurrence rate First, charge and discharge 20 times at 20 ° C. After doing, 60
It was left for 24 hours under an environment of ° C. Next, the temperature was returned to 20 ° C., and the battery was charged and discharged 100 times. Those having a voltage drop of 0.2 V or more before and after standing for 48 hours were regarded as internal short-circuited products, and the percentage thereof was calculated.

【0032】短絡発生率(%)=(内部短絡品の個数)
/20×100
Short-circuit occurrence rate (%) = (number of internal short-circuit products)
/ 20 × 100

【0033】[0033]

【実施例2〜5】使用した多孔膜とリチウム塩含有有機
溶媒を表3に示すように変えた他は、実施例1と同様に
して電池を組み立て、電池性能(低温特性と高温保存特
性)を調べた。その結果を表3に示す。次いで、実施例
1と同様にして短絡発生率を調べたところ、いずれも0
%であった。
Examples 2 to 5 A battery was assembled in the same manner as in Example 1 except that the used porous membrane and the lithium salt-containing organic solvent were changed as shown in Table 3, and the battery performance (low-temperature characteristics and high-temperature storage characteristics) Was examined. Table 3 shows the results. Next, the occurrence rate of short-circuit was examined in the same manner as in Example 1.
%Met.

【0034】[0034]

【比較例1、2】それぞれ製造例5、製造例6の多孔膜
を使用した他は、実施例1と同様にして電池を組み立て
ることを試みた。しかしながら、膜の強度特性が低く、
組み立てが困難であった。
Comparative Examples 1 and 2 An attempt was made to assemble a battery in the same manner as in Example 1 except that the porous membranes of Production Examples 5 and 6 were used. However, the strength properties of the film are low,
Assembly was difficult.

【0035】[0035]

【比較例3】製造例7の多孔膜を使用した他は、実施例
1と同様にして電池を組み立て、電池性能(低温特性と
高温保存特性)を調べた。その結果を表3に示す。
Comparative Example 3 A battery was assembled in the same manner as in Example 1 except that the porous membrane of Production Example 7 was used, and the battery performance (low-temperature characteristics and high-temperature storage characteristics) was examined. Table 3 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【本発明の効果】以上に述べたように、本発明の非水系
二次電池は、特定の組成の隔膜を用いることを特徴とす
る。これによって、電池組立時の内部短絡の発生が少な
く、優れた低温特性と高温保存特性を有する電池を実現
でき、従来の非水系二次電池よりも安全性に優れるポリ
マー電池を提供することができる。
As described above, the non-aqueous secondary battery of the present invention is characterized by using a diaphragm having a specific composition. Thereby, it is possible to realize a battery with less occurrence of an internal short circuit at the time of battery assembly, excellent low-temperature characteristics and high-temperature storage characteristics, and it is possible to provide a polymer battery that is more safe than conventional non-aqueous secondary batteries. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、隔膜及び非水系電解液を有
する二次電池において、該隔膜が、(A)フッ化ビニリ
デン系のホモポリマーとコポリマーとから成り、かつ、
それら全体の90wt%〜98wt%がフッ化ビニリデ
ンモノマー単位で構成されたフッ化ビニリデン系樹脂
と、(B)リチウム塩含有有機溶媒とから成ることを特
徴とする非水系二次電池。
1. A secondary battery having a positive electrode, a negative electrode, a diaphragm, and a non-aqueous electrolyte, wherein the diaphragm comprises (A) a vinylidene fluoride-based homopolymer and a copolymer, and
A non-aqueous secondary battery characterized in that 90 to 98 wt% of the whole thereof is composed of a vinylidene fluoride resin composed of vinylidene fluoride monomer units and (B) a lithium salt-containing organic solvent.
JP01523898A 1998-01-28 1998-01-28 Non-aqueous secondary battery Expired - Lifetime JP4227209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01523898A JP4227209B2 (en) 1998-01-28 1998-01-28 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01523898A JP4227209B2 (en) 1998-01-28 1998-01-28 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH11214039A true JPH11214039A (en) 1999-08-06
JP4227209B2 JP4227209B2 (en) 2009-02-18

Family

ID=11883297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01523898A Expired - Lifetime JP4227209B2 (en) 1998-01-28 1998-01-28 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4227209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery
JP4961654B2 (en) * 2000-02-24 2012-06-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448281B2 (en) 2009-10-08 2013-05-28 Dyson Technology Limited Domestic appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961654B2 (en) * 2000-02-24 2012-06-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery

Also Published As

Publication number Publication date
JP4227209B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP6899857B2 (en) Protective film, separator and secondary battery using it
KR100633713B1 (en) An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
US6924065B2 (en) Separators for winding-type lithium secondary batteries having gel-type polymer electrolytes and manufacturing method for the same
JP4629902B2 (en) Method for manufacturing lithium secondary battery
KR101687888B1 (en) Method for producing resin film for non-aqueous electrolyte secondary battery and resin film for non-aqueous electrolyte secondary battery
US9515321B2 (en) Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP7455094B2 (en) Lithium metal secondary batteries and electrolytes
JP2001266942A (en) Electrolyte carrying polymer membrane and secondary battery using it
JPH11354162A (en) Polymer electrolyte secondary battery, and manufacture thereof
JP2001332307A (en) Electrolyte-bearing polymer film, separator for cell, secondary cell using them and method of fabricating it
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP3676115B2 (en) Electrolyte-supported polymer film and secondary battery using the same
JP4227209B2 (en) Non-aqueous secondary battery
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
KR20190064206A (en) Lithium Secondary Battery and Method for Preparing the Same
JP3539564B2 (en) Polymer electrolyte and non-aqueous electrolyte secondary battery
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH10294130A (en) Hybrid electrolyte for non-aqueous battery and non-aqueous battery
JP4002133B2 (en) Lithium ion secondary battery
WO2021247285A1 (en) Method of making battery electrodes with improved characteristics
JP2003317802A (en) Lithium ion secondary cell
JP2001118559A (en) Polymer film carrying electrolyte and secondary battery using the same
US20190123381A1 (en) Nonaqueous electrolyte secondary battery porous layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term