JPH1121195A - Gas flow visualization method in CVD reaction tube - Google Patents

Gas flow visualization method in CVD reaction tube

Info

Publication number
JPH1121195A
JPH1121195A JP18729097A JP18729097A JPH1121195A JP H1121195 A JPH1121195 A JP H1121195A JP 18729097 A JP18729097 A JP 18729097A JP 18729097 A JP18729097 A JP 18729097A JP H1121195 A JPH1121195 A JP H1121195A
Authority
JP
Japan
Prior art keywords
reaction tube
thin film
substrate
gas flow
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18729097A
Other languages
Japanese (ja)
Inventor
Masato Matsushima
政人 松島
Kensaku Motoki
健作 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18729097A priority Critical patent/JPH1121195A/en
Publication of JPH1121195A publication Critical patent/JPH1121195A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

(57)【要約】 【課題】 CVD反応管内のガス流を可視化する。 【解決手段】 薄膜の原料ガスの一部であるNH3 およ
びHClの反応により生ずるNH4Cl粒子をガス流の可視
化に利用する。
(57) [Summary] [PROBLEMS] To visualize a gas flow in a CVD reaction tube. SOLUTION: NH 4 Cl particles generated by a reaction between NH 3 and HCl which are a part of a raw material gas for a thin film are used for visualizing a gas flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD反応管内ガ
ス流可視化方法に関するものであり、特にCVD反応管
内のin-situ のガス流の解析に適した方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for visualizing a gas flow in a CVD reaction tube, and more particularly to a method suitable for analyzing an in-situ gas flow in a CVD reaction tube.

【0002】[0002]

【従来の技術】CVD反応管内のガス流の可視化方法と
しては以下のものが知られている。 四塩化チタン・湿り空気法 アンモニア・塩化水素法 フッ化ホウ素・湿り空気法 煙、ミスト、ドライアイスを用いる方法 シャボン玉、メタアルデヒド、炭素火粉を用いる方
法 スモークワイヤを用いる方法。
2. Description of the Related Art The following methods are known as a method for visualizing a gas flow in a CVD reaction tube. Titanium tetrachloride / humid air method Ammonia / hydrogen chloride method Boron fluoride / humid air method Method using smoke, mist, dry ice Method using soap bubbles, methaldehyde, carbon fire powder Method using smoke wire.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法の内、を除くおよび〜の方法では、可視化
に用いる原料が、実際のCVD反応で使用する原料と大
きく異なる。従って、これらの方法を実施するために
は、専用の可視化実験炉が必要であり、実際のCVD反
応管内で薄膜が成長している状態におけるガス流の再現
は難しい。また、の方法では、反応管の壁面に析出し
た粒子の除去が難しく、短時間の観察しか行えなかっ
た。
However, in the above-mentioned methods, except for and above, the raw materials used for visualization are greatly different from the raw materials used in the actual CVD reaction. Therefore, in order to carry out these methods, a dedicated visualization experimental furnace is required, and it is difficult to reproduce a gas flow in a state where a thin film is growing in an actual CVD reaction tube. In the method (1), it was difficult to remove particles deposited on the wall surface of the reaction tube, and only short-time observation was possible.

【0004】そこで、本発明の目的は、上記従来技術の
問題点を解決し、実際に薄膜を成長させている状態にお
けるCVD反応管内ガス流を可視化する方法およびこの
方法を実施するのに適した装置を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for visualizing a gas flow in a CVD reaction tube in a state where a thin film is actually grown, and a method suitable for carrying out this method. It is to provide a device.

【0005】[0005]

【課題を解決するための手段】本発明に従うと、CVD
法により基板上に薄膜を成長させる際に、反応管内にN
3 およびHClを同時に供給し、両者が反応して生ずる
NH4Cl粒子により反応管内のガス流を可視化する方法
において、反応管壁を加熱するヒータにより、反応管壁
に付着したNH4Cl粒子を除去することを特徴とする方
法が提供される。本発明の方法においては、前記NH3
およびHClが、前記薄膜の原料ガスの一部であり、前記
薄膜が、GaN、InNまたはAlN半導体薄膜であり、前記
基板が、GaAs基板であることが好ましい。また、GaAs基
板は、GaAs(111) A面、B面が好ましい。
SUMMARY OF THE INVENTION According to the present invention, a CVD process is provided.
When a thin film is grown on a substrate by the
Supplying H 3 and HCl at the same time, a method of both visualizing the gas flow in the reaction tube by NH 4 Cl particles produced by the reaction, by a heater for heating the reaction tube walls, NH 4 Cl particles attached to the reaction tube wall Is provided. In the method of the present invention, the NH 3
And HCl are part of a source gas for the thin film, the thin film is a GaN, InN or AlN semiconductor thin film, and the substrate is preferably a GaAs substrate. The GaAs substrate preferably has a GaAs (111) A-plane and a B-plane.

【0006】さらに、本発明においては、基板上にCV
D法により薄膜を成長させるのに使用する装置であっ
て、反応管と、反応管内にNH3 およびHClを含む原料
ガスを導入する導入手段と、基板を保持する保持手段
と、反応管内を加熱する加熱手段とを備え、前記導入手
段が、NH3 とHClの反応によりNH4Cl粒子を発生さ
せ、このNH4Cl粒子により反応管内のガス流が可視化
されるよう構成されていることを特徴とする装置が提供
される。
Further, according to the present invention, the CV
An apparatus used for growing a thin film by the method D, comprising: a reaction tube; an introduction unit for introducing a source gas containing NH 3 and HCl into the reaction tube; a holding unit for holding a substrate; Heating means, wherein the introduction means generates NH 4 Cl particles by a reaction between NH 3 and HCl, and the NH 4 Cl particles visualize a gas flow in the reaction tube. Is provided.

【0007】[0007]

【発明の実施の形態】本発明の方法は、薄膜の原料ガス
の一部であるNH3 およびHClの反応により生ずるNH
4Cl粒子をガス流の可視化に利用するところにその主要
な特徴がある。本発明の方法によれば、従来と異なり、
実際に薄膜が成長している状態でのガス流の可視化が可
能である。また、薄膜の原料以外の特別な可視化材料を
反応管内に導入していないので、正確な結果を得ること
が可能である。
The method of the embodiment of the present invention is, NH produced by the reaction of NH 3 and HCl which is part of a thin film of material gas
One of the main features is that 4 Cl particles are used for gas flow visualization. According to the method of the present invention, unlike the related art,
It is possible to visualize the gas flow while the thin film is actually growing. In addition, since no special visualizing material other than the raw material of the thin film is introduced into the reaction tube, accurate results can be obtained.

【0008】[0008]

【実施例】図1に、本発明の方法を実施するのに適した
本発明のCVD反応装置の概略図を示す。図1の装置
は、上部にそれぞれ枝分かれしたガス導入口1、2、11
および排気口3を有する石英の反応チャンバ4と、この
反応チャンバ4の内部に設けられ、基板5を搭載する基
板ホルダ6とを備える。チャンバ4は、例えば抵抗加熱
ヒータ、赤外線ランプで内部が加熱される。また、チャ
ンバ4の周囲にはチャンバ4の管壁を加熱するヒータ8
が配置されている。ヒータ8は、後述するよう邪魔なと
きには、位置をずらすことができる。
1 is a schematic diagram of a CVD reactor of the present invention suitable for carrying out the method of the present invention. The apparatus shown in FIG. 1 has gas inlets 1, 2, 11 branched at the top.
And a quartz reaction chamber 4 having an exhaust port 3 and a substrate holder 6 provided inside the reaction chamber 4 and on which a substrate 5 is mounted. The inside of the chamber 4 is heated by, for example, a resistance heater or an infrared lamp. A heater 8 for heating the tube wall of the chamber 4 is provided around the chamber 4.
Is arranged. The position of the heater 8 can be shifted when it is in the way as described later.

【0009】さらに、チャンバ4から離れた位置に可視
レーザ光を発振するレーザ装置21が配置され、可視レー
ザ光は、ビームスプリッタ22で平面化されてチャンバ4
内に到達する。平面化された可視レーザ光は、チャンバ
4内の任意の位置を照射可能であり、観察を容易にして
いる。なお、ヒータ8が可視レーザ光と干渉したり、観
察の妨げになる場合には、ヒータ8の位置を変えること
が可能である。また、可視化されたガス流の様子は、ビ
デオカメラ23により記録される。
Further, a laser device 21 for oscillating visible laser light is disposed at a position distant from the chamber 4, and the visible laser light is planarized by a beam splitter 22 and
Reach within. The planarized visible laser light can irradiate an arbitrary position in the chamber 4 to facilitate observation. When the heater 8 interferes with the visible laser light or obstructs observation, the position of the heater 8 can be changed. The visualized gas flow is recorded by the video camera 23.

【0010】上記本発明の装置を用い、本発明に従う有
機金属クロライド気相エピタキシ法でGaAs(111) B面基
板上にGaN層をエピタキシャル成長させる工程を可視化
した。最初にGaAs(111) B面基板5を基板ホルダ6に固
定し、チャンバ4の成膜領域に配置する。室温でガス導
入口1から、塩化水素(HCl)を分圧 6.4×10-4atmで
導入し、第2のガス導入口2からはV族原料としてアン
モニアガス(NH3)を1.28×10-3atm で導入した。キャ
リアガスとしてはそれぞれ水素ガスを用いた。HClとN
3 は反応してNH4Cl粒子が発生し、波長625nm のHe
−Neレーザ装置により可視レーザ光を照射したところチ
ャンバ4内のガス流は明確に観察可能であった。従っ
て、最も反応効率がよいと思われる位置に基板が来るよ
う基板ホルダ6の位置を調整した。塩化水素およびアン
モニアガスを止め、反応管に付着したNH4Cl粒子を 40
0℃に加熱したヒータで除去した後、GaN層の成長を行
った。反応管内を400 〜600 ℃に加熱し、基板5を450
℃に保持した状態でガス導入口11からTMGaを分圧 6.4
×10-4atm で供給した。また、塩化水素およびアンモニ
アガスを先程と等しい分圧 6.4×10-4atm および1.28×
10-3atm でそれぞれガス導入口1および2から導入し
た。この条件で30分間の成膜実験を行い、厚さ100nmのG
aNバッファ層を形成した。
Using the apparatus of the present invention, a process of epitaxially growing a GaN layer on a GaAs (111) B-plane substrate by the metalorganic chloride vapor phase epitaxy according to the present invention was visualized. First, the GaAs (111) B-plane substrate 5 is fixed to the substrate holder 6 and arranged in the film formation region of the chamber 4. At room temperature, hydrogen chloride (HCl) was introduced at a partial pressure of 6.4 × 10 −4 atm from the gas inlet 1, and ammonia gas (NH 3 ) as a Group V raw material was added at 1.28 × 10 from the second gas inlet 2. Introduced at 3 atm. Hydrogen gas was used as a carrier gas. HCl and N
H 3 reacts to generate NH 4 Cl particles, and He at a wavelength of 625 nm
When a visible laser beam was irradiated with the -Ne laser device, the gas flow in the chamber 4 was clearly observable. Therefore, the position of the substrate holder 6 was adjusted so that the substrate came to a position where the reaction efficiency was considered to be the best. Stop hydrogen chloride and ammonia gas and remove NH 4 Cl particles adhering to the reaction tube.
After removal by a heater heated to 0 ° C., a GaN layer was grown. The inside of the reaction tube is heated to 400 to 600 ° C.
While maintaining the temperature in ° C, the partial pressure of TMGa
Supplied at × 10 -4 atm. In addition, hydrogen chloride and ammonia gas were supplied at the same partial pressure as before, 6.4 × 10 -4 atm and 1.28 ×
Gas was introduced from gas inlets 1 and 2 at 10 -3 atm, respectively. A film formation experiment was performed for 30 minutes under these conditions, and a 100 nm thick G
An aN buffer layer was formed.

【0011】次に、NH3 の分圧を1.28×10-3atm とい
う雰囲気で、チャンバ4内を 900℃まで昇温した後、T
MGa、HCl、NH3 の分圧をそれぞれ 2.4×10-4atm 、
2.4×10-4atm 、1.28×10-3atm という条件にして、30
分間成膜を行った。
Next, the temperature of the chamber 4 is raised to 900 ° C. in an atmosphere of a partial pressure of NH 3 of 1.28 × 10 −3 atm,
The partial pressures of Mga, HCl, and NH 3 were set to 2.4 × 10 -4 atm,
Under the conditions of 2.4 × 10 -4 atm and 1.28 × 10 -3 atm, 30
A film was formed for minutes.

【0012】その結果、バッファ層上に、厚さ3μmの
鏡面状のGaNエピタキシャル層が形成された。成長速度
は6μm/時であった。X線回折測定の結果、六方晶Ga
Nのピークが観測され、このGaN層は六方晶GaNで構成
されていることが確認された。電気特性をHall測定によ
り求めたところn型キャリア濃度1×1017 (cm-3) 、電
子移動度500(cm2/VS )であった。
As a result, a mirror-like GaN epitaxial layer having a thickness of 3 μm was formed on the buffer layer. The growth rate was 6 μm / hour. As a result of X-ray diffraction measurement, hexagonal Ga
An N peak was observed, confirming that this GaN layer was composed of hexagonal GaN. When the electrical characteristics were determined by Hall measurement, the n-type carrier concentration was 1 × 10 17 (cm −3 ) and the electron mobility was 500 (cm 2 / V S ).

【0013】[0013]

【発明の効果】以上詳述のように、本発明によれば、C
VD反応管内の室温でのin-situ のガス流解析が可能で
ある。本発明の方法は、特に、GaAs基板上にGaNエピタ
キシャル層を形成する場合に有効である。
As described above in detail, according to the present invention, C
In-situ gas flow analysis at room temperature in a VD reaction tube is possible. The method of the present invention is particularly effective when forming a GaN epitaxial layer on a GaAs substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法を実施するのに適した本発明の
CVD装置の一例の概略図である。
FIG. 1 is a schematic view of an example of a CVD apparatus of the present invention suitable for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 第1のガス導入口 2 第2のガス導入口 3 排気口 4 チャンバ 5 基板 6 基板ホルダ 11 ガス導入口 DESCRIPTION OF SYMBOLS 1 1st gas introduction port 2 2nd gas introduction port 3 exhaust port 4 chamber 5 substrate 6 substrate holder 11 gas introduction port

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により基板上に薄膜を成長させ
る際に、反応管内にNH3 およびHClを同時に供給し、
両者が反応して生ずるNH4Cl粒子により反応管内のガ
ス流を可視化する方法において、反応管壁を加熱するヒ
ータにより、反応管壁に付着したNH4Cl粒子を除去す
ることを特徴とする方法。
When a thin film is grown on a substrate by a CVD method, NH 3 and HCl are simultaneously supplied into a reaction tube,
A method of visualizing a gas flow in a reaction tube by NH 4 Cl particles generated by a reaction between the two, characterized by removing NH 4 Cl particles attached to the reaction tube wall by a heater for heating the reaction tube wall. .
【請求項2】 前記NH3 およびHClが、前記薄膜の原
料ガスの一部であることを特徴とする請求項1に記載の
方法。
2. The method according to claim 1, wherein the NH 3 and HCl are part of a source gas for the thin film.
【請求項3】 前記薄膜が、GaN、InNおよびAlNから
なる群から選択された少なくとも1種の化合物半導体の
薄膜であり、前記基板が、GaAs基板であることを特徴と
する請求項1または2に記載の半導体結晶成長方法。
3. The thin film of at least one compound semiconductor selected from the group consisting of GaN, InN and AlN, and the substrate is a GaAs substrate. 3. The method for growing a semiconductor crystal according to item 1.
【請求項4】 前記薄膜がGaN化合物半導体薄膜であ
り、前記基板がGaAs(111) B面またはGaAs(111) A面で
あることを特徴とする請求項3に記載の半導体結晶成長
方法。
4. The method according to claim 3, wherein the thin film is a GaN compound semiconductor thin film, and the substrate is a GaAs (111) B plane or a GaAs (111) A plane.
【請求項5】 可視レーザ光を照射することを特徴とす
る請求項1〜4のいずれか1項に記載の方法。
5. The method according to claim 1, further comprising irradiating a visible laser beam.
【請求項6】 基板上にCVD法により薄膜を成長させ
るのに使用する装置であって、反応管と、反応管内にN
3 およびHClを含む原料ガスを導入する導入手段と、
基板を保持する保持手段と、反応管内を加熱する加熱手
段とを備え、 前記導入手段が、NH3 とHClの反応によりNH4Cl粒
子を発生させ、このNH4Cl粒子により反応管内のガス
流が可視化されるよう構成されていることを特徴とする
装置。
6. An apparatus used for growing a thin film on a substrate by a CVD method, comprising: a reaction tube;
Introduction means for introducing a source gas containing H 3 and HCl;
Holding means for holding a substrate, and a heating means for heating the reaction tube, the introduction means, to generate a NH 4 Cl particles by the reaction of NH 3 and HCl, the gas flow in the reaction tube by the NH 4 Cl particles Is configured to be visualized.
JP18729097A 1997-06-27 1997-06-27 Gas flow visualization method in CVD reaction tube Withdrawn JPH1121195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18729097A JPH1121195A (en) 1997-06-27 1997-06-27 Gas flow visualization method in CVD reaction tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18729097A JPH1121195A (en) 1997-06-27 1997-06-27 Gas flow visualization method in CVD reaction tube

Publications (1)

Publication Number Publication Date
JPH1121195A true JPH1121195A (en) 1999-01-26

Family

ID=16203419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18729097A Withdrawn JPH1121195A (en) 1997-06-27 1997-06-27 Gas flow visualization method in CVD reaction tube

Country Status (1)

Country Link
JP (1) JPH1121195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324622A (en) * 2005-04-21 2006-11-30 Sharp Corp Nitride semiconductor device manufacturing method and light emitting device
KR100840767B1 (en) 2008-02-28 2008-06-23 주식회사 지에이엔텍 Gallium nitride semiconductor substrate manufacturing apparatus and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324622A (en) * 2005-04-21 2006-11-30 Sharp Corp Nitride semiconductor device manufacturing method and light emitting device
KR100840767B1 (en) 2008-02-28 2008-06-23 주식회사 지에이엔텍 Gallium nitride semiconductor substrate manufacturing apparatus and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5246536A (en) Method for growing single crystal thin films of element semiconductor
US4975252A (en) Semiconductor crystal growth apparatus
US4834831A (en) Method for growing single crystal thin films of element semiconductor
JPH1121195A (en) Gas flow visualization method in CVD reaction tube
JP2798576B2 (en) Silicon film growth method
JP4075385B2 (en) Seed crystal of gallium nitride single crystal and growth method thereof
WO2021161613A1 (en) Vapor-phase epitaxy device and production method for gallium nitride
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPH01103996A (en) Vapor growth method for compound semiconductor
JPH05270987A (en) Carbon 13 isotope diamond substrate and its production
JP2706967B2 (en) Method of forming single crystal magnesia spinel film
JPS61141118A (en) Vapor growth method
JPS6117494A (en) Device for vapor-phase growth
JPH0572742B2 (en)
JPH02263796A (en) Vapor hetero epitaxial growth method for silicon carbide
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JP2618408B2 (en) Manufacturing method of single crystal alloy film
JPH0559080B2 (en)
JPS60210837A (en) Crystal substrate for semiconductor device
JPH07206595A (en) Method for molecular beam epitaxial growth
JPH08264460A (en) Method and system for growing nitrogen compound semiconductor crystal
JPH07235489A (en) Crystal annealing method
JPS61170021A (en) Oxide film removal method on silicon substrate surface
JPS63188934A (en) Vapor growth system
JPH0193495A (en) Synthesis of diamond

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907