JPH11211662A - Quick analytical method for trace amount of phosphorus in silicon material - Google Patents

Quick analytical method for trace amount of phosphorus in silicon material

Info

Publication number
JPH11211662A
JPH11211662A JP1950398A JP1950398A JPH11211662A JP H11211662 A JPH11211662 A JP H11211662A JP 1950398 A JP1950398 A JP 1950398A JP 1950398 A JP1950398 A JP 1950398A JP H11211662 A JPH11211662 A JP H11211662A
Authority
JP
Japan
Prior art keywords
phosphorus
sample
silicon
silicon material
sample storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1950398A
Other languages
Japanese (ja)
Inventor
Kyoko Fujimoto
京子 藤本
Makoto Shimura
眞 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1950398A priority Critical patent/JPH11211662A/en
Publication of JPH11211662A publication Critical patent/JPH11211662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a quick analytical method in which a trace amount of phosphorus in a high-purity silicon material used for a solar cell, a semiconductor, an electronic material or the like can be quantitatively analyzed in a short time and quickly by a method wherein the silicon material is inserted directly into a plasma so as to be excited to emit light and the luminous intensity of the phosphorus is measured. SOLUTION: A silicon material which is housed in a sample cup such as a graphite cup or the like is inserted directly into a high-temperature plasma so as to be excited to emit light, and the luminous intensity of phosphorus is measured. The obtained luminous intensity of the phosphorus is converted into the concentration of the phosphorus in the silicon material by using a working curve obtained by using a silicon material whose concentration of silicon is known. In addition, regarding the silicon material, the luminous intensity of silicon is measured, and the concentration of the phosphorus in the silicon material is found by using a working curve which expresses a correlation between [the luminous intensity of the phosphorus/the luminous intensity of the silicon] (intensity ratio) obtained by using the silicon material whose concentration of silicon is known and the concentration of the silicon. Thereby, the analytical accuracy of a trace amount of phosphorus can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池や半導
体、電子材料などに用いられる高純度シリコン材料など
シリコン材料中のリンの分析方法に関し、特に、シリコ
ン材料中の微量リンを迅速に定量することが可能なシリ
コン材料中の微量リンの迅速分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing phosphorus in a silicon material such as a high-purity silicon material used for solar cells, semiconductors, and electronic materials, and more particularly, to a method for rapidly quantifying a trace amount of phosphorus in a silicon material. The present invention relates to a rapid analysis method for trace amounts of phosphorus in a silicon material.

【0002】[0002]

【従来の技術】リンは励起エネルギーやイオン化エネル
ギーが他の金属元素に比べて大きいため、原子吸光法や
ICP 分析法での分析感度が悪く、直接分析では、ppm レ
ベル以下の微量域には対応できない。シリコン材料中の
リンの分析に関しても同様で、例えば、シリコンウエハ
や太陽電池などで製品特性に大きな影響を与える元素と
してリンの分析要求が高いにも係わらず、提案されてい
る高感度分析手法は数少ない。
2. Description of the Related Art Phosphorus has higher excitation energy and ionization energy than other metal elements.
The analytical sensitivity of the ICP analysis method is poor, and direct analysis cannot be applied to trace levels below the ppm level. The same applies to the analysis of phosphorus in silicon materials.For example, despite the high analysis requirements for phosphorus as an element that has a significant effect on product characteristics in silicon wafers and solar cells, the proposed high-sensitivity analysis method is Few.

【0003】シリコン材料中のリンの分析法としては、
シリコンウエハを対象として、赤外線吸収法〔B.O.Kolb
esen:Appl.Phys.Letters,27,353 (1975) 〕やフォトル
ミネッセンス法〔田島道夫:応用物理,47,376 (1978)
〕による定量法が検討、確立されているが、前者は試
料の光入出射面を平坦で平滑に仕上げるための試料調製
が煩雑で長時間を要し、一方、後者は、装置自体が大が
かりで、分析にも半日程度の長時間を要するといった問
題があった。
[0003] As a method for analyzing phosphorus in silicon material,
Infrared absorption method [BOKolb
esen: Appl. Phys. Letters, 27,353 (1975)] and the photoluminescence method [Michio Tajima: Applied Physics, 47, 376 (1978)]
The quantitative method has been studied and established, but the former requires complicated and time-consuming preparation of the sample to finish the light input / output surface of the sample flat and smooth, while the latter requires a large-scale apparatus itself. However, there is a problem that the analysis requires a long time of about half a day.

【0004】そのため、本発明者らはシリコンを加圧状
態で酸の蒸気により分解し、その分解残渣中のリンをモ
リブデン酸と錯体を形成させ、陽イオン界面活性剤とイ
オン対を生成させた後、捕集してMoを測定し、リンを間
接的に高感度、高精度に定量する方法を提供した(特願
平9−15001 号:シリコン材料中リンの分析方法)。上
記した分析方法によれば、高純度シリコン中のppb レベ
ルの極微量リンが、高精度に簡便に分析可能であり、さ
らには、分析の大幅な迅速化が達成できた。
[0004] Therefore, the present inventors decomposed silicon with an acid vapor under a pressurized state, and formed phosphorus with the molybdic acid in the decomposition residue to form a complex with a cationic surfactant to form an ion pair. After that, Mo was collected and measured, and a method for indirectly quantifying phosphorus with high sensitivity and high precision was provided (Japanese Patent Application No. 9-15001: Method for analyzing phosphorus in silicon material). According to the above-described analysis method, trace amounts of ppb-level phosphorus in high-purity silicon can be easily analyzed with high accuracy, and further, the analysis has been significantly speeded up.

【0005】しかしながら、試料分解(:無人操作)に
数時間を要し、生産現場でのオンサイト分析など迅速な
分析要求に対応するために、さらに、試料調製から分析
を含めた分析所要時間が短く、高精度で、かつ簡便に分
析を行うことが可能なシリコン材料中の微量リンの分析
方法の開発が望まれた。一方、通常溶液分析法であるIC
P 発光分析法のプラズマ中に黒鉛カップに入れた試料を
直接挿入してその中の不純物元素を迅速に分析しようと
する方法が検討・報告されている〔E.D.Salin, G.Horli
ck:Anal.Chem.,51,13(1979)〕。
However, it takes several hours for sample decomposition (unmanned operation), and in order to respond to a rapid analysis request such as on-site analysis at a production site, the time required for analysis including sample preparation to analysis is further increased. It has been desired to develop a method for analyzing a trace amount of phosphorus in a silicon material that is short, highly accurate, and can be easily analyzed. On the other hand, IC which is usually a solution analysis method
A method has been studied and reported in which a sample placed in a graphite cup is directly inserted into the plasma of P emission spectrometry to quickly analyze impurity elements therein [EDSalin, G. Horli
ck: Anal. Chem., 51, 13 (1979)].

【0006】この報告で用いている固体試料は、グラフ
ァイトの粉末の表面に各元素を付着させた標準試料で、
実際に分析元素が固体そのものの内部に取り込まれてい
る試料ではなく分析元素の励起は実際の固体試料に比べ
てはるかに容易であり、マトリックス自体の蒸発量の変
動の影響も受けない。また、上記報告で用いている他の
固体試料であるNBS の環境試料もマトリックスが有機物
であるため、プラズマの低温部で予め加熱することによ
って、マトリックスのみを選択的に除去することができ
る。
The solid sample used in this report is a standard sample in which each element is attached to the surface of a graphite powder.
Excitation of the analysis element, not a sample in which the analysis element is actually taken into the solid itself, is much easier than that of an actual solid sample, and is not affected by fluctuations in the evaporation amount of the matrix itself. Also, the environmental sample of NBS, which is another solid sample used in the above report, is an organic matrix, so that only the matrix can be selectively removed by preheating in the low temperature part of the plasma.

【0007】すなわち、シリコン材料のような金属試料
中の微量元素の直接分析、すなわちマトリックス中の微
量元素の直接分析法としてICP 発光分析法を適用したも
のではない。試料直接挿入法の固体試料への他の適用例
としては、Al中に含まれる微量元素の分析法への適用例
があるが〔G.Zaray, P.Burba, J.A.C.Broekaert, F.Lei
s :Spectrochim.Acta,43B,255(1988)〕、キレート剤を
添加した酸およびアルカリ溶液を用いたセルロースによ
る予備濃縮後の試料を用いており、試料を直接分析する
方法ではなく、また、シリコン材料分析へのICP 発光分
析法の適用は検討されていない。
That is, ICP emission analysis is not applied as a direct analysis of trace elements in a metal sample such as a silicon material, that is, a direct analysis of trace elements in a matrix. As another application example of the direct sample insertion method to a solid sample, there is an application example to a trace element analysis method in Al [G. Zaray, P. Burba, JACB Roekaert, F. Lei
s: Spectrochim. Acta, 43B, 255 (1988)], which uses a sample after preconcentration with cellulose using an acid and alkali solution to which a chelating agent has been added. Application of ICP emission spectrometry to material analysis has not been studied.

【0008】以上述べたように、例えばシリコンウエハ
や太陽電池などで製品特性に大きな影響を与える元素と
してリンの分析要求が高いにも係わらず、試料調製から
分析を含めた分析所要時間が短く、高精度で、かつ簡便
に分析を行うことが可能なシリコン材料中の微量リンの
迅速分析方法は見出されていない。
As described above, despite the high demand for analysis of phosphorus as an element that greatly affects product characteristics in, for example, silicon wafers and solar cells, the time required for analysis from sample preparation to analysis is short. A rapid analysis method for trace amounts of phosphorus in a silicon material that can be easily analyzed with high accuracy has not been found.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、太陽電池や半導体、電子材料
などに用いられる高純度シリコン材料などシリコン材料
中の微量リンを、短時間で迅速に定量分析することが可
能なシリコン材料中の微量リンの迅速分析方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and removes a trace amount of phosphorus in a silicon material such as a high-purity silicon material used for solar cells, semiconductors and electronic materials for a short time. It is an object of the present invention to provide a rapid analysis method for a trace amount of phosphorus in a silicon material, which can be quickly and quantitatively analyzed by using the method.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討する過程で、プラズマ中にお
いて、シリコン材料のマトリックスである高沸点のシリ
コンを十分気化、励起せしめることが可能で、また分析
対象元素であるマトリックス中のリンは昇華、励起する
と考え研究を行った。
Means for Solving the Problems In the course of intensive studies to solve the above-mentioned problems, the present inventors have found that high-boiling silicon, which is a matrix of silicon material, is sufficiently vaporized and excited in plasma. We studied the possibility that phosphorus in the matrix, which is an element to be analyzed, would sublimate and excite.

【0011】その結果、シリコン材料を、直接、プラズ
マ中に挿入して励起発光させ、リンの発光強度を測定す
ることによって、高純度シリコン中のサブppm レベル以
下の微量リンを高精度で分析することが可能であること
を見出し、本発明に至った。すなわち、第1の発明は、
シリコン材料を、直接、高温のプラズマ中に挿入して励
起発光させ、リンの発光強度を測定し、得られたリンの
発光強度と、リン濃度既知のシリコン試料を用いて得ら
れた検量線とから、シリコン材料中のリン濃度を求める
ことを特徴とするシリコン材料中の微量リンの迅速分析
方法である。
As a result, the silicon material is directly inserted into the plasma to excite and emit light, and the emission intensity of phosphorus is measured, whereby a trace amount of phosphorus of sub-ppm level or less in high purity silicon is analyzed with high accuracy. It has been found that this is possible and led to the present invention. That is, the first invention is
A silicon material is directly inserted into a high-temperature plasma and excited to emit light, the emission intensity of phosphorus is measured, and the obtained emission intensity of phosphorus and a calibration curve obtained using a silicon sample with a known phosphorus concentration. The method for rapid analysis of a trace amount of phosphorus in a silicon material is characterized in that the concentration of phosphorus in the silicon material is determined from the following formula.

【0012】第2の発明は、シリコン材料を、直接、高
温のプラズマ中に挿入して励起発光させ、リンおよびシ
リコンの発光強度を測定してその強度比を求め、得られ
た強度比と、リン濃度既知のシリコン試料を用いて得ら
れたリンおよびシリコンの発光強度比とリン濃度との相
関を表す検量線とから、シリコン材料中のリン濃度を求
めることを特徴とするシリコン材料中の微量リンの迅速
分析方法である。
According to a second aspect of the present invention, a silicon material is directly inserted into a high-temperature plasma to excite and emit light, and the luminescence intensity of phosphorus and silicon is measured to obtain the intensity ratio. Determining the phosphorus concentration in the silicon material from a calibration curve showing the correlation between the phosphorous concentration and the emission intensity ratio of phosphorus and silicon obtained using a silicon sample with a known phosphorus concentration; This is a method for rapid analysis of phosphorus.

【0013】前記した第1の発明、第2の発明のシリコ
ン材料中の微量リンの迅速分析方法においては、プラズ
マ中に試料を挿入するための試料カップとして、(1) 試
料収納部と、該試料収納部の支持部材である軸部の径d
が試料収納部下端の径Dの1/2以下である軸部とから
なる試料カップ、または(2) 試料収納部と、該試料収納
部の支持部材である非伝熱性の素材を用いた軸部とから
なる試料カップ、または(3) 試料収納部と、該試料収納
部の支持部材である軸部の径dが試料収納部下端の径D
の1/2以下であり、かつ非伝熱性の素材を用いた軸部
とからなる試料カップを用いることが好ましい。
[0013] In the above-described first and second inventions, the method for rapidly analyzing a trace amount of phosphorus in a silicon material comprises the following steps: (1) a sample storage section; Diameter d of a shaft portion which is a support member of the sample storage unit
A sample cup comprising a shaft portion having a diameter equal to or smaller than 1/2 of the diameter D of the lower end of the sample storage portion, or (2) a shaft using a non-heat-conductive material which is a support member of the sample storage portion and the sample storage portion. Or (3) a sample storage portion, and a diameter d of a shaft portion, which is a support member of the sample storage portion, is a diameter D of a lower end of the sample storage portion.
It is preferable to use a sample cup which is not more than 1/2 of the above and which comprises a shaft portion using a non-heat-conductive material.

【0014】なお、上記した第1の発明、第2の発明に
おけるプラズマとしては、ラジオ波あるいはマイクロ波
放電によって生成するAr、HeあるいはN2の高周波プラズ
マを用いることが好ましい。また、上記した第1の発
明、第2の発明の好適態様における非伝熱性の素材とし
ては、非金属無機材料であるセラミックスを用いること
が好ましい。
[0014] The first invention described above, the plasma in the second invention, Ar generated by radio wave or microwave discharge, it is preferable to use a high-frequency plasma of He or N 2. In addition, it is preferable to use ceramics, which is a nonmetallic inorganic material, as the non-heat-conducting material in the preferred embodiments of the first and second inventions described above.

【0015】[0015]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明では、黒鉛カップなど試料カップに収納し
たシリコン材料を、直接、高温のプラズマ中に挿入して
励起発光させ、リンの発光強度を測定する。得られたリ
ンの発光強度を、リン濃度既知のシリコン試料を用いて
得られた検量線によってシリコン材料中のリン濃度に換
算する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, a silicon material contained in a sample cup such as a graphite cup is directly inserted into high-temperature plasma to excite and emit light, and the emission intensity of phosphorus is measured. The emission intensity of the obtained phosphorus is converted into the phosphorus concentration in the silicon material by a calibration curve obtained using a silicon sample having a known phosphorus concentration.

【0016】さらに、本発明によれば、シリコン材料に
関してリンと同時にシリコンの発光強度を測定し、リン
濃度既知のシリコン試料を用いて得られた〔リンの発光
強度/シリコンの発光強度〕(強度比)とリン濃度との
相関を表す検量線を用いてシリコン材料中のリン濃度を
求めることによって、さらに分析精度を向上させること
ができる。
Further, according to the present invention, the luminescence intensity of silicon is measured simultaneously with phosphorus with respect to the silicon material, and [luminescence intensity of phosphorus / luminescence intensity of silicon] (intensity) obtained using a silicon sample having a known phosphorus concentration. The analysis accuracy can be further improved by determining the phosphorus concentration in the silicon material using a calibration curve representing the correlation between the ratio) and the phosphorus concentration.

【0017】さらに、本発明によれば、プラズマ中に試
料を挿入するための試料カップとして、(1) 試料収納部
の支持部材である軸部の径dを試料収納部下端の径Dに
対して細くした試料カップ、または(2) 試料収納部の支
持部材である軸部の材質を非伝熱性の素材とした試料カ
ップ、または(3) 試料収納部の支持部材である軸部の径
dを試料収納部下端の径Dに対して細くし、かつ非伝熱
性の素材を用いた軸部を有する試料カップを用いること
によって、分析対象であるシリコン材料の効率的な気化
および原子化を促進し、シリコン材料中のリンの高感度
な分析を可能とした。
Furthermore, according to the present invention, as a sample cup for inserting a sample into the plasma, (1) the diameter d of the shaft portion, which is a support member of the sample storage portion, is set to be smaller than the diameter D of the lower end of the sample storage portion. Or (2) a sample cup in which the material of the shaft, which is the support member of the sample storage unit, is a non-heat-conductive material, or (3) a diameter d of the shaft, which is the support member of the sample storage unit. Of the silicon material to be analyzed is efficiently vaporized and atomized by using a sample cup having a diameter smaller than the diameter D of the lower end of the sample storage part and having a shaft made of a non-heat-conductive material. Thus, highly sensitive analysis of phosphorus in a silicon material was made possible.

【0018】通常の溶液導入法によるICP 発光分析
法(:誘導結合プラズマ発光分析法)では、プラズマへ
の試料導入効率が数%であり、このことが分析感度を制
限する大きな要因になっている。また、固体試料を分析
対象とする場合には、試料の溶液化に長時間を要し、生
産現場でのオンサイト分析のような迅速分析への要求に
は対応できない。
In the ICP emission spectrometry (ICP emission spectrometry) based on the ordinary solution introduction method, the efficiency of sample introduction into plasma is several percent, which is a major factor that limits the analysis sensitivity. . In addition, when a solid sample is to be analyzed, it takes a long time to convert the sample into a solution, and it is not possible to cope with a demand for rapid analysis such as on-site analysis at a production site.

【0019】また、溶液化においては、試料中の分析対
象である不純物の含有量の低下に基づく分析感度、分析
精度の低下も否めない。そこで、本発明者らは、ICP 発
光分析法のプラズマ中に固体試料を直接挿入して励起発
光させる方法に着目した。上記した方法の場合、数mg〜
数100mg の固体試料を、直接、プラズマ中に挿入して熱
分解、気化させ、さらにプラズマ中で励起、発光させる
ことによって、プラズマ中に導入する目的成分である不
純物の量を溶液導入法に比べ、飛躍的に増大させること
ができる。
In addition, in the case of solution, it is unavoidable that the analysis sensitivity and the analysis accuracy are reduced due to the decrease in the content of impurities to be analyzed in the sample. Therefore, the present inventors have paid attention to a method of directly emitting a solid sample into plasma for excitation light emission in ICP emission spectrometry. In the case of the above method, several mg ~
By inserting several hundred mg of a solid sample directly into the plasma for thermal decomposition and vaporization, and then exciting and emitting light in the plasma, the amount of impurities that are the target components to be introduced into the plasma can be compared with the solution introduction method. , Can be dramatically increased.

【0020】例えば、不純物濃度1ppm の固体試料0.5g
を溶解して100ml の溶液に調製した場合、プラズマ中に
挿入される不純物量は、試料吸入量1ml/min、20sec 積
分、導入効率3%とした場合、僅か0.05ngであるのに対
して、試料直接挿入法の場合、試料量20mgに対して、プ
ラズマ中に挿入される不純物量は、20ngとなり、400倍
程度の相対感度の向上が見込まれる。
For example, 0.5 g of a solid sample having an impurity concentration of 1 ppm
Is dissolved to prepare a 100 ml solution, the amount of impurities inserted into the plasma is only 0.05 ng when the sample suction volume is 1 ml / min, 20 sec integration, and the introduction efficiency is 3%. In the case of the sample direct insertion method, the amount of impurities inserted into the plasma is 20 ng for a sample amount of 20 mg, and an improvement in relative sensitivity of about 400 times is expected.

【0021】また、本発明者らは、通常のICP プラズマ
(出力1.2kW)中に挿入した黒鉛カップ内の温度は約3000
〜4000℃と推定されることから、分析試料であるシリコ
ン材料の沸点が2360℃、分析対象元素のリンは431 ℃で
昇華することからICP プラズマ中でも十分に気化、励起
が可能と考えた。そこで、実際に、本法によりリン濃度
の異なるシリコン中のリンの発光強度を測定したとこ
ろ、高周波出力0.6kW 以上でリンの発光強度と濃度に良
好な相関が得られることを見出した。
The present inventors have found that the temperature inside a graphite cup inserted into a normal ICP plasma (output 1.2 kW) is about 3000
Since the boiling point of the silicon material to be analyzed is 2360 ° C and the phosphorus of the element to be analyzed sublimates at 431 ° C, it is considered that vaporization and excitation can be sufficiently performed even in ICP plasma. Thus, when the emission intensity of phosphorus in silicon having different phosphorus concentrations was actually measured by the present method, it was found that a good correlation was obtained between the emission intensity of phosphorus and the concentration at a high frequency output of 0.6 kW or more.

【0022】しかも、その分析精度は、リンの発光強度
とリンと同時に検出したシリコンの発光強度との比を用
いることによりさらに向上させることが可能であること
を見出した。リンの発光分析線(:測定波長)として
は、シリコンの発光強度の影響を受けにくい、例えばPI
178.29nm あるいは177.44nmなどの波長が望ましい。
Furthermore, it has been found that the analysis accuracy can be further improved by using the ratio of the luminescence intensity of phosphorus to the luminescence intensity of silicon detected simultaneously with phosphorus. Phosphorus emission analysis lines (: measurement wavelength) are less affected by the emission intensity of silicon, such as PI
A wavelength such as 178.29 nm or 177.44 nm is preferred.

【0023】また、内標準補正用に用いるシリコンの発
光分析線(:測定波長)としては、プラズマ内での挙動
がリンに類似した分析線を用いた方が補正効果が大き
く、Pに原子線を用いる場合には原子線、イオン線を用
いる場合にはイオン線を用いた方が補正効果が大きい。
また、試料の気化、励起には、プラズマ中に試料を挿入
するための試料カップの仕様が大きく影響する。
As the silicon emission analysis line (measurement wavelength) used for the internal standard correction, it is more effective to use an analysis line whose behavior in the plasma is similar to that of phosphorus. In the case where is used, an atomic beam is used, and in the case where an ion beam is used, the correction effect is larger when an ion beam is used.
Further, the specification of the sample cup for inserting the sample into the plasma greatly affects the vaporization and excitation of the sample.

【0024】このため、試料カップにおける試料収納
部の支持部材である軸部を細くするか、該軸部の素材
として、非伝熱性の素材を用いて試料収納部から軸部へ
の熱伝導を抑制するか、または上記およびを組み
合わせて、試料収納部のみを効率的に昇温することによ
って分析感度を大きく向上させることが可能になる。す
なわち、本発明の分析方法においては、プラズマ中に試
料を挿入するための試料カップとして、(1) 試料収納部
と、該試料収納部の支持部材である軸部の径dが試料収
納部下端の径Dの1/2以下である軸部とからなる試料
カップ、または(2) 試料収納部と、該試料収納部の支持
部材である非伝熱性の素材を用いた軸部とからなる試料
カップ、または(3) 試料収納部と、該試料収納部の支持
部材である軸部の径dが試料収納部下端の径Dの1/2
以下であり、かつ非伝熱性の素材を用いた軸部とからな
る試料カップを用いることが好ましい。
For this reason, the shaft portion, which is a support member of the sample storage section in the sample cup, is made thinner or a non-conductive material is used as a material of the shaft section to transfer heat from the sample storage section to the shaft section. By suppressing or combining the above and the above, the temperature of only the sample storage section is efficiently raised, thereby making it possible to greatly improve the analysis sensitivity. That is, in the analysis method of the present invention, as the sample cup for inserting the sample into the plasma, (1) the sample storage portion, and the diameter d of the shaft portion, which is a support member of the sample storage portion, is set at the lower end of the sample storage portion. A sample cup comprising a shaft portion having a diameter equal to or less than 1/2 of the diameter D of the sample container, or (2) a sample comprising a sample storage portion and a shaft portion using a non-heat-conductive material as a support member of the sample storage portion. Cup or (3) the diameter d of the sample storage part and the shaft part which is a support member of the sample storage part is 1 / of the diameter D of the lower end of the sample storage part.
It is preferable to use a sample cup comprising the following and a shaft portion using a non-heat-conductive material.

【0025】なお、前記した試料収納部と、該試料収納
部の支持部材である軸部の径dが試料収納部下端の径D
の1/2以下である軸部とからなる試料カップにおける
試料収納部下端の径Dとは、試料収納部が中空円筒であ
ればその下端の外径を示し、試料収納部下端部の底面が
円形でない場合は、該底面の円相当直径を示す。また、
同様に、前記した軸部の径dとは、軸部が円柱または円
筒であればその直径または外径を示し、軸部が円柱、円
筒でない場合は、軸部断面の円相当直径を示す。
It should be noted that the diameter d of the above-mentioned sample storage part and the shaft part which is a support member of the sample storage part is the diameter D of the lower end of the sample storage part.
The diameter D of the lower end of the sample storage unit in the sample cup consisting of a shaft portion that is not more than 1/2 of the diameter of the sample storage unit indicates the outer diameter of the lower end of the sample storage unit if the sample storage unit is a hollow cylinder. If it is not circular, it indicates the equivalent circle diameter of the bottom surface. Also,
Similarly, the diameter d of the shaft portion indicates the diameter or the outer diameter of the shaft portion if the shaft portion is a column or a cylinder, and indicates the equivalent circle diameter of the cross section of the shaft portion if the shaft portion is not a column or a cylinder.

【0026】また、前記した非伝熱性の素材としては、
非金属無機材料である耐熱性セラミックスを用いること
が好ましく、該耐熱性セラミックスとしては好ましくは
ZrO2、ThO2などが例示されるが特に制限を受けるもので
はない。以上述べた本発明の分析方法により、高純度シ
リコン中のサブppm レベルまでのリンの簡便、迅速な分
析が可能となった。
The non-heat-conductive material described above includes:
It is preferable to use a heat-resistant ceramic which is a nonmetallic inorganic material, and the heat-resistant ceramic is preferably
Examples include ZrO 2 and ThO 2 , but are not particularly limited. According to the analysis method of the present invention described above, it has become possible to easily and quickly analyze phosphorus in a high-purity silicon to a sub-ppm level.

【0027】[0027]

【実施例】以下、本発明を実施例に基づきより具体的に
説明する。 (実施例1)図3に、本実施例で用いた試料直接挿入/
ICP 発光分析法(:誘導結合プラズマ発光分析法)のプ
ラズマトーチ部および試料カップを断面図によって示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically based on embodiments. (Example 1) FIG. 3 shows the sample directly inserted / used in this example.
The plasma torch part and the sample cup of the ICP emission spectrometry (: inductively coupled plasma emission spectrometry) are shown in a sectional view.

【0028】図3において、1はプラズマトーチ部、2
はICP (高周波誘導結合プラズマ)、3は試料カップ、
4は試料カップ3の試料収納部(:試料原子化部)、5
は試料カップ3の軸部、6はArガス、7はキャリアガ
ス、dは軸部5の径、Dは試料収納部4下端の径、fは
試料カップ3の移動方向を示す。プラズマトーチ部とし
ては、下部が解放型のものを用い、プラズマを点灯した
状態で試料カップ3を下部から直接プラズマ中へ挿入し
た。
In FIG. 3, reference numeral 1 denotes a plasma torch unit;
Is ICP (high frequency inductively coupled plasma), 3 is sample cup,
Reference numeral 4 denotes a sample storage unit (a sample atomization unit) of the sample cup 3 and 5
Denotes a shaft portion of the sample cup 3, 6 denotes an Ar gas, 7 denotes a carrier gas, d denotes a diameter of the shaft portion 5, D denotes a diameter of a lower end of the sample storage portion 4, and f denotes a moving direction of the sample cup 3. As the plasma torch part, an open type was used in the lower part, and the sample cup 3 was directly inserted into the plasma from the lower part with the plasma turned on.

【0029】なお、試料収納部4の材質は黒鉛、軸部5
の材質は黒鉛で、中空円筒である試料収納部4の外径は
5mm、軸部5の断面直径は1.5 mmφである。試料量は20
mgを用いた。試料カップ3の試料収納部4を高周波コイ
ル近傍で一定位置、すなわち、試料収納部4の底部(:
カップ底部)が高周波コイル中央に重なる位置で停止さ
せ、プラズマ中で気化、励起、発光したリンの発光強度
およびシリコンの発光強度を測定した。
The material of the sample storage section 4 is graphite, and the shaft section 5 is made of graphite.
Is hollow, the outer diameter of the hollow cylindrical sample storage unit 4 is 5 mm, and the cross-sectional diameter of the shaft 5 is 1.5 mmφ. Sample volume is 20
mg was used. The sample storage unit 4 of the sample cup 3 is positioned at a fixed position near the high-frequency coil, that is, at the bottom (:
The bottom of the cup was stopped at a position where it overlapped the center of the high-frequency coil, and the emission intensity of phosphorus and silicon emitted after vaporization, excitation, and emission in plasma were measured.

【0030】測定波長はPI 178.29nm 、SI 251.61nm を
使用し、測光は高周波コイル上10mmで実施した。図1
に、リン含有率が0.9ppmの高純度シリコンを上記した方
法でプラズマ中に挿入した際に得られた発光強度(:発
光シグナル)の一例を示す。試料をプラズマ中に挿入
後、10数秒間でシグナルはほぼベースラインに戻ってお
り、リンがプラズマ中で極めて短時間に気化、発光して
いることが分かる。
The measurement wavelength was PI 178.29 nm, SI 251.61 nm, and the photometry was performed at 10 mm on a high frequency coil. FIG.
FIG. 7 shows an example of the emission intensity (: emission signal) obtained when high-purity silicon having a phosphorus content of 0.9 ppm was inserted into plasma by the method described above. After inserting the sample into the plasma, the signal almost returned to the baseline within a few ten seconds, indicating that phosphorus was vaporized and emitted light in the plasma in a very short time.

【0031】同様の操作を、リン含有率の異なる試料に
ついて繰り返し実施し、試料をプラズマ中に挿入後、5
秒から15秒間の発光シグナルを積分した。得られた積分
強度を、リン含有率に対してプロットし作成した検量線
の一例を図2に示す。図2の縦軸のP発光強度の単位は
任意単位である。なお、上記した検量線の作成において
は、試料内の偏析の影響を低減するため、リン含有率の
異なる試料の各試料について3回ずつ分析してその平均
値を用いた。
The same operation was repeated for samples having different phosphorus contents.
The luminescence signal from seconds to 15 seconds was integrated. FIG. 2 shows an example of a calibration curve prepared by plotting the obtained integrated intensity against the phosphorus content. The unit of the P emission intensity on the vertical axis in FIG. 2 is an arbitrary unit. In preparing the above-mentioned calibration curve, in order to reduce the influence of segregation in the sample, each sample of samples having different phosphorus contents was analyzed three times, and the average value was used.

【0032】図2に示されるように、リン含有率が1pp
m 以下の微量域でも検量線の直線性は良好で、本発明の
分析方法が、高純度シリコン中の微量リンの迅速分析方
法として極めて有用であることが分かる。次に、上記し
た検量線を用いてリン含有率が0.2ppm(:湿式分析値)
である実際試料中のリンを定量した結果を表1に示す。
As shown in FIG. 2, the phosphorus content was 1 pp.
The linearity of the calibration curve is good even in a trace area of less than m, indicating that the analysis method of the present invention is extremely useful as a rapid analysis method of trace phosphorus in high-purity silicon. Next, using the calibration curve described above, the phosphorus content was 0.2 ppm (: wet analysis value).
Table 1 shows the results of quantifying the phosphorus in the actual sample.

【0033】表1に示されるように、本発明の分析方法
によれば、リン含有率が0.2ppmレベルの試料が、標準偏
差σ=0.07ppm で定量可能となった。また、本発明の分
析方法の分析精度をさらに向上させるために、リンと同
時に、プラズマ中での発光挙動がリンと類似しているシ
リコンの原子線の強度を測光してシリコンの発光強度で
補正した。
As shown in Table 1, according to the analysis method of the present invention, a sample having a phosphorus content of 0.2 ppm can be quantified with a standard deviation σ = 0.07 ppm. In addition, in order to further improve the analysis accuracy of the analysis method of the present invention, at the same time as phosphorus, the intensity of the atomic line of silicon whose emission behavior in plasma is similar to that of phosphorus is measured and corrected with the emission intensity of silicon. did.

【0034】得られた結果を表1に併せて示す。表1に
示されるように、本発明の分析方法によれば、リンの発
光強度とマトリックスであるシリコンの発光強度との比
を用いることによって、プラズマ内での蒸発量、原子化
量などの変動が低減され、分析精度は2倍以上向上し
た。なお、以上の結果は全て図3に示したような軸部を
細くして試料収納部4(:試料原子化部)(:カップ
部)の昇温速度を向上させた試料カップ3を用いたもの
である。
The results obtained are shown in Table 1. As shown in Table 1, according to the analysis method of the present invention, by using the ratio between the emission intensity of phosphorus and the emission intensity of silicon as a matrix, fluctuations in the amount of evaporation, the amount of atomization, and the like in the plasma are achieved. Was reduced, and the analysis accuracy was improved more than twice. Note that all of the above results were obtained by using the sample cup 3 in which the shaft portion as shown in FIG. 3 was thinned to increase the temperature rising rate of the sample storage section 4 (: sample atomization section) (: cup section). Things.

【0035】一方、上記した試料カップ3の代わりに、
直流放電発光分析用に市販されている軸部と試料収納部
が一体で成型され、軸部が試料収納部と同径のネック電
極を試料カップとして使用した場合には、シリコンの気
化に5倍以上の時間を要し、図1の発光強度(:シグナ
ル)の1/10以下のシグナルしか得られず、サブppm 以下
の微量域の定量には適用できなかった。
On the other hand, instead of the sample cup 3 described above,
When a shaft and a sample storage part that are commercially available for DC discharge emission analysis are molded integrally, and the shaft part uses a neck electrode with the same diameter as the sample storage part as a sample cup, the vaporization of silicon is 5 times. The above time was required, and only a signal of 1/10 or less of the luminescence intensity (: signal) of FIG. 1 was obtained, and it could not be applied to the quantification of a trace region of sub-ppm or less.

【0036】さらに、本発明の分析方法による分析所要
時間は、1試料あたり1分以内であり、試料内の偏析の
影響を低減し、正確さを向上させるために繰り返し数回
測定を行っても、極めて迅速、簡便に分析することが可
能となった。
Further, the time required for analysis by the analysis method of the present invention is less than one minute per sample, and even if the measurement is repeated several times to reduce the influence of segregation in the sample and improve the accuracy. It has become possible to analyze extremely quickly and easily.

【0037】[0037]

【表1】 (実施例2)前記した図3に示す試料カップ3として、
試料収納部4の材質が黒鉛、軸部5の材質がZrO2で、中
空円筒である試料収納部4の外径が5mm、軸部5の断面
直径が1.5 mmφの試料カップを用いた以外は実施例1と
同様の方法で、リン含有率が0.9ppmの高純度シリコンの
発光強度を測定した。
[Table 1] (Example 2) As the sample cup 3 shown in FIG.
Except that the material of the sample storage part 4 was graphite, the material of the shaft part 5 was ZrO 2 , the outer diameter of the sample storage part 4 which was a hollow cylinder was 5 mm, and the cross-sectional diameter of the shaft part 5 was 1.5 mmφ. In the same manner as in Example 1, the emission intensity of high-purity silicon having a phosphorus content of 0.9 ppm was measured.

【0038】その結果、試料をプラズマ中に挿入後、10
数秒間でシグナルはほぼベースラインに戻り、リンがプ
ラズマ中で極めて短時間に気化、発光することが分か
り、本発明のシリコン材料中の微量リンの迅速分析方法
においては、上記した本発明に係わる試料カップを用い
ることが好ましいことが分かった。
As a result, after inserting the sample into the plasma, 10
In a few seconds, the signal almost returned to the baseline, and it was found that phosphorus was vaporized and emitted in a very short time in the plasma, and the method for rapid analysis of trace amounts of phosphorus in the silicon material according to the present invention relates to the above-described present invention. It has been found preferable to use a sample cup.

【0039】[0039]

【発明の効果】以上述べたように、本発明によれば、高
純度シリコン中のサブppm レベル以下の微量リンを、簡
便な方法で高精度かつ極めて迅速に分析することが可能
となった。すなわち、これまで微量分析が困難で、しか
も長時間を要していた高純度シリコン中の微量リンの定
量分析が、このように簡便かつ極めて迅速に実施できる
ようになったことによって、半導体材料や太陽電池など
に使用されるシリコン製造プロセスの解析や反応制御が
正確に、また、迅速に行えるようになり、製品の品質向
上や安定生産の面で著しい効果が期待される。
As described above, according to the present invention, it has become possible to analyze a trace amount of phosphorus of sub-ppm level or less in high-purity silicon with high accuracy and extremely quickness by a simple method. In other words, the quantitative analysis of trace phosphorus in high-purity silicon, which has been difficult and traceable in the past, can now be performed simply and extremely quickly. Analysis and reaction control of the silicon manufacturing process used for solar cells and the like can be performed accurately and quickly, and significant effects are expected in terms of product quality improvement and stable production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リン含有率が0.9ppmの高純度シリコンをプラズ
マ中に挿入した際に得られた発光シグナルの一例を示す
グラフである。
FIG. 1 is a graph showing an example of a luminescence signal obtained when high-purity silicon having a phosphorus content of 0.9 ppm is inserted into plasma.

【図2】本発明に係わる検量線の一例を示すグラフであ
る。
FIG. 2 is a graph showing an example of a calibration curve according to the present invention.

【図3】試料直接挿入/ICP 発光分析法のプラズマトー
チ部および試料カップを示す断面図である。
FIG. 3 is a cross-sectional view showing a plasma torch part and a sample cup in direct sample insertion / ICP emission spectrometry.

【符号の説明】[Explanation of symbols]

1 プラズマトーチ部 2 ICP (高周波誘導結合プラズマ) 3 試料カップ 4 試料カップの試料収納部(:試料原子化部) 5 試料カップの軸部 6 Arガス 7 キャリアガス d 軸部の径 D 試料収納部下端の径 f 試料カップの移動方向 DESCRIPTION OF SYMBOLS 1 Plasma torch part 2 ICP (high frequency induction coupling plasma) 3 Sample cup 4 Sample storage part of sample cup (: sample atomization part) 5 Shaft part of sample cup 6 Ar gas 7 Carrier gas d Diameter of shaft part D Sample storage part Bottom diameter f Moving direction of sample cup

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン材料を、直接、高温のプラズマ
中に挿入して励起発光させ、リンの発光強度を測定し、
得られたリンの発光強度と、リン濃度既知のシリコン試
料を用いて得られた検量線とから、シリコン材料中のリ
ン濃度を求めることを特徴とするシリコン材料中の微量
リンの迅速分析方法。
1. A method in which a silicon material is directly inserted into a high-temperature plasma to cause excitation and emission, and the emission intensity of phosphorus is measured.
A rapid analysis method for a trace amount of phosphorus in a silicon material, wherein a phosphorus concentration in the silicon material is obtained from a light emission intensity of the obtained phosphorus and a calibration curve obtained using a silicon sample having a known phosphorus concentration.
【請求項2】 シリコン材料を、直接、高温のプラズマ
中に挿入して励起発光させ、リンおよびシリコンの発光
強度を測定してその強度比を求め、得られた強度比と、
リン濃度既知のシリコン試料を用いて得られたリンおよ
びシリコンの発光強度比とリン濃度との相関を表す検量
線とから、シリコン材料中のリン濃度を求めることを特
徴とするシリコン材料中の微量リンの迅速分析方法。
2. A method in which a silicon material is directly inserted into a high-temperature plasma to excite and emit light, and the emission intensity of phosphorus and silicon is measured to obtain an intensity ratio.
Determining the phosphorus concentration in the silicon material from a calibration curve showing the correlation between the phosphorous concentration and the emission intensity ratio of phosphorus and silicon obtained using a silicon sample with a known phosphorus concentration; Rapid analysis method for phosphorus.
【請求項3】 前記したシリコン材料中の微量リンの迅
速分析方法において、プラズマ中に試料を挿入するため
の試料カップとして、(1) 試料収納部と、該試料収納部
の支持部材である軸部の径dが試料収納部下端の径Dの
1/2以下である軸部とからなる試料カップ、または
(2) 試料収納部と、該試料収納部の支持部材である非伝
熱性の素材を用いた軸部とからなる試料カップ、または
(3) 試料収納部と、該試料収納部の支持部材である軸部
の径dが試料収納部下端の径Dの1/2以下であり、か
つ非伝熱性の素材を用いた軸部とからなる試料カップを
用いることを特徴とする請求項1または2記載のシリコ
ン材料中の微量リンの迅速分析方法。
3. The method for rapidly analyzing a trace amount of phosphorus in a silicon material according to the above method, wherein the sample cup for inserting a sample into the plasma includes: (1) a sample storage portion and a shaft serving as a support member of the sample storage portion. A sample cup comprising a shaft portion having a diameter d of the portion being equal to or less than 1/2 of a diameter D of the lower end of the sample storage portion, or
(2) a sample cup comprising a sample storage portion and a shaft portion using a non-heat-conductive material as a support member of the sample storage portion, or
(3) a sample storage portion, and a shaft portion which is a support member of the sample storage portion, wherein a diameter d of the shaft portion is equal to or less than の of a diameter D of a lower end of the sample storage portion, and a shaft portion using a non-heat-conductive material. 3. The rapid analysis method for trace amounts of phosphorus in a silicon material according to claim 1, wherein a sample cup comprising:
JP1950398A 1998-01-30 1998-01-30 Quick analytical method for trace amount of phosphorus in silicon material Pending JPH11211662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1950398A JPH11211662A (en) 1998-01-30 1998-01-30 Quick analytical method for trace amount of phosphorus in silicon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1950398A JPH11211662A (en) 1998-01-30 1998-01-30 Quick analytical method for trace amount of phosphorus in silicon material

Publications (1)

Publication Number Publication Date
JPH11211662A true JPH11211662A (en) 1999-08-06

Family

ID=12001188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1950398A Pending JPH11211662A (en) 1998-01-30 1998-01-30 Quick analytical method for trace amount of phosphorus in silicon material

Country Status (1)

Country Link
JP (1) JPH11211662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317371A (en) * 2005-05-16 2006-11-24 Shimadzu Corp Emission spectroscopic analyzing method and emission spectroscopic analyzer
WO2014091936A1 (en) * 2012-12-10 2014-06-19 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317371A (en) * 2005-05-16 2006-11-24 Shimadzu Corp Emission spectroscopic analyzing method and emission spectroscopic analyzer
JP4506554B2 (en) * 2005-05-16 2010-07-21 株式会社島津製作所 Emission spectroscopy analysis method and emission spectroscopy analyzer
WO2014091936A1 (en) * 2012-12-10 2014-06-19 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot
CN104838023A (en) * 2012-12-10 2015-08-12 昭和电工株式会社 MAethod for producing silicon-containing aluminum alloy ingot
JP5833256B2 (en) * 2012-12-10 2015-12-16 昭和電工株式会社 Method for producing silicon-containing aluminum alloy ingot

Similar Documents

Publication Publication Date Title
Liu et al. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry
Yao et al. Synchronous detection of heavy metal ions in aqueous solution by gold nanoparticle surface-enhanced laser-induced breakdown spectroscopy
Resano et al. Simultaneous determination of Co, Mn, P and Ti in PET samples by solid sampling electrothermal vaporization ICP-MS
Arslan et al. Determination of calcium, magnesium and strontium in soils by flow injection flame atomic absorption spectrometry
Li et al. Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry
Becker et al. Determination of trace elements in high-purity platinum by laser ablation inductively coupled plasma mass spectrometry using solution calibration
Manjusha et al. Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)
Barth et al. Determination of trace impurities in boron nitride by graphite furnace atomic absorption spectrometry and electrothermal vaporization inductively coupled plasma optical emission spectrometry using solid sampling
Zhou et al. Quantitative determination of trace metals in high-purity silicon carbide powder by laser ablation inductively coupled plasma mass spectrometry without binders
Goforth et al. Laser-excited atomic fluorescence of atoms produced in a graphite furnace
JPH11211662A (en) Quick analytical method for trace amount of phosphorus in silicon material
Correia et al. Silver as internal standard for simultaneous determination of Cd and Pb in whole blood by electrothermal atomic absorption spectrometry
Scheffler et al. Internal standardization in axially viewed inductively coupled plasma optical emission spectrometry (ICP OES) combined with pneumatic nebulization and aerosol desolvation
Asfaw et al. A new demountable hydrofluoric acid resistant triple mode sample introduction system for ICP-AES and ICP-MS
Wu et al. Comparison of tungsten coil electrothermal vaporization and thermospray sample introduction methods for flame furnace atomic absorption spectrometry
Brown et al. Moderate-power argon microwave-induced plasma for the detection of metal ions in aqueous samples of complex matrix
Tianyou et al. Direct analysis of titanium dioxide solid powder by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry
Masson et al. Influence of aerosol desolvation from the ultrasonic nebulizer on the matrix effect in axial view inductively coupled plasma atomic emission spectrometry
JP2006250650A (en) Element analysis method and element analyzer
Okamoto et al. Chemical modification for inductively coupled plasma atomic emission spectrometric determination of boron with tungsten boat furnace vaporizer
Souza et al. Simultaneous determination of chromium and manganese in alumina by slurry sampling graphite furnace atomic absorption spectrometry using NbC and NaF as modifiers
CN104897648B (en) Method for measuring gallium in bauxite by inductively coupled plasma emission spectrometry
Šerá et al. Determination of key elements in plant samples by inductively coupled plasma optical emission spectrometry with electrothermal vaporization
Tianyou et al. Electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of trace amounts of impurities in slurries of silicon carbide
Kuptsov et al. Using of electrothermal vaporization for direct analysis of zinc solid samples by two-jet arc plasma optical emission spectrometry