JP2006250650A - Element analysis method and element analyzer - Google Patents

Element analysis method and element analyzer Download PDF

Info

Publication number
JP2006250650A
JP2006250650A JP2005066209A JP2005066209A JP2006250650A JP 2006250650 A JP2006250650 A JP 2006250650A JP 2005066209 A JP2005066209 A JP 2005066209A JP 2005066209 A JP2005066209 A JP 2005066209A JP 2006250650 A JP2006250650 A JP 2006250650A
Authority
JP
Japan
Prior art keywords
nonmetal
chloride
solution
metal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066209A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchihara
博 内原
Masahiko Ikeda
昌彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2005066209A priority Critical patent/JP2006250650A/en
Publication of JP2006250650A publication Critical patent/JP2006250650A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance analyzing sensitivity and analysis accuracy, regardless of the presence of a coexistent substance, by making a target element rapidly convert to a chemical substance stable in a high density and high-concentration state at a low temperature to evaporate the same, regardless of the difference in evaporation behavior and suppressing the lowering of loss and transfer efficiency. <P>SOLUTION: An ammonium halide is added to a sample (a solid-phase metal, a nonmetal or metal solution or a nonmetal solution) to heat the sample and the sample is converted to a chloride by the chemical reaction with a halogen produced by the sublimation pyrolysis accompanied by this heating to be evaporated/volatilized, while the evaporated/volatilized chloride gas is introduced into a chemical flame of AAS or plasma 20 of ICP through a transfer pipeline, and the absorbance or spectral intensity thereof is measured to quantify an element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄、亜鉛、合金等の金属、あるいは、グラファイト、硫黄、窒化物、硫化物、炭化物、血液、粒状物質等の非金属またはそれらの溶液(以下、試料と称するものを含む)を加熱気化させ、その気体を原子吸光分析(以下、AASという)の化学炎中または誘導結合高周波プラズマ分光分析(以下、ICPという)のプラズマ中に導入して吸光度または発光強度を測定することにより、前記金属あるいは非金属の構成要素である元素を定量する元素の分析方法及びその装置に関する。   The present invention includes metals such as iron, zinc, and alloys, or nonmetals such as graphite, sulfur, nitride, sulfide, carbide, blood, and particulate matter, or solutions thereof (hereinafter referred to as samples). By heating and vaporizing and introducing the gas into a chemical flame of atomic absorption spectrometry (hereinafter referred to as AAS) or plasma of inductively coupled high-frequency plasma spectroscopy (hereinafter referred to as ICP), and measuring the absorbance or emission intensity, The present invention relates to an element analysis method and an apparatus for quantifying an element which is a constituent element of the metal or nonmetal.

従来、試料を加熱気化させてAAS法またはICP法により目的元素を定量分析するにあたって、試料に塩酸や硝酸、硫酸等の化学修飾剤を添加して目的元素と酸の反応により気体である水素化物を生成させ、この水素化物を液相から分離させてAASの化学炎中またはIPCのプラズマ中に導入し目的元素を定量分析する方法が知られている(例えば、特許文献1参照)。   Conventionally, when a target element is quantitatively analyzed by AAS method or ICP method by heating and vaporizing the sample, a chemical modifier such as hydrochloric acid, nitric acid, sulfuric acid, etc. is added to the sample, and a hydride which is a gas by reaction of the target element and acid There is known a method in which the hydride is separated from the liquid phase and introduced into an AAS chemical flame or IPC plasma to quantitatively analyze the target element (see, for example, Patent Document 1).

また、例えば、塩化亜鉛など試料中の微量な目的元素を蒸発・気化させるために多量の硝酸を添加して加熱する一方、共存する塩化物、たとえば塩化ナトリウムなどによる負の干渉を抑えるために、硫酸アンモニウムを同時に添加して塩化ナトリウムを熱分解し昇華させるとともに、添加した硫酸アンモニウムも熱分解させて除去した後、原子化された目的元素をAASの化学炎中またはICPのプラズマ中に導入して定量分析する方法も知られている。   In addition, for example, in order to evaporate and vaporize a trace amount of the target element in the sample such as zinc chloride, a large amount of nitric acid is added and heated, while in order to suppress negative interference due to coexisting chlorides such as sodium chloride, Ammonium sulfate is added at the same time to thermally decompose and sublimate sodium chloride, and the added ammonium sulfate is also thermally decomposed and removed, and then the atomized target element is introduced into the AAS chemical flame or ICP plasma for quantitative determination. Methods for analysis are also known.

特開平10−221250号公報JP-A-10-221250

しかし、前者の従来技術では、試料中の特定元素の定量分析にのみ適用可能で、試料中の多種元素の定量分析に適用することができない。その上、特定元素の定量分析についても、その目的(特定)元素の高融点酸化物を形成するために、1000℃以下の低温ではピークをほとんど検出することができず、また、2000℃以上の高温でも目的元素の十分な蒸発・気化が起こらず、低い発光強度しか得られないといったように、気化速度(熱温度上昇速度)が非常に遅く、その結果、特定元素以外の元素に関しては、特定元素との蒸発挙動の差異に起因して所定の定量分析を精度よく行なうことが実質的に不可能であるばかりでなく、特定元素の定量分析に限ってみても、長時間を要して効率が悪いだけでなく、分析感度及び精度共に低い。   However, the former prior art can be applied only to the quantitative analysis of a specific element in a sample, and cannot be applied to the quantitative analysis of various elements in the sample. In addition, in the quantitative analysis of a specific element, in order to form a high-melting point oxide of the target (specific) element, a peak can hardly be detected at a low temperature of 1000 ° C. or lower, and The vaporization rate (thermal temperature rise rate) is very slow, such that sufficient evaporation and vaporization of the target element does not occur even at high temperatures and only low emission intensity is obtained. As a result, elements other than the specific element are specified. Not only is it impossible to perform a given quantitative analysis with high accuracy due to the difference in evaporation behavior from the element, but it also takes a long time to improve efficiency. Is not only bad, but the analytical sensitivity and accuracy are both low.

一方、後者の従来技術は、分析目的の元素以外の共存するマトリックスを除去するためのものであり、その共存するマトリックスによる分析精度への悪影響を除去するために目的元素が揮発性の化合物となり、原子化前の段階または原子化の初期段階で目的元素を損失(ロス)したり、高温炉が黒鉛炉である場合、その黒鉛炉自体に目的元素の一部が浸透したり、炭化物を生成したりして分析感度の低下を招きやすく、さらに、その原子化した目的元素をAASの化学炎中またはICPのプラズマ中に導入する移送管路の壁面に吸着されて更なる損失や移送効率の悪化を招き、その結果としての分析感度及び精度の低下は避けられないという問題があった。   On the other hand, the latter prior art is for removing a coexisting matrix other than the element for analysis, and the target element becomes a volatile compound in order to remove the adverse effect on the analysis accuracy due to the coexisting matrix, If the target element is lost at the stage before atomization or at the initial stage of atomization, or if the high-temperature furnace is a graphite furnace, a part of the target element penetrates into the graphite furnace itself, or carbide is generated. In addition, the analysis sensitivity is likely to be lowered, and the atomized target element is adsorbed on the wall surface of the transfer pipe that introduces the atomized target element into the chemical flame of AAS or plasma of ICP, and further loss and deterioration of transfer efficiency are caused. As a result, the analytical sensitivity and accuracy are inevitably lowered.

本発明は上述の実情に鑑みてなされたもので、その目的は、蒸発挙動の差異に関係なく、目的元素を低温かつ速やかに高密度高濃度で安定な化学物質に変換して気化させるとともに、損失及び移送効率の低下を抑制して、共存物の存在にかかわらず、所定の分析感度及び分析精度の顕著な向上を実現することができる元素の分析方法及びその装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to convert the target element into a stable chemical substance at a low temperature and quickly at a high density and a high concentration, regardless of the difference in evaporation behavior, An object of the present invention is to provide an elemental analysis method and apparatus capable of suppressing a loss and a decrease in transfer efficiency and realizing a significant improvement in predetermined analysis sensitivity and analysis accuracy regardless of the presence of coexisting substances.

上記目的を達成するために、本発明に係る元素の分析方法は、固相の金属もしくは非金属または金属溶液もしくは非金属溶液にハロゲン化アンモニウムを添加して加熱し、この加熱に伴う昇華熱分解で発生するハロゲンとの化学反応により前記金属もしくは非金属を塩化物に変換して蒸発・揮散させ、その蒸発・揮散した塩化物気体をAASの化学炎中またはICPのプラズマ中に導入して吸光度または分光強度を測定することにより元素を定量することを特徴としている。   In order to achieve the above-mentioned object, the elemental analysis method according to the present invention comprises adding a solid phase metal or nonmetal, or a metal solution or nonmetal solution to which ammonium halide is added and heating, and sublimation pyrolysis accompanying this heating. The metal or non-metal is converted to chloride by chemical reaction with the halogen generated in the process, evaporated and volatilized, and the vaporized and volatilized chloride gas is introduced into the AAS chemical flame or ICP plasma to absorb the light. Alternatively, the element is quantified by measuring the spectral intensity.

また、本発明に係る元素の分析装置は、固相の金属もしくは非金属または金属溶液もしくは非金属溶液にハロゲン化アンモニウムを添加した分析対象試料を加熱し、かつ、その加熱に伴う昇華熱分解で発生するハロゲンとの化学反応により前記金属もしくは非金属を塩化物に変換して蒸発・揮散させる高温炉と、この高温炉内で蒸発・揮散された塩化物気体をAASの化学炎中またはICPのプラズマ中に移送し導入する気体移送管路と、この移送管路を通して移送されてくる前記塩化物気体の吸光度または分光強度を測定するAAS装置またはICP装置とを備えていることを特徴としている。   The element analyzer according to the present invention heats an analysis target sample in which ammonium halide is added to a solid phase metal or nonmetal, or a metal solution or nonmetal solution, and sublimation pyrolysis accompanying the heating. A high temperature furnace in which the metal or non-metal is converted to chloride by a chemical reaction with the generated halogen to evaporate and volatilize, and the chloride gas evaporated and volatilized in the high temperature furnace is contained in an AAS chemical flame or ICP It is characterized by comprising a gas transfer line to be transferred and introduced into the plasma, and an AAS apparatus or ICP apparatus for measuring the absorbance or spectral intensity of the chloride gas transferred through this transfer line.

上記構成の本発明によれば、試料(固相の金属もしくは非金属または金属溶液もしくは非金属溶液)にハロゲン化アンモニウムを添加することにより、試料中の元素は低温加熱下で昇華熱分解して発生されるハロゲンと化学反応して速やかに沸点の低い塩化物に変換されて蒸発・揮散されるとともに、その蒸発・揮散される塩化物気体をAASの化学炎中またはICPのプラズマ中に移送し導入することにより、瞬時に励起されて光を発生することになる。このようにハロゲン化アンモニウムを添加することで、試料中の目的元素を、ロスなく高密度高濃度な塩化物気体として気化させることができるとともに、目的元素以外の共存物が存在しても、ハロゲン化アンモニウムの添加によって修飾されてマトリックス効果を低減することができる。しかも、上述のようなハロゲン化法で発生した塩化物気体は原子状態でなく、気相の分子であるために、AASの化学炎中またはICPのプラズマ中に導入する気体移送管路の壁面への吸着等による損失を著しく低減でき、かつ、移送効率の著しい改善を図ることができる。したがって、蒸発挙動の差異に関係なく、試料中の目的元素の分析感度及び分析精度の著しい向上を実現することができるという効果を奏する。   According to the present invention having the above structure, by adding ammonium halide to a sample (solid phase metal or nonmetal or metal solution or nonmetal solution), the elements in the sample undergo sublimation pyrolysis under low temperature heating. A chemical reaction with the generated halogen quickly converts to a low boiling point chloride, which is evaporated and volatilized, and the evaporated and volatilized chloride gas is transferred into the AAS chemical flame or ICP plasma. By introducing the light, it is excited instantaneously to generate light. By adding ammonium halide in this way, the target element in the sample can be vaporized as a high-density and high-concentration chloride gas without loss, and even if there are coexisting substances other than the target element, It can be modified by the addition of ammonium fluoride to reduce the matrix effect. Moreover, since the chloride gas generated by the halogenation method as described above is not an atomic state but a gas phase molecule, it is to the wall surface of the gas transfer conduit introduced into the AAS chemical flame or ICP plasma. Loss due to the adsorption of the water can be remarkably reduced, and the transfer efficiency can be remarkably improved. Therefore, regardless of the difference in evaporation behavior, there is an effect that it is possible to realize a significant improvement in analysis sensitivity and analysis accuracy of the target element in the sample.

なお、本発明に係る元素の分析方法において使用するハロゲン化アンモニウムの添加量としては、請求項2に記載のように、試料溶液濃度0.1mg/mlに対して10mg/ml以上で100mg/ml未満の濃度範囲に設定することが望ましい。もし、ハロゲン化アンモニウムの添加量が10mg/ml未満の濃度である場合は、目的元素の種類によって化学反応により気化しやすい塩化物に変換し難いことがあり、100mg/ml以上の濃度である場合は、炉内で蒸発・揮散した塩化アンモニウムが白色物質となって壁面に付着し、再現性が悪くなることがあるからであり、後述の実験結果からも明らかなように、最適の添加量は50mg/mlである。   The amount of ammonium halide used in the elemental analysis method according to the present invention is 10 mg / ml or more and 100 mg / ml with respect to a sample solution concentration of 0.1 mg / ml as described in claim 2. It is desirable to set the concentration range below. If the amount of ammonium halide added is less than 10 mg / ml, it may be difficult to convert to a chloride that is easily vaporized by a chemical reaction depending on the type of the target element, and the concentration is 100 mg / ml or more. This is because the ammonium chloride evaporated and volatilized in the furnace becomes a white substance and adheres to the wall surface, which may deteriorate the reproducibility. As is clear from the experimental results described later, the optimum addition amount is 50 mg / ml.

以下、本発明方法の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係る元素の分析方法を実施するために用いられる元素の分析装置の概要の一例を示す縦断面図である。同図において、1は高温炉の一例である電気炉、6はICP装置Aのトーチ(以下、ICPトーチと称する)であり、前記電気炉1は、碗状の上部電極2と下部電極3と上下両電極1,2を電気絶縁する絶縁リング4とを備えているとともに、碗状上部電極2の内部中央位置で下部電極3上には試料加熱気化用の黒鉛ルツボ5がセットされている。
Hereinafter, embodiments of the method of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an example of an outline of an element analyzing apparatus used for carrying out the element analyzing method according to the present invention. In the figure, 1 is an electric furnace which is an example of a high temperature furnace, 6 is a torch of an ICP apparatus A (hereinafter referred to as an ICP torch), and the electric furnace 1 includes a bowl-shaped upper electrode 2 and a lower electrode 3. An insulating ring 4 that electrically insulates the upper and lower electrodes 1 and 2 is provided, and a graphite crucible 5 for sample heating and vaporization is set on the lower electrode 3 at the center position inside the bowl-shaped upper electrode 2.

前記電気炉1における碗状上部電極2には、後述する塩化物気体をICPトーチ6に移送し導入するためのアルゴン(以下、Arと略記する)キャリアガスの入口7、出口8及び冷却水の入口9,出口10が形成されている。前記黒鉛ルツボ5の中央周壁部には、この黒鉛ルツボ5内で発生した塩化物気体を前記入口7から供給されるArキャリアガスと共に前記出口8に流動させる貫通孔11が形成されている。また、前記出口8には、前記塩化物気体及びArキャリアガスを前記ICPトーチ6に移送し導入する気体移送管路12が接続されており、この移送管路12にはArパージガスの入口13と排出口14を有する四方弁15が介在されている。   In the bowl-shaped upper electrode 2 in the electric furnace 1, an argon (hereinafter abbreviated as Ar) carrier gas inlet 7, outlet 8, and cooling water for transferring and introducing a chloride gas, which will be described later, to the ICP torch 6. An inlet 9 and an outlet 10 are formed. A through-hole 11 is formed in the central peripheral wall portion of the graphite crucible 5 to flow the chloride gas generated in the graphite crucible 5 to the outlet 8 together with the Ar carrier gas supplied from the inlet 7. The outlet 8 is connected to a gas transfer line 12 for transferring the chloride gas and Ar carrier gas to the ICP torch 6 for introduction, and the transfer line 12 is connected to an Ar purge gas inlet 13 and A four-way valve 15 having a discharge port 14 is interposed.

前記ICPトーチ6は、Arプラズマガス入口16に接続の外側石英管17と補助Arガス入口27に接続の内側石英管18と高周波磁場を形成する誘導コイル19とを備え、トーチ6の先端に炎状のプラズマ20を形成する。なお、図中21はArキャリアサポートガスの供給口である。また、ICP装置には、ICPトーチ6に塩化物気体を霧化して導入することにより、熱エネルギーで励起され発生する光を目的元素特有のスペクトルに分け、そのスペクトルの強度を検出することで目的元素の濃度を測定する分光器が設けられている。この分光器としては、回折格子を用いたパッシェンルンゲやエバートマウンティング等であっても、エバートやツエルニターナマウンティングなどエシェル格子を用いたシーケンシャル形のものであってもよく、これらは周知であるため、詳細な説明及び図示は省略する。   The ICP torch 6 includes an outer quartz tube 17 connected to the Ar plasma gas inlet 16, an inner quartz tube 18 connected to the auxiliary Ar gas inlet 27, and an induction coil 19 for forming a high-frequency magnetic field. A plasma 20 is formed. In the figure, reference numeral 21 denotes an Ar carrier support gas supply port. Also, in the ICP device, the chloride gas is atomized and introduced into the ICP torch 6 so that the light generated by excitation by thermal energy is divided into the spectrum specific to the target element and the intensity of the spectrum is detected. A spectrometer for measuring the concentration of the element is provided. This spectroscope may be a Paschen Runge or Evert mounting using a diffraction grating, or a sequential type using an Echelle grating such as Evert or Zernitana mounting, since these are well known. Detailed description and illustration are omitted.

次に、上記構成の元素の分析装置による分析操作について説明する。
黒鉛ルツボ5内に、ハロゲン化アンモニウム(NH4 Cl)を添加した試料(金属)溶液を滴下した上、黒鉛ルツボ5を電気炉1における下部電極3上にセットする。電気炉1を閉じた後、上,下電極2,3間に所定電力を所定時間通電して試料溶液を加熱することにより水分を蒸発・気化させる。次に、電力を上げて昇温加熱し、この昇温加熱に伴いハロゲン化アンモニウムが昇華熱分解すると同時にハロゲンもしくは気相のハロゲン化水素を発生し、このハロゲンもしくは気相のハロゲン化水素と試料との化学反応により試料中の目的元素が塩化物に変換されて高密度高濃度の塩化物気体として蒸発・揮散される。
Next, an analysis operation by the element analysis apparatus having the above configuration will be described.
A sample (metal) solution added with ammonium halide (NH 4 Cl) is dropped into the graphite crucible 5, and the graphite crucible 5 is set on the lower electrode 3 in the electric furnace 1. After the electric furnace 1 is closed, a predetermined power is passed between the upper and lower electrodes 2 and 3 for a predetermined time to heat and evaporate and evaporate moisture by heating the sample solution. Next, the electric power is raised and the temperature is raised and heated. As the temperature rises and heats, the ammonium halide is sublimated and pyrolyzed, and at the same time, a halogen or vapor phase hydrogen halide is generated. The target element in the sample is converted to chloride by the chemical reaction with and vaporized and volatilized as a high-density and high-concentration chloride gas.

なお、前記黒鉛ルツボ5内での化学反応式の一例を記すと次のとおりである。
M+NH4 Cl→M+NH3 +HCl →MCl+NH3 +1/2H2
ここで、Mは、金属溶液である。
An example of the chemical reaction formula in the graphite crucible 5 is as follows.
M + NH 4 Cl → M + NH 3 + HCl → MCl + NH 3 + 1 / 2H 2
Here, M is a metal solution.

この蒸発・揮散された塩化物気体は、入口7から黒鉛ルツボ5内に供給されるArキャリアガスによって貫通孔11、出口8を経て移送管路12に送られた後、その移送管路12内を移送されてICPトーチ6先端に形成のプラズマ20に霧化状態で導入される。このプラズマ20内に導入された塩化物気体は熱エネルギーで励起されて光を発生し、この光を目的元素特有のスペクトルに分け、そのスペクトルの強度を分光器により検出することによって目的元素の濃度を測定して、その目的元素の定量分析が行われる。   The evaporated and volatilized chloride gas is sent to the transfer pipe 12 through the through hole 11 and the outlet 8 by the Ar carrier gas supplied from the inlet 7 into the graphite crucible 5, and then in the transfer pipe 12. Is introduced into the plasma 20 formed at the tip of the ICP torch 6 in an atomized state. The chloride gas introduced into the plasma 20 is excited by thermal energy to generate light, the light is divided into a spectrum peculiar to the target element, and the intensity of the spectrum is detected by a spectroscope. And the target element is quantitatively analyzed.

上記のように、試料溶液(金属溶液もしくは非金属溶液)にハロゲン化アンモニウムを添加して加熱することによって、低温下で昇華熱分解して発生されるハロゲンとの化学反応により目的元素を速やかに沸点の低い塩化物に変換させて高密度高濃度な塩化物気体として蒸発・揮散させることが可能であるとともに、その塩化物気体をICPトーチ6で形成のプラズマ20中に移送し導入することによって、瞬時に励起させて光を発生させることが可能であるから、目的元素以外の共存物が存在しても、ハロゲン化アンモニウムの添加により修飾されてマトリックス効果(化学干渉)を低減することが可能である。また、上述のようなハロゲン化法で発生した塩化物気体は気相の分子であるから、ICPのプラズマ中に導入する気体移送管路12の壁面に吸着する等の損失もほとんどなく、移送効率の著しい改善を図ることが可能であり、これらの相乗作用によって、蒸発挙動の差異に関係なく、試料中の目的元素の定量分析を高感度、高精度に行なうことができる。   As described above, by adding ammonium halide to a sample solution (metal solution or non-metal solution) and heating it, the target element can be quickly recovered by chemical reaction with halogen generated by sublimation pyrolysis at low temperature. It is possible to evaporate and volatilize it as a high-density and high-concentration chloride gas by converting it into a chloride having a low boiling point, and by transferring and introducing the chloride gas into the plasma 20 formed by the ICP torch 6 Because it is possible to generate light by exciting it instantly, even if there are coexisting substances other than the target element, it can be modified by adding ammonium halide to reduce the matrix effect (chemical interference) It is. Further, since the chloride gas generated by the halogenation method as described above is a gas phase molecule, there is almost no loss such as adsorption to the wall surface of the gas transfer pipe 12 introduced into the plasma of ICP, and the transfer efficiency. As a result of these synergistic effects, quantitative analysis of the target element in the sample can be performed with high sensitivity and high accuracy regardless of the difference in evaporation behavior.

因みに、本発明者は、本発明に係る元素の分析方法による上述のような効果を確認するために、以下のような実験を行った。
(1)供試装置及び器具
電気炉:株式会社堀場製作所製の不活性ガス融解−赤外線吸収装置(EMGA−520 )のインパルス炉
ICPトーチ:株式会社堀場製作所製のULTIMA2
移送管路:内径3mmのテフロン(登録商標)管
黒鉛ルツボ:外径14mm、内径11mm、高さ25mm(足部高さ51mm、直径7 mmを含む)
黒鉛ルツボの温度測定:トプコン社製の単色高温計(OEP−PM−900、測定範囲 420〜2000℃)
標準溶液希釈用純水製造装置:日本ミリポア社製のMilli−Q Element
化学天秤:エーアンド・デー社製の電子天秤 GR−120
(2)ICPの測定条件及び電気炉の温度条件
ICP:
周波数 40.68MHz
出力 1.3kW
Arガス流量比
プラズマガス 14.01l/min.
補助ガス 2.4l/min.
キャリアガス 0.5l/min.
サポートガス 1.0l/min.
パージガス 1.0l/min.
誘導コイルの高さ 15mm
通電時間 20sec.
波長 213.86nm
電気炉
温度プログラム
乾燥時 120sec.at 100℃
蒸発時 5sec.at 2000℃
試料容量 10μl
(3)供試試薬
試料溶液
硝酸亜鉛(6水和物、純度99%) 和光純薬工業社製の特級試薬
塩化亜鉛(純度98%) 和光純薬工業社製の特級試薬
硝酸亜鉛(7水和物、純度99.5%) 和光純薬工業社製の特級試薬
化学修飾剤
塩化アンモニウム(本発明品、純度99%) 和光純薬工業社製の特級試薬
塩化ナトリウム(比較品1) 和光純薬工業社製の特級試薬
塩酸(比較品2、純度30%) 多摩化学社製のTAMAPURE− AA−100
硝酸亜鉛、塩化亜鉛、硝酸亜鉛を電子天秤で秤取り、それぞれ亜鉛濃度100mg /mlの水溶液を調製し、この溶液を希釈して0.1mg/mlの亜鉛標準溶液を 調製した。
Incidentally, the present inventor conducted the following experiment in order to confirm the above-described effects by the element analysis method according to the present invention.
(1) Test equipment and instruments Electric furnace: Impulse furnace of inert gas melting-infrared absorber (EMGA-520) manufactured by Horiba, Ltd. ICP torch: ULTIMA2 manufactured by Horiba, Ltd.
Transfer pipe: Teflon (registered trademark) pipe with an inner diameter of 3 mm Graphite crucible: Outer diameter 14 mm, inner diameter 11 mm, height 25 mm (including foot height 51 mm, diameter 7 mm)
Temperature measurement of graphite crucible: Monochromatic pyrometer made by Topcon (OEP-PM-900, measuring range 420-2000 ° C)
Pure water manufacturing equipment for standard solution dilution: Milli-Q Element manufactured by Nihon Millipore
Chemical balance: Electronic balance GR-120 manufactured by A & D
(2) ICP measurement conditions and electric furnace temperature conditions ICP:
Frequency 40.68MHz
Output 1.3kW
Ar gas flow ratio Plasma gas 14.01 l / min.
Auxiliary gas 2.4 l / min.
Carrier gas 0.5 l / min.
Support gas 1.0 l / min.
Purge gas 1.0 l / min.
Induction coil height 15mm
Energizing time 20 sec.
Wavelength 213.86nm
Electric furnace temperature program Drying 120 sec. at 100 ° C
Evaporation 5 sec. at 2000 ℃
Sample volume 10 μl
(3) Test reagent Sample solution Zinc nitrate (hexahydrate, purity 99%) Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. Zinc chloride (purity 98%) Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. Zinc nitrate (7 water) (Japanese product, purity 99.5%) Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. Chemical modifier Ammonium chloride (present product, purity 99%) Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. Sodium chloride (Comparative product 1) Wako Pure Special grade reagent manufactured by Yakugyo Co., Ltd. Hydrochloric acid (comparative product 2, purity 30%) TAMAPURE-AA-100 manufactured by Tama Chemical Co., Ltd.
Zinc nitrate, zinc chloride and zinc nitrate were weighed with an electronic balance to prepare aqueous solutions each having a zinc concentration of 100 mg / ml, and this solution was diluted to prepare a 0.1 mg / ml zinc standard solution.

(4)分析操作
黒鉛ルツボに、塩化アンモニウム(50mg/ml)を含む0.1mg/mlの亜鉛溶液10μlを滴下し下部電極にセットした。炉を閉じた後、0.15kW(約100℃)の電力を120sec.通電して水分を蒸発させ、次に、電力を3.5kW(約2000℃)に上げて5sec.間通電加熱して亜鉛を塩化物として蒸発・揮散させた。その蒸発・揮散した塩化物を、ArキャリアガスでICPプラズマに導入し、0.2sec.毎に20sec.間積算したピーク面積比により亜鉛(塩化亜鉛)の発光スペクトル強度を求めた。
(4) Analytical Operation To a graphite crucible, 10 μl of a 0.1 mg / ml zinc solution containing ammonium chloride (50 mg / ml) was dropped and set on the lower electrode. After closing the furnace, a power of 0.15 kW (about 100 ° C.) was applied for 120 sec. Energizing to evaporate the moisture, then raising the power to 3.5 kW (about 2000 ° C.) for 5 sec. Heating was applied for a while to evaporate and volatilize zinc as chloride. The evaporated and volatilized chloride was introduced into ICP plasma with Ar carrier gas, and 0.2 sec. Every 20 sec. The emission spectrum intensity of zinc (zinc chloride) was determined from the peak area ratio accumulated over time.

(5)実験結果及び考察
Arキャリアガスの流量について:
図2は、Arキャリアガスを0.3〜1.1l/min.の範囲で変化させたときの塩化亜鉛の発光強度の値を示すグラフである。
この図2から明らかなように、Arキャリアガス流量が0.45l/min.より少ないと、気化した塩化亜鉛が炉内及びプラズマへの移送導入途中で管路内壁に多く吸着されるために、発光スペクトル強度が低い値になる一方、Arキャリアガス流量が0.60l/min.以上になると、ICPトーチに導入されるトータルのガス量が1.6l/min.以上となるためにプラズマの中心温度が低下して塩化亜鉛が十分に励起されず、発光スペクトル強度が低下した。以上の結果から、最適なArキャリアガス流量として、0.50l/min.を用いることにした。
(5) Experimental results and discussion Regarding the flow rate of Ar carrier gas:
FIG. 2 shows that Ar carrier gas is 0.3 to 1.1 l / min. It is a graph which shows the value of the emitted light intensity of zinc chloride when it changes in the range of.
As is apparent from FIG. 2, the Ar carrier gas flow rate is 0.45 l / min. If it is less, vaporized zinc chloride is adsorbed on the inner wall of the pipe line in the furnace and in the course of introduction into the plasma, so that the emission spectrum intensity is low, while the Ar carrier gas flow rate is 0.60 l / min. . When the above is reached, the total amount of gas introduced into the ICP torch is 1.6 l / min. Therefore, the central temperature of the plasma was lowered and zinc chloride was not sufficiently excited, and the emission spectrum intensity was lowered. From the above results, the optimum Ar carrier gas flow rate is 0.50 l / min. Decided to use.

気化温度と時間について:
図3は、各試料溶液である塩化亜鉛(ZnCl2 )、硝酸亜鉛{Zn(NO32 }、硫酸亜鉛(ZnSO4 )それぞれの最適な気化温度の検討を行った結果を示すグラフである。
この図3から明らかなように、Zn(NO32 及びZnSO4 は共に、亜鉛の高融点酸化物を形成して加熱しても十分な蒸発・気化が起こらないために、1000℃以下ではほとんどピークが検出されず、2000℃以上でも発光スペクトル強度は低い値を示す一方、ZnCl2 は、約500℃以下でもピークが検出され、低温でも気化しやすいことが分かる。しかし、このZnCl2 の場合でも、ピーク形状がブロードで測定時間内に全ての亜鉛の気化が起こらず、発光スペクトル強度は十分な値とならない。また、600〜1700℃では、温度の低下に伴い亜鉛の発光スペクトル強度は高い値を示すが一定した値にはならない。また、1700℃以上では、発光スペクトル強度はほぼ一定した値となるが、600℃時の強度の1/2程度である。さらに、2000℃以上では、炭素の蒸気が多く発生し、この蒸気がプラズマの励起効率を低下するために、相対変動係数が大きくなる。励起効率を良くするために、ICP出力を1.0kWから1.3kWに上げると、亜鉛の発光スペクトル強度は約1.5倍となった。以上の結果から、ZnCl2 の最適な気化温度として約2000℃、IPC出力として1.3kWを用いることにした。また、乾燥温度は、塩化物が0.35kW(約200℃)付近から蒸発・気化し始めることと、急激な水分蒸発に伴う試料の飛散を抑えるために、0.15kW(約100℃)とし、乾燥時間は100sec.以下ではベースラインの変動が大きくなるために、120sec.とした。
About vaporization temperature and time:
FIG. 3 is a graph showing the results of examination of the optimum vaporization temperature of each of the sample solutions of zinc chloride (ZnCl 2 ), zinc nitrate {Zn (NO 3 ) 2 }, and zinc sulfate (ZnSO 4 ). .
As is apparent from FIG. 3, both Zn (NO 3 ) 2 and ZnSO 4 do not evaporate and vaporize even when heated by forming a high melting point oxide of zinc. It can be seen that almost no peak is detected and the emission spectrum intensity is low even at 2000 ° C. or higher, while ZnCl 2 has a peak detected even at about 500 ° C. or lower and is easily vaporized even at low temperatures. However, even in the case of ZnCl 2 , the peak shape is broad, and all zinc is not vaporized within the measurement time, and the emission spectrum intensity is not a sufficient value. Moreover, at 600-1700 degreeC, the emission spectrum intensity of zinc shows a high value with the fall of temperature, but it does not become a constant value. Further, at 1700 ° C. or higher, the emission spectrum intensity is a substantially constant value, but is about ½ of the intensity at 600 ° C. Further, at 2000 ° C. or higher, a large amount of carbon vapor is generated, and this vapor decreases the excitation efficiency of the plasma, so that the relative variation coefficient increases. When the ICP output was increased from 1.0 kW to 1.3 kW in order to improve the excitation efficiency, the emission spectrum intensity of zinc was about 1.5 times. From the above results, it was decided to use about 2000 ° C. as the optimum vaporization temperature of ZnCl 2 and 1.3 kW as the IPC output. The drying temperature is 0.15 kW (about 100 ° C.) in order to suppress the evaporation and vaporization of chloride from around 0.35 kW (about 200 ° C.) and to prevent the sample from scattering due to rapid moisture evaporation. The drying time is 100 sec. In the following, since the fluctuation of the baseline becomes large, 120 sec. It was.

塩化物添加効果について:
表1は、酸化物の生成を抑制し、効率よく気化しやすい形態の塩化物を生成しやすい化学修飾剤として、塩化(ハロゲン化)アンモニウム(NH4 Cl)、塩酸(HCl)、塩化ナトリウム(NaCl)を亜鉛濃度が0.1mg/mlの各試料溶液に50mg/ml添加したときの発光スペクトル強度の比較を行い、ZnCl2 の化学修飾剤の添加効果を無添加(None)の場合との比率として求めた結果を示すものである。また、図4は、Zn(NO32 に各化学修飾剤(NH4 Cl、HCl、NaCl)を添加した時の発光スペクトル強度プロファイルである。
About chloride addition effect:
Table 1 shows chemical modifiers that suppress the formation of oxides and easily generate chlorides in a form that is easily vaporized, and include ammonium chloride (halogenated) (NH 4 Cl), hydrochloric acid (HCl), sodium chloride ( Comparison of emission spectrum intensity when 50 mg / ml of NaCl) was added to each sample solution having a zinc concentration of 0.1 mg / ml, and the effect of adding a chemical modifier of ZnCl 2 was compared with the case of no addition (None) The result calculated | required as a ratio is shown. FIG. 4 is an emission spectrum intensity profile when each chemical modifier (NH 4 Cl, HCl, NaCl) is added to Zn (NO 3 ) 2 .

Figure 2006250650
Figure 2006250650

表1及び図4から明らかなように、ZnCl2 は、NH4 ClあるいはHClを添加することによって、Noneの場合に比べて発光スペクトル強度が1.2倍となったが、NaClの添加では増感効果がほとんど見られなかった。ZnSO4 にHClを添加することによって、Noneの場合の約8倍の増感効果が見られるものの、ZnCl2 の場合と比較すると、8%の発光スペクトル強度しか得られない。反面、NH4 ClとNaClにHClを添加すると、Noneの場合と比較して約100倍の増感効果が得られ、発光スペクトル強度についてもZnCl2 の場合とほぼ同等であった。また、Zn(NO32
では、NH4 ClあるいはHClの添加により、Noneの場合と比較して16〜20倍の増感効果が得られる。ここで、NaClの添加は、Noneの場合と比較して、ピークの出現時間が約6sec.早くなるが、増感効果は約3倍で、発光スペクトル強度もZnCl2 の20%程度である。以上の結果から、各試料溶液においてZnCl2 を生成しやすい化学修飾剤としては、塩化(ハロゲン化)アンモニウム(NH4 Cl)が最適であることが分かった。
As is apparent from Table 1 and FIG. 4, ZnCl 2 has an emission spectrum intensity of 1.2 times that of None when NH 4 Cl or HCl is added, but it increases with the addition of NaCl. There was almost no sensation effect. By adding HCl to ZnSO 4 , the sensitizing effect is about 8 times that of None, but only 8% of the emission spectrum intensity is obtained as compared with the case of ZnCl 2 . On the other hand, when HCl was added to NH 4 Cl and NaCl, a sensitization effect about 100 times that of None was obtained, and the emission spectrum intensity was almost the same as that of ZnCl 2 . Zn (NO 3 ) 2
Then, the addition of NH 4 Cl or HCl provides a sensitizing effect 16 to 20 times that of None. Here, compared with the case of None, the addition time of NaCl is about 6 sec. Although faster, the sensitizing effect is about 3 times, and the emission spectrum intensity is about 20% of ZnCl 2 . From the above results, it was found that ammonium chloride (halogenated) ammonium (NH 4 Cl) is the most suitable chemical modifier that easily generates ZnCl 2 in each sample solution.

塩化アンモニウム(NH4 Cl)の添加量について:
図5は、亜鉛濃度が0.1mg/mlの各試料溶液に対してNH4 Clを0.005〜50mg/mlの濃度範囲で添加したときの増感効果を調べた結果を示すグラフである。 この図5から明らかなように、ZnCl2 とZn(NO32 は、NH4 Clの添加量が0.5mg/mlまでは発光スペクトル強度に変化がないが、ZnSO4 は、添加量が5mg/mlで50mg/mlの場合の約1/2、0.5mg/mlで約1/20の発光スペクトル強度となった。ZnSO4 は、少量のNH4 Clの添加では塩化物になり難く、NH4 Clの添加量が50mg/mlのとき各試料溶液の発光スペクトル強度がほぼ同等となった。NH4 Clの添加量が50mg/ml以上では、炉内に蒸発・揮散した過剰のNH4 Clが白色物質となって炉壁面に付着するため、再現性が悪くなった。以上の結果から、NH4 Clの添加量は、試料溶液濃度0.1mg/mlに対して10mg/ml以上で100mg/ml未満の濃度範囲が好ましく、より好ましくは50mg.mlであることが分かった。すなわち、塩化アンモニウム(NH4 Cl)の添加量は、試料溶液に対して100倍以上で1000倍未満の濃度範囲が好ましく、より好ましくは500倍である。
Regarding the addition amount of ammonium chloride (NH 4 Cl):
FIG. 5 is a graph showing the results of examining the sensitizing effect when NH 4 Cl is added in a concentration range of 0.005 to 50 mg / ml with respect to each sample solution having a zinc concentration of 0.1 mg / ml. . As is clear from FIG. 5, ZnCl 2 and Zn (NO 3 ) 2 have no change in emission spectrum intensity up to the addition amount of NH 4 Cl up to 0.5 mg / ml, but ZnSO 4 has the addition amount. The emission spectrum intensity was about 1/2 at 50 mg / ml at 5 mg / ml and about 1/20 at 0.5 mg / ml. ZnSO 4 hardly becomes a chloride when a small amount of NH 4 Cl is added, and when the addition amount of NH 4 Cl is 50 mg / ml, the emission spectrum intensities of the sample solutions are almost equal. When the amount of NH 4 Cl added was 50 mg / ml or more, the reproducibility deteriorated because excess NH 4 Cl evaporated and volatilized in the furnace became a white substance and adhered to the furnace wall surface. From the above results, the amount of NH 4 Cl added is preferably 10 mg / ml or more and less than 100 mg / ml with respect to the sample solution concentration of 0.1 mg / ml, more preferably 50 mg. It turned out to be ml. That is, the amount of ammonium chloride (NH 4 Cl) added is preferably 100 times or more and less than 1000 times, more preferably 500 times the sample solution.

検量線の直線性及び検出限界について:
塩化アンモニウム(NH4 Cl)を添加した場合、塩化亜鉛(ZnCl)の亜鉛量5〜100mg/lの範囲で良好な直線性の検量線が得られ、その相関係数は0.9997であった。また、本実験によるZnCl2 、Zn(NO32 、ZnSO4 を用いて調製した100mg/l亜鉛溶液の再現性は、相対標準偏差でそれぞれ1.4、4.3、2.9%(n=6)であった。また、NH4 Cl溶液(50mg/ml)をブランクとしたときの検出限界(ブランク値の標準偏差値の3倍)は約60pgであった。さらに、分析時間は1分析当たり約3分で、同一の黒鉛ルツボで約200回まで繰り返し使用が可能であった。
About the linearity and detection limit of calibration curves:
When ammonium chloride (NH 4 Cl) was added, a calibration curve with good linearity was obtained in the zinc content of zinc chloride (ZnCl) in the range of 5 to 100 mg / l, and the correlation coefficient was 0.9997. . The reproducibility of the 100 mg / l zinc solution prepared using ZnCl 2 , Zn (NO 3 ) 2 , and ZnSO 4 according to this experiment is 1.4, 4.3, 2.9% (relative standard deviations, respectively). n = 6). Further, the detection limit (three times the standard deviation of the blank value) when the NH 4 Cl solution (50 mg / ml) was blank was about 60 pg. Furthermore, the analysis time was about 3 minutes per analysis, and the same graphite crucible could be used repeatedly up to about 200 times.

以上の実験例では、試料として亜鉛を用いたものについて説明したが、ニッケルなどハロゲンカ物を生成しやすい各種の金属元素や、グラファイト、硫黄、窒化物、硫化物、炭化物、血液、粒状物質等の非金属中の元素の定量分析、さらには金属もしくは非金属の溶液に限らず、例えばアルカリ金属など固相の金属もしくは非金属中の元素の定量分析にも応用可能である。   In the above experimental examples, the sample using zinc as the sample has been described. However, various metal elements such as nickel, which easily generate a halogen compound, graphite, sulfur, nitride, sulfide, carbide, blood, particulate matter, etc. The present invention can be applied to quantitative analysis of elements in nonmetals, and not only to metals or nonmetal solutions, but also to quantitative analysis of solid metals such as alkali metals or elements in nonmetals.

また、上記実施の形態及び実験例では、分析装置としてICP装置Aを用いたものについて説明したが、図6に示すようなAAS装置Bを用いてもよい。このAAS装置Bは周知であるため、その詳細は省略するが、概要のみを説明すると、電気炉1で発生した塩化物気体を移送管路12を通じてAASバーナ21により形成される炎(高温フレーム)22中に導入して加熱することによって、塩化物気体は熱分解されて目的元素の原子状の蒸気となり、その元素固有の波長の光を中空陰極放電管や無極放電管などの光源23から放射される光に吸収させ、その光吸収量(吸光度)を、フィルタや回折格子を用いた分光器24を通して光電子増倍管などの検出器25により測定することにより、目的元素の定量分析を行なうように構成されたものであって、ICP装置を用いる場合と同様に高い分析感度及び分析精度を発揮することが可能である。   In the above embodiment and experimental examples, the ICP apparatus A is used as an analysis apparatus. However, an AAS apparatus B as shown in FIG. 6 may be used. Since this AAS apparatus B is well-known, its details will be omitted, but only the outline will be described. A flame (high temperature flame) formed by the AAS burner 21 through the transfer pipe 12 for the chloride gas generated in the electric furnace 1. When introduced into 22 and heated, the chloride gas is pyrolyzed into atomic vapor of the target element, and light having a wavelength specific to that element is emitted from a light source 23 such as a hollow cathode discharge tube or non-polar discharge tube. The target element is quantitatively analyzed by measuring the amount of light absorption (absorbance) with a detector 25 such as a photomultiplier tube through a spectroscope 24 using a filter or diffraction grating. As in the case of using the ICP device, it is possible to exhibit high analysis sensitivity and analysis accuracy.

本発明に係る元素の分析方法を実施するために用いられる元素の分析装置の概要の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the outline | summary of the elemental analyzer used in order to implement the elemental analysis method which concerns on this invention. 本発明の実験結果の一つで、Arキャリアガス流量と亜鉛の発光スペクトル強度との関係を示すグラフである。It is one of the experimental results of this invention, and is a graph which shows the relationship between Ar carrier gas flow volume and the emission spectrum intensity of zinc. 本発明の実験結果の一つで、亜鉛の気化温度と発光スペクトル強度との関係を示すグラフである。It is one of the experimental results of the present invention and is a graph showing the relationship between the vaporization temperature of zinc and the emission spectrum intensity. 本発明の実験結果の一つで、硝酸亜鉛に各種化学修飾剤を添加したときの発光スペクトル強度のプロファイルである。It is one of the experimental results of the present invention, and is an emission spectrum intensity profile when various chemical modifiers are added to zinc nitrate. 本発明の実験結果の一つで、各種亜鉛試料に対して塩化アンモニウムの添加量を変化させたときの増感効果を示すグラフである。It is one of the experimental results of this invention, and is a graph which shows the sensitization effect when changing the addition amount of ammonium chloride with respect to various zinc samples. 本発明に係る元素の分析装置の他の実施形態を示す概要図である。It is a schematic diagram which shows other embodiment of the elemental analyzer based on this invention.

符号の説明Explanation of symbols

1 電気炉(高温炉)
6 ICPトーチ
12 気体移送管路
20 プラズマ
21 AASバーナ
22 炎(高温アレーム)
A ICP装置
B AAS装置
1 Electric furnace (high temperature furnace)
6 ICP Torch 12 Gas Transfer Line 20 Plasma 21 AAS Burner 22 Flame (High Temperature Alem)
A ICP device B AAS device

Claims (3)

固相の金属もしくは非金属または金属溶液もしくは非金属溶液にハロゲン化アンモニウムを添加して加熱し、この加熱に伴う昇華熱分解で発生するハロゲンとの化学反応により前記金属もしくは非金属を塩化物に変換して蒸発・揮散させ、その蒸発・揮散した塩化物気体を原子吸光分析の化学炎中または誘導結合高周波分光分析のプラズマ中に導入して吸光度または分光強度を測定することにより元素を定量することを特徴とする元素の分析方法。   Ammonium halide is added to a solid phase metal or nonmetal or metal solution or nonmetal solution and heated, and the metal or nonmetal is converted into chloride by a chemical reaction with halogen generated by sublimation pyrolysis accompanying this heating. Evaporation and volatilization after conversion, and then the vaporized and volatilized chloride gas is introduced into a chemical flame for atomic absorption spectrometry or plasma for inductively coupled radiofrequency spectroscopy, and the element is quantified by measuring the absorbance or spectral intensity. The elemental analysis method characterized by this. 前記ハロゲン化アンモニウムの添加量は、金属溶液もしくは非金属溶液濃度0.1mg/mlに対して10mg/ml以上で100mg/ml未満の濃度範囲に設定されている請求項1に記載の元素の分析方法。   The elemental analysis according to claim 1, wherein the addition amount of the ammonium halide is set to a concentration range of 10 mg / ml or more and less than 100 mg / ml with respect to a metal solution or nonmetal solution concentration of 0.1 mg / ml. Method. 固相の金属もしくは非金属または金属溶液もしくは非金属溶液にハロゲン化アンモニウムを添加した分析対象試料を加熱し、かつ、その加熱に伴う昇華熱分解で発生するハロゲンとの化学反応により前記金属もしくは非金属を塩化物に変換して蒸発・揮散させる高温炉と、この高温炉内で蒸発・揮散された塩化物気体をAASの化学炎中またはICPのプラズマ中に移送し導入する気体移送管路と、この移送管路を通して移送されてくる前記塩化物気体の吸光度または分光強度を測定する原子吸光分析装置または誘導結合高周波プラズマ分光分析装置とを備えていることを特徴とする元素の分析装置。   A sample to be analyzed in which ammonium halide is added to a solid phase metal or nonmetal, or a metal solution or nonmetal solution, and the metal or nonmetal is reacted by a chemical reaction with halogen generated by sublimation pyrolysis accompanying the heating. A high-temperature furnace that converts metal into chloride and evaporates and volatilizes; and a gas transfer line that transports and introduces the chloride gas evaporated and volatilized in the high-temperature furnace into an AAS chemical flame or ICP plasma An elemental analyzer comprising: an atomic absorption spectrometer or an inductively coupled high-frequency plasma spectrometer that measures the absorbance or spectral intensity of the chloride gas transferred through the transfer pipe.
JP2005066209A 2005-03-09 2005-03-09 Element analysis method and element analyzer Pending JP2006250650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066209A JP2006250650A (en) 2005-03-09 2005-03-09 Element analysis method and element analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066209A JP2006250650A (en) 2005-03-09 2005-03-09 Element analysis method and element analyzer

Publications (1)

Publication Number Publication Date
JP2006250650A true JP2006250650A (en) 2006-09-21

Family

ID=37091323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066209A Pending JP2006250650A (en) 2005-03-09 2005-03-09 Element analysis method and element analyzer

Country Status (1)

Country Link
JP (1) JP2006250650A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021546A (en) * 2015-07-09 2015-11-04 无锡创想分析仪器有限公司 Method for measuring chemical elements by whole-spectrum direct-reading spectrometer
JP2016502090A (en) * 2012-11-30 2016-01-21 アイティーアイ・スコットランド ‐ スコティッシュ・エンタープライズIti Scotland ‐ Scottish Enterprise Improved gas phase spectrum analysis
CN107167466A (en) * 2017-05-09 2017-09-15 无锡创想分析仪器有限公司 The method for improving Zn-ef ficiency measurement accuracy in brass
CN111504983A (en) * 2020-05-07 2020-08-07 北京莱伯泰科仪器股份有限公司 Device and method for combining thermal cracking with ICP/MS or ICP/OES

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764162A (en) * 1980-09-26 1982-04-19 Mo I Stali I Splavov Quantitative analysis of chemical composition for inorganic material
JPS62191763A (en) * 1986-02-19 1987-08-22 Nippon Kokan Kk <Nkk> Method for quantitative analysis of element in steel
JPH0633158A (en) * 1992-07-17 1994-02-08 Techno Toriito:Kk Treatment of zinc-and tin-containing scrap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764162A (en) * 1980-09-26 1982-04-19 Mo I Stali I Splavov Quantitative analysis of chemical composition for inorganic material
JPS62191763A (en) * 1986-02-19 1987-08-22 Nippon Kokan Kk <Nkk> Method for quantitative analysis of element in steel
JPH0633158A (en) * 1992-07-17 1994-02-08 Techno Toriito:Kk Treatment of zinc-and tin-containing scrap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502090A (en) * 2012-11-30 2016-01-21 アイティーアイ・スコットランド ‐ スコティッシュ・エンタープライズIti Scotland ‐ Scottish Enterprise Improved gas phase spectrum analysis
CN105021546A (en) * 2015-07-09 2015-11-04 无锡创想分析仪器有限公司 Method for measuring chemical elements by whole-spectrum direct-reading spectrometer
CN107167466A (en) * 2017-05-09 2017-09-15 无锡创想分析仪器有限公司 The method for improving Zn-ef ficiency measurement accuracy in brass
CN111504983A (en) * 2020-05-07 2020-08-07 北京莱伯泰科仪器股份有限公司 Device and method for combining thermal cracking with ICP/MS or ICP/OES

Similar Documents

Publication Publication Date Title
Wen et al. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction
Paul et al. Mineral assay in atomic absorption spectroscopy
Tsukahara et al. Some characteristics of inductively coupled plasma-mass spectrometry with sample introduction by tungsten furnace electrothermal vaporization
Ren et al. Direct solid sample analysis using furnace vaporization with Freon modification and inductively coupled plasma atomic emission spectrometry-I. Vaporization of oxides and carbides
Shekhar et al. Determination of thallium at trace levels by electrolyte cathode discharge atomic emission spectrometry with improved sensitivity
Rust et al. Advances with tungsten coil atomizers: continuum source atomic absorption and emission spectrometry
Hassler et al. Determination of 22 trace elements in high-purity copper including Se and Te by ETV-ICP OES using SF 6, NF 3, CF 4 and H 2 as chemical modifiers
Grégoire et al. Vaporization of acids and their effect on analyte signal in electrothermal vaporization inductively coupled plasma mass spectrometry
Wu et al. Evaluation of tungsten coil electrothermal vaporization-Ar/H2 flame atomic fluorescence spectrometry for determination of eight traditional hydride-forming elements and cadmium without chemical vapor generation
JP2006250650A (en) Element analysis method and element analyzer
Liu et al. Inorganic arsenic speciation analysis of water samples by trapping arsine on tungsten coil for atomic fluorescence spectrometric determination
de Moraes Flores et al. A new approach for fluorine determination by solid sampling graphite furnace molecular absorption spectrometry
Paksy et al. Production control of metal alloys by laser spectroscopy of the molten metals. Part I. Preliminary investigations
Barth et al. Determination of trace impurities in boron nitride by graphite furnace atomic absorption spectrometry and electrothermal vaporization inductively coupled plasma optical emission spectrometry using solid sampling
Cankur et al. Chemical vapor generation of Cd and on-line preconcentration on a resistively heated W-coil prior to determination by atomic absorption spectrometry using an unheated quartz absorption cell
Feng et al. Solid sampling graphite fibre felt electrothermal atomic fluorescence spectrometry with tungsten coil atomic trap for the determination of cadmium in food samples
Kántor Sample introduction with graphite furnace electrothermal vaporization into an inductively coupled plasma: effects of streaming conditions and gaseous phase additives
Majidi et al. Electrothermal vaporization, part 1: gas phase chemistry
Dietz et al. Simultaneous determination of As, Hg, Se and Sb by hydride generation-microwave induced plasma atomic emission spectrometry after preconcentration in a cryogenic trap
Huang et al. High-resolution continuum source molecular absorption spectrometry of nitrogen monoxide and its application for the determination of nitrate
Amberger et al. Direct multielement determination of trace elements in boron carbide powders by slurry sampling ETV-ICP-OES
Hanna et al. Design of a compact, aluminum, tungsten-coil electrothermal vaporization device for inductively coupled plasma-optical emission spectrometry
Jankowski et al. Spectroscopic diagnostics for evaluation of the analytical potential of argon+ helium microwave-induced plasma with solution nebulization
Pohl et al. Comparison of the cold vapor generation using NaBH 4 and SnCl 2 as reducing agents and atomic emission spectrometry for the determination of Hg with a microstrip microwave induced argon plasma exiting from the wafer
Matusiewicz et al. Determination of nickel by chemical vapor generation in situ trapping flame AAS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A02