JPH11211470A - Distance measuring equipment - Google Patents

Distance measuring equipment

Info

Publication number
JPH11211470A
JPH11211470A JP1371998A JP1371998A JPH11211470A JP H11211470 A JPH11211470 A JP H11211470A JP 1371998 A JP1371998 A JP 1371998A JP 1371998 A JP1371998 A JP 1371998A JP H11211470 A JPH11211470 A JP H11211470A
Authority
JP
Japan
Prior art keywords
image
subject
lens
evaluation function
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1371998A
Other languages
Japanese (ja)
Other versions
JP4003274B2 (en
Inventor
Shunichiro Oe
俊一郎 大恵
Kenji Terada
賢治 寺田
Naoki Yamaguchi
直木 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHC Corp
Matsushita Kotobuki Electronics Peripherals of America Inc
Original Assignee
Matsushita Kotobuki Electronics Industries Ltd
Matsushita Kotobuki Electronics Peripherals of America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Kotobuki Electronics Industries Ltd, Matsushita Kotobuki Electronics Peripherals of America Inc filed Critical Matsushita Kotobuki Electronics Industries Ltd
Priority to JP01371998A priority Critical patent/JP4003274B2/en
Publication of JPH11211470A publication Critical patent/JPH11211470A/en
Application granted granted Critical
Publication of JP4003274B2 publication Critical patent/JP4003274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the measuring time and make a subject measurable even when its surface has texture property by calculating the relative magnification between a reference image and a search image from the map radius of the search image where the evaluation function is maximum. SOLUTION: An A/D converter 4 and a computer 5 are mounted on a CCD camera 2, and the image signal from the camera 2 is arithmetically processed to find the distance from a lens to a subject 6. Namely, of two image signals obtained by taking images while moving the camera 2 in the optical axial direction, the image signal having the shorter distance between the lens and the subject 6 is taken as a reference image signal, and the other as a search image signal. The map radius is set so as to include a subject part to be measured followed by coordinate conversion, and the map radius of the search image is then minimized while calculating the evaluation function to find the map radius of the search image where the evaluation function is maximum. The relative magnification between the reference image and the search image is calculated from this map radius, whereby the distance to the subject 6 is found by a lens formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被写体からレンズ
までの距離を測定できる距離測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device capable of measuring a distance from a subject to a lens.

【0002】[0002]

【従来の技術】従来、レンズと撮影素子を用いて距離を
測定する方法として、ステレオ法と光投影法がある。ス
テレオ法は、図5において、複数のカメラ2で被写体6
を撮影した2枚以上の画像に対して、公知の両眼立体視
法の原理を用いて距離を求める方法で、まず、複数のカ
メラ2の幾何学的配置等から被写体の形状を算出する。
2. Description of the Related Art Conventionally, there are a stereo method and a light projection method as a method of measuring a distance using a lens and a photographing element. In the stereo method, in FIG.
First, the shape of a subject is calculated from the geometrical arrangement of a plurality of cameras 2 by using a known method of binocular stereopsis for the two or more images obtained by capturing the distance.

【0003】また、光投影法は、図6において、被写体
6にスリット光源12よりスリット光11を照射する。
スリット光11は、レーザ光源等の高輝度の光源を用
い、投影されたスリット光11を、スリット光源12と
別の方向からのカメラ2で観測すると、被写体6の表面
形状に沿って変調されたスリット像が得られる。このス
リット光11の変形量、基線長および変調されたスリッ
ト光13とカメラ2の幾何学的配置から被写体6の形状
を算出するものである。
In the light projection method, a slit light source 12 irradiates a slit light 11 to a subject 6 in FIG.
When the projected slit light 11 is observed by the camera 2 from a different direction from the slit light source 12 using a high-luminance light source such as a laser light source, the slit light 11 is modulated along the surface shape of the subject 6. A slit image is obtained. The shape of the subject 6 is calculated from the amount of deformation of the slit light 11, the base line length, the modulated slit light 13, and the geometrical arrangement of the camera 2.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来の構成では、被写体や計測環境によって計測が困難
な場合や、あるいは、不可能な場合がある。これは、ス
テレオ法では、被写体表面上のパターンによって対応点
探索が困難な場合があり、距離測定が不可能な場合があ
る。また、光投影法は被写体にスリットなどの光源を投
影して距離を求める方法であるため、自然光の下や色ま
たはパターンによっては十分な輝度差が得られず計測が
難しいという問題点がある。
However, in the above-described conventional configuration, measurement may be difficult or impossible depending on the subject or the measurement environment. This is because in the stereo method, it may be difficult to search for a corresponding point depending on a pattern on the surface of a subject, and distance measurement may not be possible. Further, since the light projection method is a method of projecting a light source such as a slit onto a subject to obtain a distance, there is a problem that a sufficient luminance difference cannot be obtained under natural light or depending on a color or pattern, and measurement is difficult.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の距離測定装置は、被写体に光を照射する光
源と、被写体からの反射光を集光するとともに光軸方向
に移動可能なレンズと、レンズを介して照射される被写
体像(輝度分布)に応じた画像信号を発生する撮像素子
と、撮像素子上に焦点のあった被写体像を投影できるフ
ォーカス機構とを備え、レンズと撮像素子とを光軸方向
に移動して撮像することにより得られる2つの画像信号
のうち、レンズと被写体との間の距離が短い画像信号を
基準画像信号とし他方を探索画像信号として、測定した
い被写体部分を含むように写像半径を設定し座標変換し
た後、評価関数を計算しながら探索画像の写像半径を小
さくしていき、評価関数が最大になる探索画像の写像半
径rmaxを求め、その写像半径rmaxから基準画像と探索
画像との相対的な倍率を計算することで、それぞれの画
像を撮影した際のレンズと被写体との間の距離をレンズ
公式により求めるようにしたものである。
In order to solve the above-mentioned problems, a distance measuring apparatus according to the present invention comprises a light source for irradiating a subject with light, and a light source for converging reflected light from the subject and moving in the optical axis direction. A lens, an image sensor that generates an image signal corresponding to a subject image (luminance distribution) irradiated through the lens, and a focus mechanism that can project a focused subject image onto the image sensor. Of the two image signals obtained by moving the image sensor in the optical axis direction and taking an image, an image signal in which the distance between the lens and the subject is short is a reference image signal, and the other is a search image signal. After setting the mapping radius so as to include the subject portion and performing coordinate transformation, the mapping radius of the search image is reduced while calculating the evaluation function, and the mapping radius r max of the search image that maximizes the evaluation function is obtained. By calculating the relative magnification between the reference image and the search image from the mapping radius r max of, the distance between the lens and the subject at the time of capturing each image is obtained by the lens formula. .

【0006】これによれば、撮像する画像は2つである
ため従来のものに比べて測定時間を短縮できる。またス
テレオ法のように2つの画像内で対応点を探索する必要
がないので、被写体の表面がテクスチャ性をもっていて
も測定可能である。
According to this method, since two images are taken, the measurement time can be reduced as compared with the conventional one. In addition, since it is not necessary to search for a corresponding point in two images unlike the stereo method, it is possible to measure even if the surface of the subject has texture.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、被写体に光を照射する光源と、被写体からの反射光
を集光するとともに光軸方向に移動可能なレンズと、レ
ンズを介して照射される被写体像(輝度分布)に応じた
画像信号を発生する撮像素子上に焦点のあった被写体像
を投影できるフォーカス機構とを備え、レンズと撮像素
子を光軸方向に移動して撮像することにより得られる2
つの画像信号のうち、レンズと被写体間の距離が短い画
像信号を基準画像信号とし他方を探索画像信号として、
測定したい被写体部分を含むように写像半径を設定し座
標変換した後、評価関数を計算しながら探索画像の写像
半径を小さくしていき、評価関数が最大になる探索画像
の写像半径rmaxを求め、その写像半径rmaxから基準画
像と探索画像との相対的な倍率を計算することで、それ
ぞれの画像を撮影した際のレンズと被写体との間の距離
をレンズ公式により求めることを特徴とするものであ
り、2つの撮影画像からレンズと被写体の間の距離を測
定することができる。ステレオ法と異なり、2つの画像
内で対応点を探索する必要がないので被写体の表面がテ
クスチャ性を有していても測定可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention comprises a light source for irradiating a subject with light, a lens capable of condensing reflected light from the subject and moving in the optical axis direction, and a lens. A focus mechanism that can project a focused subject image onto an image sensor that generates an image signal corresponding to a subject image (luminance distribution) irradiated through the lens, and moves the lens and the image sensor in the optical axis direction. 2 obtained by imaging
Of the two image signals, the image signal in which the distance between the lens and the subject is short is the reference image signal, and the other is the search image signal.
After setting the mapping radius so as to include the portion of the subject to be measured and performing coordinate transformation, the mapping radius of the search image is reduced while calculating the evaluation function, and the mapping radius r max of the search image that maximizes the evaluation function is obtained. Calculating the relative magnification between the reference image and the search image from the mapping radius r max to obtain the distance between the lens and the subject at the time of capturing each image using the lens formula. That is, the distance between the lens and the subject can be measured from the two captured images. Unlike the stereo method, it is not necessary to search for a corresponding point in two images, so that measurement can be performed even if the surface of the subject has texture.

【0008】本発明の請求項2に記載の発明は、座標変
換時に原点付近の値を除いて評価関数を計算することに
より、測定誤差を小さくするようにしたことを特徴とす
るものであり、特に原点付近に生じる大きな倍率計算上
の誤差を除くことができるため測定誤差を小さくする作
用を有する。
The invention according to claim 2 of the present invention is characterized in that a measurement error is reduced by calculating an evaluation function except for a value near the origin at the time of coordinate transformation, In particular, since a large magnification calculation error occurring near the origin can be eliminated, the present invention has the effect of reducing the measurement error.

【0009】本発明の請求項3に記載の発明は、評価関
数を計算する時の原点を座標原点近傍に複数個仮定し、
各仮定した原点に対してそれぞれ評価関数の計算を行
い、評価関数が最大になる仮の原点をその写像半径での
原点とすることにより、測定誤差を小さくするようにし
たことを特徴としており、2つの画像を撮影したときの
光軸のずれによる測定誤差を小さくする作用を有する。
According to a third aspect of the present invention, a plurality of origins for calculating an evaluation function are assumed near a coordinate origin,
The evaluation function is calculated for each assumed origin, and the measurement error is reduced by setting the temporary origin at which the evaluation function is maximized as the origin at the mapping radius. It has the effect of reducing the measurement error due to the deviation of the optical axis when two images are taken.

【0010】(実施の形態1)以下に本発明の実施の形態
について図面を参照しながら詳細に説明する。図1は本
発明の一実施の形態における距離測定装置の構成図であ
る。図において、1は被写体6に光を照射する光源であ
る。2はレンズとフォーカス機構とを備えたCCDカメラ
であり、ロボットアーム3に固定されて正確に移動され
る。CCDカメラ2には、CCDカメラ2からの画像信号をA
/D変換するA/D変換器4とコンピュータ5が取り付
けられており、CCDカメラ2からの画像信号を演算処理
してレンズから被写体までの距離を求める。
(Embodiment 1) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a distance measuring device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a light source for irradiating the subject 6 with light. Reference numeral 2 denotes a CCD camera provided with a lens and a focus mechanism, which is fixed to the robot arm 3 and moved accurately. The CCD camera 2 receives the image signal from the CCD camera 2 as A
An A / D converter 4 for performing / D conversion and a computer 5 are attached, and an image signal from the CCD camera 2 is arithmetically processed to obtain a distance from a lens to a subject.

【0011】演算処理部分では、以下のような処理を行
っている。CCDカメラ2で取り込んだ画像信号のうち、C
CDカメラ2のレンズと被写体間の距離が短い画像信号
(撮像倍率の大きい画像信号)を基準画像信号とし他方
を探索画像信号とする。2つの画像とも像面(CCD撮像
素子面)と光軸との交点(視野中心)を原点(cx ,
cy)として測定したい被写体部分を含むように写像半径
rを設定し、写像半径内において以下(数1)に示す座
標変換を行う(Complex Log Maping法)。
In the arithmetic processing part, the following processing is performed. Of the image signals captured by CCD camera 2, C
An image signal in which the distance between the lens of the CD camera 2 and the subject is short (an image signal having a large imaging magnification) is set as a reference image signal, and the other is set as a search image signal. For both images, the point of intersection (center of the field of view) between the image plane (CCD image sensor surface) and the optical axis is the origin (c x ,
The mapping radius r is set so as to include the subject portion to be measured as c y ), and the coordinate transformation shown below (Equation 1) is performed within the mapping radius (Complex Log Mapping method).

【0012】[0012]

【数1】 (Equation 1)

【0013】ここで(xi,yi)は、図2に示すように、
(cx,cy)を原点とする直角座標系上の点である。mi,
niは座標変換後の値であり、それぞれ(cx,cy)から
(x i,yi)までの角度と距離を表す軸上の座標値を示し
ている。また、Nは写像画像のサイズである。写像画像
のサイズは、CCD撮像素子上の撮像素子の数で表す(CCD
撮像素子は、小さな撮像素子の集合で構成されてい
る。)。(xi,yi)における画素の濃度値をF0(xi,y
i)とすると、写像後の画素の濃度値M0(mi,ni)は
(数2)で表される。
Here, (xi, yi), As shown in FIG.
(Cx, cy) Is a point on a rectangular coordinate system with the origin as the origin. mi,
niAre the values after coordinate transformation, and (cx, cyFrom)
(X i, yi) Indicates the coordinate value on the axis representing the angle and distance to
ing. N is the size of the mapped image. Mapped image
Is represented by the number of image sensors on the CCD image sensor (CCD
An image sensor consists of a collection of small image sensors.
You. ). (Xi, yi) Is defined as F0 (xi, y
i), The density value M of the pixel after the mapping0(Mi, ni) Is
It is represented by (Equation 2).

【0014】[0014]

【数2】 (Equation 2)

【0015】ここで式(1)〜(4)によって写像され
る基準画像上の点A1と探索画像上の点A2を考える
(図3(a),(b)参照)。点A1と点A2は被写体
上の同一点の像である。2つの画像は、CCDカメラ2の
光軸を傾けないように移動して同じ光軸上で撮影される
ため、原点を中心にして2つの画像は相似である。した
がってz1/z2は2つの画像の倍率の比になる。
Here, a point A1 on the reference image and a point A2 on the search image mapped by the equations (1) to (4) are considered (see FIGS. 3A and 3B). Points A1 and A2 are images of the same point on the subject. Since the two images are moved on the same optical axis while moving so that the optical axis of the CCD camera 2 is not tilted, the two images are similar with respect to the origin. Therefore, z 1 / z 2 is the ratio of the magnification of the two images.

【0016】ここでz1/z2=r1/r2が成立する写像
半径を考えると、そのような写像半径内に含まれる画像
要素は、2つの画像で同一のものになることが分かる。
つまり、基準画像と探索画像で写像半径内の画像要素が
同じになるときの写像半径を調べれば2つの画像間の倍
率の比が分かる。2つの画像の写像半径内の画像要素が
同一の時に最大値を示す評価関数として以下の式(数
3)を考える。
Considering the mapping radius where z 1 / z 2 = r 1 / r 2 holds, it can be seen that the image elements included in such a mapping radius are the same in the two images. .
That is, by examining the mapping radius when the image elements within the mapping radius are the same in the reference image and the search image, the magnification ratio between the two images can be determined. The following equation (Equation 3) is considered as an evaluation function indicating the maximum value when the image elements within the mapping radius of the two images are the same.

【0017】[0017]

【数3】 (Equation 3)

【0018】ここでμ1,μ2は各画像の濃度値の平均
値、σ2 1,σ2 2は各画像の分散値、σ2 12は共分散値で
ある。この評価関数の変化を観察しながら写像半径を変
化させることで、r1/r2つまりz1/z2(画像間の倍
率)を決定する。
[0018] Here .mu.1, .mu.2 the average value of the density values of each image, σ 2 1, σ 2 2 is the variance of each image, sigma 2 12 is the covariance value. By changing the mapping radius while observing the change of the evaluation function, r 1 / r 2, that is, z 1 / z 2 (magnification between images) is determined.

【0019】評価関数は、探索画像中の写像半径を小さ
くしながら計算する。これは、図3(b)中で基準画像
を被写体から近い点P1で取得し、探索画像を被写体か
ら遠い点P2で取得したことに対応する(基準画像の方
が探索画像に比べてCCDで撮像された時の拡大率が大き
いことになる)。この理由を次に述べる。
The evaluation function is calculated while reducing the mapping radius in the search image. This corresponds to the fact that the reference image is obtained at a point P1 close to the subject and the search image is obtained at a point P2 far from the subject in FIG. 3B (the reference image is more CCD-based than the search image). This means that the magnification when the image is taken is large). The reason will be described below.

【0020】P2で取得した画像を基準画像とした場合
の基準画像と探索画像を図4(a),(b)に示す。図
から基準画像の視野は探索画像の視野より広くなり、基
準画像内に探索画像に含まれない要素が存在する。その
結果、探索画像の写像半径をどのようにとっても写像半
径内の画像要素が同一になることはない。したがって、
式(6)の評価関数で2つの画像間の倍率を求めること
ができない。このため、基準画像の視野は常に探索画像
の視野の中に含まれるように、図3(b)中ではP1点
で撮像される。
FIGS. 4A and 4B show a reference image and a search image when the image acquired at P2 is used as a reference image. From the figure, the field of view of the reference image is wider than the field of view of the search image, and elements not included in the search image exist in the reference image. As a result, image elements within the mapping radius will not be the same regardless of the mapping radius of the search image. Therefore,
The magnification between the two images cannot be determined by the evaluation function of Expression (6). Therefore, an image is taken at point P1 in FIG. 3B so that the field of view of the reference image is always included in the field of view of the search image.

【0021】ここで上記のように計算された2つの画像
間の倍率から被写体とレンズ間の距離を求める方法を示
す。図3(b)に示すように被写体の大きさをa、被写
体からレンズまでの距離をxi、カメラからCCD撮像素子
までの距離をyi、投影された被写体の大きさをhi、レ
ンズの位置をPiとする。ここでi=1,2であり、f
は焦点距離である。レンズ公式から以下の式(数4)が
成立する。
Here, a method for obtaining the distance between the subject and the lens from the magnification between the two images calculated as described above will be described. As shown in FIG. 3B, the size of the subject is a, the distance from the subject to the lens is x i , the distance from the camera to the CCD image sensor is y i , the size of the projected subject is h i , the lens the position and P i. Where i = 1,2 and f
Is the focal length. The following equation (Equation 4) holds from the lens formula.

【0022】[0022]

【数4】 (Equation 4)

【0023】地点P1で画像を取得した後、tだけ離れ
た地点P2までCCDカメラを移動し画像を取得する。この
時、k=h2/h1とすると式(7),(8)から次式
(数5)が成立する。
[0023] After acquiring the image at the point P 1, to obtain a moving image of the CCD camera to the point P 2 at a distance of t. In this case, when k = h 2 / h 1 Equation (7), the following equation (5) holds from (8).

【0024】[0024]

【数5】 (Equation 5)

【0025】式(9)をtを用いて変形すると以下の
(数6)のようになる。
When the equation (9) is modified using t, the following equation (6) is obtained.

【0026】[0026]

【数6】 (Equation 6)

【0027】したがって、2つの画像間の倍率kを前記
の演算により求めることでレンズと被写体間の距離を測
定できる。
Therefore, the distance between the lens and the subject can be measured by obtaining the magnification k between the two images by the above-described calculation.

【0028】(実施の形態2)実施の形態1と同様の光
学配置と演算処理を行う。実施の形態1においてCCDカ
メラを光軸が変化しないように移動させるのは実際には
困難であるため、写像中心のずれのために測定結果に誤
差を生じる。この誤差を小さくするために、写像原点
(cx,cy)のまわりの画素に新たな原点を仮定して、
実施の形態1で説明した演算を繰り返し、評価関数が最
大なる原点と写像半径の組を見つける。前記のように評
価関数が最大になるとき、写像半径内の画像要素が2つ
の画像で等しくなるので、これによって写像中心のずれ
による誤差を小さくすることができる。
(Embodiment 2) The same optical arrangement and arithmetic processing as in Embodiment 1 are performed. In the first embodiment, since it is actually difficult to move the CCD camera so that the optical axis does not change, an error occurs in the measurement result due to the deviation of the mapping center. To reduce this error, assuming a new origin for pixels around the mapping origin (c x , cy ),
The calculation described in the first embodiment is repeated to find a set of the origin and the mapping radius at which the evaluation function is maximized. As described above, when the evaluation function is maximized, the image elements within the mapping radius are equal in the two images, so that the error due to the displacement of the mapping center can be reduced.

【0029】(実施の形態3)実施の形態1と同様の光
学配置と演算処理を行う。演算処理の過程において、CC
Dカメラで撮像された画像の視野の中心付近の点の移動
量は、CCDカメラの光軸方向の移動量に非常に鈍感であ
る。そのため、視野中心付近では、撮像素子上の1ピク
セルの違いが倍率誤差を生じる原因になる(CCD撮像素
子は、複数の小さな撮像素子の集合であり、連続的な画
像を得ることはできない。)。したがって、視野中心付
近の点を評価関数の計算から除くことで、誤差の小さな
距離測定ができる。
(Embodiment 3) The same optical arrangement and arithmetic processing as in Embodiment 1 are performed. During the calculation process, CC
The amount of movement of a point near the center of the field of view of an image captured by the D camera is very insensitive to the amount of movement of the CCD camera in the optical axis direction. Therefore, near the center of the field of view, a difference of one pixel on the image sensor causes a magnification error. (A CCD image sensor is a set of a plurality of small image sensors, and a continuous image cannot be obtained.) . Therefore, by removing points near the center of the visual field from the calculation of the evaluation function, distance measurement with a small error can be performed.

【0030】[0030]

【発明の効果】以上のように本発明によれば、2つ画像
を撮像することで、精度の高い距離測定を高速に行うこ
とができ、被写体の表面がテクスチャ性を有する場合で
も距離を測定できる。
As described above, according to the present invention, high-accuracy distance measurement can be performed at high speed by capturing two images, and the distance can be measured even when the surface of the subject has texture. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における距離測定装置の
構成図
FIG. 1 is a configuration diagram of a distance measuring device according to an embodiment of the present invention.

【図2】同装置の演算処理における座標変換の説明図FIG. 2 is an explanatory diagram of a coordinate conversion in a calculation process of the apparatus.

【図3】同装置で撮像される2つの画像の関係図FIG. 3 is a diagram showing a relationship between two images captured by the same device.

【図4】同装置で撮像される探索画像と基準画像の関係
FIG. 4 is a relationship diagram between a search image and a reference image captured by the same device.

【図5】従来の距離測定装置を示す構成図FIG. 5 is a configuration diagram showing a conventional distance measuring device.

【図6】従来の距離測定装置の説明図FIG. 6 is an explanatory diagram of a conventional distance measuring device.

【符号の説明】[Explanation of symbols]

1 光源 2 CCDカメラ 3 ロボットアーム 4 A/D変換器 5 コンピュータ 6 被写体 7 被写体 8 レンズ 9 撮像素子 10 カメラの視野 11 スリット光 12 スリット光源 13 変調されたスリット光 Reference Signs List 1 light source 2 CCD camera 3 robot arm 4 A / D converter 5 computer 6 subject 7 subject 8 lens 9 image sensor 10 camera field of view 11 slit light 12 slit light source 13 modulated slit light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被写体に光を照射する光源と、被写体から
の反射光を集光するとともに光軸方向に移動可能なレン
ズと、レンズを介して照射される被写体像(輝度分布)
に応じた画像信号を発生する撮像素子と、撮像素子上に
焦点のあった被写体像を投影できるフォーカス機構とを
備え、レンズと撮像素子とを光軸方向に移動して撮像す
ることにより得られる2つの画像信号のうち、レンズと
被写体との間の距離が短い画像信号を基準画像信号とし
他方を探索画像信号として、測定したい被写体部分を含
むように写像半径を設定し座標変換した後、評価関数を
計算しながら探索画像の写像半径を小さくしていき、評
価関数が最大になる探索画像の写像半径rmaxを求め、
その写像半径rmaxから基準画像と探索画像との相対的
な倍率を計算することで、それぞれの画像を撮影した際
のレンズと被写体との間の距離をレンズ公式により求め
るようにした距離測定装置。
1. A light source for irradiating a subject with light, a lens that collects reflected light from the subject and is movable in an optical axis direction, and a subject image (luminance distribution) radiated through the lens.
Image sensor that generates an image signal corresponding to the image signal, and a focus mechanism that can project a focused subject image on the image sensor, and is obtained by moving the lens and the image sensor in the optical axis direction to capture an image. Of the two image signals, an image signal having a short distance between the lens and the subject is used as a reference image signal, and the other is used as a search image signal. While calculating the function, the mapping radius of the search image is reduced, and the mapping radius r max of the search image that maximizes the evaluation function is obtained.
A distance measuring device that calculates a relative magnification between a reference image and a search image from the mapping radius r max to obtain a distance between a lens and a subject when each image is captured by a lens formula. .
【請求項2】座標変換時に原点付近の値を除いて評価関
数を計算することにより、測定誤差を小さくするように
したことを特徴とする請求項1に記載の距離測定装置。
2. The distance measuring device according to claim 1, wherein a measurement error is reduced by calculating an evaluation function excluding a value near the origin at the time of coordinate conversion.
【請求項3】評価関数を計算する時の原点を座標原点近
傍に複数個仮定し、各仮定した原点に対してそれぞれ評
価関数の計算を行い、評価関数が最大になる仮の原点を
その写像半径での原点とすることにより、測定誤差を小
さくするようにしたことを特徴とする請求項1または2
に記載の距離測定装置。
3. A plurality of origins at the time of calculating the evaluation function are assumed near the coordinate origin, the evaluation function is calculated for each assumed origin, and a temporary origin at which the evaluation function is maximized is mapped. 3. The method according to claim 1, wherein the measurement error is reduced by setting the origin as a radius.
The distance measuring device according to claim 1.
JP01371998A 1998-01-27 1998-01-27 Distance measuring device Expired - Fee Related JP4003274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01371998A JP4003274B2 (en) 1998-01-27 1998-01-27 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01371998A JP4003274B2 (en) 1998-01-27 1998-01-27 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH11211470A true JPH11211470A (en) 1999-08-06
JP4003274B2 JP4003274B2 (en) 2007-11-07

Family

ID=11841063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01371998A Expired - Fee Related JP4003274B2 (en) 1998-01-27 1998-01-27 Distance measuring device

Country Status (1)

Country Link
JP (1) JP4003274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309028B1 (en) * 2010-12-29 2013-10-04 계명대학교 산학협력단 distance measuring device using of laser scan focus
CN108088365A (en) * 2017-12-19 2018-05-29 合肥工业大学 A kind of digital micro-mirror camera coordinates Precision Mapping method based on phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309028B1 (en) * 2010-12-29 2013-10-04 계명대학교 산학협력단 distance measuring device using of laser scan focus
CN108088365A (en) * 2017-12-19 2018-05-29 合肥工业大学 A kind of digital micro-mirror camera coordinates Precision Mapping method based on phase

Also Published As

Publication number Publication date
JP4003274B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US11629955B2 (en) Dual-resolution 3D scanner and method of using
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
JP6363863B2 (en) Information processing apparatus and information processing method
JP2696044B2 (en) Focus detection method, non-contact displacement measuring method and apparatus using the same
JP4913597B2 (en) High-speed multiple line 3D digitization method
JP2003130621A (en) Method and system for measuring three-dimensional shape
JP2009031150A (en) Three-dimensional shape measuring device, three-dimensional shape measurement method, three-dimensional shape measurement program, and record medium
JP2007058222A (en) System and method for producing magnified images of microscope slide
JP2008241643A (en) Three-dimensional shape measuring device
JPH1038533A (en) Instrument and method for measuring shape of tire
TWI388797B (en) Three - dimensional model reconstruction method and its system
JP2007093412A (en) Three-dimensional shape measuring device
JP3306858B2 (en) 3D shape measuring device
JPH04172213A (en) Calibrating method for three-dimensional shape measuring apparatus
JP2000039310A (en) Method and device for measuring shape
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JPH11211470A (en) Distance measuring equipment
JPH0875454A (en) Range finding device
JP2006275780A (en) Pattern inspection method
JP2001264017A (en) Three-dimensional image photographing apparatus
JP2000111322A (en) Three dimensional data processor and method therefor
JPH11223516A (en) Three dimensional image pickup device
JP2004085467A (en) Device for three dimensional measurement
JP4760072B2 (en) X-ray inspection apparatus and X-ray inspection method
JP2009186216A (en) Three-dimensional shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041208

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050922

A521 Written amendment

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Effective date: 20070521

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070731

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070813

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110831

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees