JPH11211243A - Cooler - Google Patents

Cooler

Info

Publication number
JPH11211243A
JPH11211243A JP1528098A JP1528098A JPH11211243A JP H11211243 A JPH11211243 A JP H11211243A JP 1528098 A JP1528098 A JP 1528098A JP 1528098 A JP1528098 A JP 1528098A JP H11211243 A JPH11211243 A JP H11211243A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
precooler
way valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1528098A
Other languages
Japanese (ja)
Inventor
Takahiro Inoue
隆宏 井上
Ryuzo Fujimoto
龍三 藤本
Naosuke Fukao
直資 深尾
Kenjiro Tomaru
健二郎 都丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP1528098A priority Critical patent/JPH11211243A/en
Publication of JPH11211243A publication Critical patent/JPH11211243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent refrigerant from being condensed through a precooler by arranging a bypass piping through a three-way valve between the inlet side and the outlet side of the precooler and controlling the precooler three-way valve depending on the outer air temperature thereby varying a refrigerant flow through the precooler. SOLUTION: A bypass piping 8 is arranged between the inlet side and the outlet side of a precooler 2 and a three-way valve 9 is disposed at the joint of the inlet of the bypass piping 8 and the precooler 2. Since refrigerant 6 is susceptible to condensation in the precooler 2 at the time of low outer air temperature, it is returned through the bypass piping 8 back to a compressor 1 thus protecting the refrigerant 6 against condensation. Since the refrigerant 6 is not condensed in the precooler 2 at the time of high outer air temperature, it is not passed through the bypass piping 8 but passed only through the precooler 2 and cooled. Since the refrigerant 6 is not condensed in the precooler 2, viscosity of lubricant in the compressor 15 prevented from lowering due to dissolution into liquid refrigerant resulting in smooth lubrication at the sliding part of the compressor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫,ショーケ
ース,自動販売機等の冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a refrigerator, a showcase, a vending machine and the like.

【0002】[0002]

【従来の技術】従来、この種の冷却装置としては、特開
平6−60262号公報に示されているものがある。
2. Description of the Related Art Conventionally, as a cooling device of this type, there is a cooling device disclosed in Japanese Patent Application Laid-Open No. 6-60262.

【0003】以下、図面を参照しながら説明する。図1
3において、1は圧縮機、2はプリクーラ、3は凝縮
器、4は減圧装置、そして5は蒸発器で、順次配管接続
され冷却システムを構成される。6は冷媒で、冷却シス
テムに充填される。7は潤滑油で、圧縮機1の摺動部の
摩耗防止および圧縮機1を冷却する機能をもっている。
Hereinafter, description will be made with reference to the drawings. FIG.
In 3, 1 is a compressor, 2 is a pre-cooler, 3 is a condenser, 4 is a decompression device, and 5 is an evaporator, which is connected in order to form a cooling system. Reference numeral 6 denotes a refrigerant, which is charged into the cooling system. Reference numeral 7 denotes a lubricating oil that has a function of preventing wear of sliding parts of the compressor 1 and cooling the compressor 1.

【0004】前記の構成において、圧縮機1が運転状態
となると、冷媒6は圧縮され高温高圧気相状態となり、
プリクーラ2で冷却されて圧縮機1へ戻る。その後、凝
縮器3へ送られ凝縮され液相冷媒となる。つぎに、減圧
装置4で減圧され蒸発器5で気化することにより、蒸発
器5を冷却し再び圧縮機1へ吸込まれ、この動作を繰り
返している。この時、高外気温時や冷却負荷が大きい高
負荷条件の場合は、プリクーラ2で冷却し冷媒6の温度
を下げることで圧縮機1および潤滑油7の温度上昇を抑
さえ、冷却装置の信頼性を向上させることができる。一
方、低外気温時や冷却負荷が小さい低負荷条件の場合
は、プリクーラ2で冷媒6の一部が凝縮されて液相状態
となって圧縮機1に戻るため、圧縮機1内に液冷媒が存
在し潤滑油7に溶け込んだ状態になる。また、潤滑油7
が冷媒6とともに一部は圧縮機1から吐出されるが、プ
リクーラ2を循環してすぐに圧縮機1に戻るため、圧縮
機1から凝縮器3,蒸発器5への潤滑油7の吐出量を抑
さえることができる。したがって、プリクーラ2により
圧縮機1への潤滑油の戻り性もよく、しかも圧縮機1が
必要とする潤滑油量も確保でき、冷却装置の信頼性を向
上させることができる。
In the above configuration, when the compressor 1 is in an operating state, the refrigerant 6 is compressed into a high-temperature high-pressure gas phase,
It is cooled by the precooler 2 and returns to the compressor 1. Then, it is sent to the condenser 3 and condensed to become a liquid-phase refrigerant. Next, the pressure is reduced by the pressure reducing device 4 and vaporized by the evaporator 5, whereby the evaporator 5 is cooled and sucked into the compressor 1 again, and this operation is repeated. At this time, in the case of a high outside air temperature or a high load condition where the cooling load is large, the temperature of the compressor 1 and the lubricating oil 7 is suppressed by lowering the temperature of the refrigerant 6 by cooling with the pre-cooler 2, and the reliability of the cooling device Performance can be improved. On the other hand, at low outside air temperature or under a low load condition where the cooling load is small, a part of the refrigerant 6 is condensed by the pre-cooler 2 and returns to the compressor 1 in a liquid phase state. Is present and dissolved in the lubricating oil 7. In addition, lubricating oil 7
Is partially discharged from the compressor 1 together with the refrigerant 6, but returns to the compressor 1 immediately after circulating through the precooler 2, so that the discharge amount of the lubricating oil 7 from the compressor 1 to the condenser 3 and the evaporator 5 Can be suppressed. Therefore, the lubricating oil returning to the compressor 1 is also good by the pre-cooler 2, and the amount of lubricating oil required by the compressor 1 can be secured, so that the reliability of the cooling device can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
の構成では、高外気温時や冷却負荷が大きい高負荷条件
の場合は、プリクーラ2が有効に作用するが、低外気温
時や冷却負荷が小さい低負荷条件の場合は、プリクーラ
2で冷媒6の一部が凝縮して液相で圧縮機1に戻るため
潤滑油7に溶け込み、潤滑油7の粘度を低下させて摺動
部の潤滑作用に支障をきたし、冷却装置の信頼性に悪影
響を与えるという虞があった。
However, in the above-mentioned conventional configuration, the precooler 2 works effectively at a high outside air temperature or under a high load condition with a large cooling load, but at a low outside air temperature or a small cooling load. Under low load conditions, a part of the refrigerant 6 is condensed in the pre-cooler 2 and returns to the compressor 1 in a liquid phase, so that it dissolves in the lubricating oil 7 and lowers the viscosity of the lubricating oil 7 to improve the lubricating action of the sliding portion. This may hinder the operation and adversely affect the reliability of the cooling device.

【0006】また、潤滑油7として冷媒6との相溶性の
低い潤滑油7を採用した場合においても、同様にプリク
ーラ2で冷媒6の一部が凝縮して液相で圧縮機1に戻
り、圧縮機1内に液冷媒と潤滑油7が二層分離した状態
となり、圧縮機1の潤滑油給油機構部より液冷媒が摺動
部に導かれ、潤滑作用に支障をきたし、冷却装置の信頼
性に悪影響を与えるという虞もあった。
When the lubricating oil 7 having low compatibility with the refrigerant 6 is employed as the lubricating oil 7, a part of the refrigerant 6 is similarly condensed by the precooler 2 and returns to the compressor 1 in a liquid phase. The liquid refrigerant and the lubricating oil 7 are separated into two layers in the compressor 1, and the liquid refrigerant is guided from the lubricating oil supply mechanism of the compressor 1 to the sliding portion, which hinders the lubricating action and reduces the reliability of the cooling device. There is also a fear that the property is adversely affected.

【0007】本発明はこのような従来の課題を解決する
ものであり、プリクーラで冷媒を凝縮させない冷却装置
を提供することを目的とする。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a cooling device that does not condense a refrigerant with a precooler.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに本発明は、プリクーラの入口側と出口側の間に三方
弁を介してバイパス配管を設け、プリクーラの容量を外
気温に応じてプリクーラ戻し部と凝縮器の温度差、ある
いは圧縮機温度を検知して三方弁を制御し、プリクーラ
における冷媒の流し方を変えるものである。また、圧縮
機の起動から一定時間のみ、三方弁でバイパス配管に流
し、その後はプリクーラ全体に流すようにしたものであ
る。
According to the present invention, a bypass pipe is provided between an inlet side and an outlet side of a precooler through a three-way valve, and the capacity of the precooler is adjusted according to the outside air temperature. The three-way valve is controlled by detecting the temperature difference between the pre-cooler return portion and the condenser or the compressor temperature to change the flow of the refrigerant in the pre-cooler. In addition, only for a certain period of time from the start of the compressor, a three-way valve flows through the bypass pipe, and thereafter flows through the entire precooler.

【0009】前記プリクーラに設けた三方弁とバイパス
配管により、外気温度条件に左右されることなく冷媒の
凝縮を防止できる。
With the three-way valve and the bypass pipe provided in the precooler, the refrigerant can be prevented from being condensed regardless of the outside air temperature condition.

【0010】[0010]

【発明の実施の形態】前記課題を解決するために、請求
項1記載の発明は、圧縮機と、プリクーラと、凝縮器
と、減圧装置と、蒸発器と、前記プリクーラの入口側と
出口側の間に設けたバイパス配管と、前記バイパス配管
の入口部と前記プリクーラを接続する三方弁とを備えた
冷却システムである。このような冷却システムでは、外
気温度条件によりプリクーラの前記三方弁を機能させ
て、冷媒の一部をバイパス配管に流しプリクーラの容量
を変え冷媒の凝縮を防止することができる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a pre-cooler according to a first embodiment of the present invention; And a three-way valve connecting the precooler and an inlet of the bypass pipe. In such a cooling system, the three-way valve of the precooler is caused to function according to the outside air temperature condition, and a part of the refrigerant is caused to flow through the bypass pipe to change the capacity of the precooler, thereby preventing the refrigerant from condensing.

【0011】また、請求項2記載の発明は、前記請求項
1記載の冷却システムにおいて、プリクーラの戻し部と
凝縮器に温度検知手段を設けるとともに、それぞれの温
度を比較する演算部と、前記三方弁を制御する三方弁制
御部とを備えているのでプリクーラ戻し部と凝縮器の温
度差により、三方弁を制御しバイパス配管を開閉するこ
とで、プリクーラへの冷媒量を変化させ、凝縮を防止す
ることができる。
According to a second aspect of the present invention, there is provided the cooling system according to the first aspect, wherein a temperature detecting means is provided in the return portion of the precooler and the condenser, and the arithmetic portion for comparing respective temperatures is provided, It has a three-way valve control part that controls the valve, so by controlling the three-way valve and opening and closing the bypass pipe by the temperature difference between the pre-cooler return part and the condenser, the amount of refrigerant to the pre-cooler is changed and condensation is prevented. can do.

【0012】また、請求項3記載の発明は、前記請求項
1記載の冷却システムにおいて、圧縮機に圧縮機温度検
知手段を設けるとともに、温度を比較する演算部と、前
記三方弁を制御する三方弁制御部とを備えているので、
圧縮機温度が低い時はバイパス配管を開き、プリクーラ
での冷媒の凝縮を防ぎ、圧縮機温度が高い時はバイパス
配管を閉じ、プリクーラを通し温度を低下させることが
できる。
According to a third aspect of the present invention, in the cooling system according to the first aspect, a compressor temperature detecting means is provided in the compressor, a computing unit for comparing temperatures, and a three-way valve for controlling the three-way valve. Since it has a valve control unit,
When the compressor temperature is low, the bypass pipe is opened to prevent the refrigerant from condensing in the pre-cooler, and when the compressor temperature is high, the bypass pipe is closed and the temperature can be reduced through the pre-cooler.

【0013】また、請求項4記載の発明は、前記請求項
1記載の冷却システムにおいて、圧縮機に圧縮機動作検
知手段を設けるとともに、圧縮機が起動してからの時間
を計数するタイマーと、前記タイマーの時間を比較する
演算部と、前記三方弁を制御する三方弁制御部とを備え
ているので、圧縮機が起動してから一定時間は三方弁で
バイパス配管を開き、プリクーラでの冷媒の凝縮を防
ぎ、一定時間経過後、冷媒温度,圧縮機温度が上昇した
時に三方弁を閉じ、プリクーラに冷媒を通し温度を低下
させることができる。
According to a fourth aspect of the present invention, in the cooling system according to the first aspect, a compressor is provided with a compressor operation detecting means, and a timer for counting time since the start of the compressor; Since the arithmetic unit that compares the time of the timer and the three-way valve control unit that controls the three-way valve are provided, the bypass pipe is opened with the three-way valve for a certain time after the compressor is started, and the refrigerant in the precooler is used. The three-way valve is closed when the refrigerant temperature and the compressor temperature rise after a certain period of time, and the refrigerant can be passed through the precooler to lower the temperature.

【0014】このように、いずれの場合も冷媒の凝縮を
制御することにより圧縮機の摺動部の摩耗を防止し、冷
却装置の信頼性を向上することができる。
As described above, in any case, by controlling the condensation of the refrigerant, wear of the sliding portion of the compressor can be prevented, and the reliability of the cooling device can be improved.

【0015】[0015]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。なお、従来と同一構成については、同一符
号を付して詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.

【0016】(実施例1)図1において、1は圧縮機、
2はプリクーラで、放熱面積を確保するためコイル状に
形成し配管やフィン付銅管等が適用されている。3は凝
縮器で、その一部に前記プリクーラ2が配設されてい
る。4は減圧装置で、例えばキャピラリチューブや膨張
弁等が使用される。5は蒸発器、6は冷媒、そして7は
潤滑油である。8はプリクーラ2の入口側と出口側の間
に設けたバイパス配管である。9は前記バイパス配管8
の入口部と前記プリクーラ2の接続部に設けた三方弁
で、弁の切替えにより、a方向またはb方向のどちらか
に冷媒6を流すことができる。なお、a方向はプリクー
ラ2、b方向はバイパス配管8の方向を指している。
(Embodiment 1) In FIG. 1, 1 is a compressor,
Reference numeral 2 denotes a precooler, which is formed in a coil shape to secure a heat radiation area, and a pipe, a finned copper pipe, or the like is applied. Reference numeral 3 denotes a condenser, in which a part of the precooler 2 is provided. Reference numeral 4 denotes a decompression device, for example, a capillary tube or an expansion valve is used. 5 is an evaporator, 6 is a refrigerant, and 7 is a lubricating oil. Reference numeral 8 denotes a bypass pipe provided between the inlet side and the outlet side of the precooler 2. 9 is the bypass pipe 8
The refrigerant 6 can flow in either the a direction or the b direction by switching the valve with a three-way valve provided at the connection between the pre-cooler 2 and the inlet of the pre-cooler 2. The direction a indicates the direction of the precooler 2, and the direction b indicates the direction of the bypass pipe 8.

【0017】図2において、10はサーミスタ等を用い
た外気温度検知手段で、外気温度を検知できるところに
取付けられている。11は演算部、12はリレー等を用
いた三方弁制御部である。
In FIG. 2, reference numeral 10 denotes an outside air temperature detecting means using a thermistor or the like, which is mounted at a place where the outside air temperature can be detected. Reference numeral 11 denotes a calculation unit, and reference numeral 12 denotes a three-way valve control unit using a relay or the like.

【0018】前記の構成において、図3に示すように、
STEP1は、前記外気温度検知手段10で外気温度T
A を検知する。
In the above configuration, as shown in FIG.
In STEP1, the outside air temperature detecting means 10 detects the outside air temperature T.
Detect A.

【0019】STEP2は、演算部11で外気温度TA
と予め設定されている温度T1 との比較演算を行う。例
えば、T1 が15℃で外気温度TA が5℃の場合、TA
<T 1 が成り立ち、T1 が15℃で外気温度TA が30
℃の場合は、TA <T1 は成り立たない。
In STEP 2, the arithmetic unit 11 sets the outside air temperature TA
And the preset temperature T1Perform a comparison operation with. An example
For example, T1Is 15 ° C and the outside air temperature TAIs 5 ° C, TA
<T 1Holds, and T1Is 15 ° C and the outside air temperature TAIs 30
For ° C, TA<T1Does not hold.

【0020】STEP3は、演算部11でTA <T1
成り立つ場合、三方弁制御部12により三方弁9のb方
向を開き、a方向を閉じる。したがって、冷媒6はバイ
パス配管8に流れプリクーラ2での冷却効果が少なくな
り冷媒6の凝縮が防止できる。逆に、TA <T1 が成り
立たない場合には、三方弁制御部12により三方弁9を
a方向に開き、b方向を閉じる。したがって、冷媒6は
プリクーラ2のみを通り冷却されるが、外気温度が高い
と冷媒6の凝縮を防止することができる。
In STEP 3, when T A <T 1 is satisfied in the calculation unit 11, the three-way valve control unit 12 opens the direction b of the three-way valve 9 and closes the direction a. Therefore, the refrigerant 6 flows through the bypass pipe 8 and the cooling effect of the pre-cooler 2 is reduced, so that condensation of the refrigerant 6 can be prevented. Conversely, if T A <T 1 does not hold, the three-way valve controller 12 opens the three-way valve 9 in the direction a and closes the direction b. Therefore, although the refrigerant 6 is cooled only through the precooler 2, the condensation of the refrigerant 6 can be prevented when the outside air temperature is high.

【0021】前記のように、低外気温時、プリクーラ2
で冷媒6が凝縮しやすい場合は、バイパス配管8を介し
て冷媒6を圧縮機1に戻し冷媒6の凝縮を防止すること
ができる。逆に、高外気温時、プリクーラ2で冷媒6が
凝縮しない場合は、バイパス配管8を通さず、プリクー
ラ2のみに通し冷媒6を冷却することができる。したが
って、プリクーラ2での冷媒6の凝縮がなく、圧縮機1
内の潤滑油7への液冷媒の溶け込みによる潤滑油7の粘
度低下を防ぎ、圧縮機1の摺動部の潤滑作用を円滑にし
て耐摩耗性を高め、冷却装置の信頼性を向上させること
ができる。
As described above, when the outside air temperature is low, the pre-cooler 2
When the refrigerant 6 is easily condensed, the refrigerant 6 can be returned to the compressor 1 via the bypass pipe 8 to prevent the refrigerant 6 from being condensed. Conversely, when the refrigerant 6 does not condense in the precooler 2 at a high outside air temperature, the refrigerant 6 can be cooled only by passing through the precooler 2 without passing through the bypass pipe 8. Therefore, there is no condensation of the refrigerant 6 in the precooler 2 and the compressor 1
To prevent the viscosity of the lubricating oil 7 from decreasing due to the incorporation of the liquid refrigerant into the lubricating oil 7 inside the lubricating oil 7, smoothen the lubricating action of the sliding part of the compressor 1, improve the wear resistance, and improve the reliability of the cooling device. Can be.

【0022】また、潤滑油7として冷媒6と相溶性の低
いものを用いた冷却装置の場合においても、構成とその
動作は同じで、プリクーラ2での冷媒6の凝縮ならびに
圧縮機1内の潤滑油7と液冷媒の二層分離を防ぎ、圧縮
機1の摺動部の潤滑作用を円滑にして耐摩耗性を高め、
冷却装置の信頼性を向上させることができる。
Also, in the case of a cooling device using a lubricant having low compatibility with the refrigerant 6 as the lubricating oil 7, the construction and operation thereof are the same, and the condensation of the refrigerant 6 in the precooler 2 and the lubrication in the compressor 1 are performed. Prevents two-layer separation of oil 7 and liquid refrigerant, smoothes the lubricating action of the sliding part of compressor 1 and enhances wear resistance,
The reliability of the cooling device can be improved.

【0023】(実施例2)図4,図5において、13は
サーミスタ等の戻し部温度検知手段で、プリクーラ2か
ら圧縮機1へ戻るプリクーラ戻し部に取付けられてい
る。14はサーミスタ等による凝縮器温度検知手段で、
凝縮器3の出口部に取付けられている。
(Embodiment 2) In FIGS. 4 and 5, reference numeral 13 denotes a return portion temperature detecting means such as a thermistor, which is attached to a precooler return portion returning from the precooler 2 to the compressor 1. Reference numeral 14 denotes a condenser temperature detecting means using a thermistor or the like.
It is attached to the outlet of the condenser 3.

【0024】前記の構成において、図6に示すように、
STEP1は、前記戻し部温度検知手段13でプリクー
ラ2の戻し部温度TB を検知する。
In the above configuration, as shown in FIG.
STEP1 detects the returning portion temperature T B of the precooler 2 by the return portion temperature detecting means 13.

【0025】STEP2は、前記凝縮器温度検知手段1
4で凝縮器温度TC を検知する。STEP3は、演算部
11aで戻し部温度TB と凝縮器温度TC の温度差と、
予め設定されている温度差T2 との比較演算を行う。例
えば、T2 が10℃で、戻し部温度TB が15℃、凝縮
器温度TC が10℃の場合、TB −TC <T2 が成り立
ち、T2 が10℃で戻し部温度TB が60℃、凝縮器温
度TC が45℃の場合、TB −TC <T2 は成り立たな
い。
STEP 2 is the condenser temperature detecting means 1
At 4, the condenser temperature T C is detected. STEP3 includes a temperature difference between the return portion temperature T B in the calculating portion 11a condenser temperature T C,
Performing a comparison operation between the temperature difference T 2 that is set in advance. For example, in T 2 is 10 ° C., the return portion temperature T B is 15 ° C., a condenser temperature T if C is 10 ° C., T B -T C <T 2 is holds, T 2 is returned at 10 ° C. portion temperature T When B is 60 ° C. and the condenser temperature T C is 45 ° C., T B −T C <T 2 does not hold.

【0026】STEP4は、演算部11aでTB −TC
<T2 が成り立つ場合、三方弁制御部12により三方弁
9がb方向に開き、a方向を閉じる。したがって、冷媒
6はバイパス配管8に流れプリクーラ2での冷却効果が
少なくなり冷媒6の凝縮が防止できる。逆に、TB −T
C <T2 が成り立たない場合には、三方弁制御部12に
より三方弁9がa方向に開き、b方向を閉じる。したが
って、冷媒6はプリクーラ2を通り冷却されるが、TB
−TC の温度差が大きいためプリクーラ2で冷媒6は凝
縮しない。
In STEP 4, the calculation unit 11a calculates T B -T C
When <T 2 holds, the three-way valve 9 is opened by the three-way valve controller 12 in the direction b and closed in the direction a. Therefore, the refrigerant 6 flows through the bypass pipe 8 and the cooling effect of the pre-cooler 2 is reduced, so that condensation of the refrigerant 6 can be prevented. Conversely, T B -T
If the C <T 2 does not hold, the three-way valve control unit 12 three-way valve 9 is opened in a direction to close the b direction. Therefore, although the refrigerant 6 is cooled through the pre-cooler 2, T B
Coolant 6 is not condensed in precooler 2 for temperature difference -T C is large.

【0027】前記のように、戻し部と凝縮器の温度差
(TB −TC )が小さく飽和温度に近づくと、冷媒6は
プリクーラ2で凝縮しやすくなるのでバイパス配管8に
流し、プリクーラ2で冷媒6が凝縮し圧縮機1へ戻るの
を防止できる。逆に、戻し部と凝縮器の温度差が大きい
場合には、飽和温度よりかなり高く冷媒6はプリクーラ
2で凝縮することがないのでバイパス配管8を通さず、
プリクーラ2を通して冷却することができる。したがっ
て、プリクーラ2での冷媒6の凝縮がなく圧縮機1内の
潤滑油7への液冷媒の溶け込みによる潤滑油7の粘度低
下を防ぎ、圧縮機1の摺動部の潤滑作用を円滑にして耐
摩耗性を高め、冷却装置の信頼性を向上させることがで
きる。
As described above, when the temperature difference (T B -T C ) between the return portion and the condenser is small and approaches the saturation temperature, the refrigerant 6 is easily condensed in the precooler 2, so that it flows into the bypass pipe 8, This can prevent the refrigerant 6 from condensing and returning to the compressor 1. Conversely, when the temperature difference between the return portion and the condenser is large, the refrigerant 6 is considerably higher than the saturation temperature and the refrigerant 6 does not condense in the pre-cooler 2 and does not pass through the bypass pipe 8,
It can be cooled through the precooler 2. Therefore, the refrigerant 6 is not condensed in the precooler 2 and the viscosity of the lubricating oil 7 is prevented from lowering due to the dissolution of the liquid refrigerant into the lubricating oil 7 in the compressor 1. The wear resistance can be increased, and the reliability of the cooling device can be improved.

【0028】(実施例3)図7,図8において、15は
サーミスタ等の圧縮機温度検知手段であり、圧縮機1の
外表面に取付けられている。
(Embodiment 3) In FIGS. 7 and 8, reference numeral 15 denotes a compressor temperature detecting means such as a thermistor, which is attached to the outer surface of the compressor 1.

【0029】前記の構成において、図9に示すように、
STEP1は、前記圧縮機温度検知手段15で圧縮機1
の温度TD を検知する。
In the above configuration, as shown in FIG.
In STEP 1, the compressor temperature detecting means 15 controls the compressor 1
To detect the temperature T D.

【0030】STEP2は、演算部11bで圧縮機温度
D と予め設定されている温度T3との比較演算を行
う。例えば、T3 が40℃で圧縮機温度TD が30℃の
場合、TD <T3 が成り立ち、この状態とは低外気温条
件、あるいは中外気温条件において、圧縮機1が起動し
温度が上がってくるまでの間等が相当する。T3 が40
℃で圧縮機温度TD が50℃の場合、TD <T3 は成り
立たない。
In STEP 2, the operation section 11b performs a comparison operation between the compressor temperature T D and a preset temperature T 3 . For example, when T 3 is 40 ° C. and the compressor temperature T D is 30 ° C., T D <T 3 is satisfied. This state is defined as a condition in which the compressor 1 is started and the temperature is reduced in a low outside temperature condition or a middle outside temperature condition. The time until it comes up is equivalent. T 3 40
When the compressor temperature T D is 50 ° C. and T D <T 3 does not hold.

【0031】STEP3は、演算部11bでTD <T3
が成り立つ場合、三方弁制御部12により三方弁9をb
方向に開き、a方向を閉じる。したがって、バイパス配
管8が開き、冷媒6はすべてバイパス配管8に流れプリ
クーラ2での冷却効果が少なくなり、プリクーラ2で冷
媒6が凝縮するのを防止できる。逆に、TD <T3 が成
り立たない場合には、三方弁制御部12により三方弁9
をa方向に開き、b方向を閉じる。したがって、バイパ
ス配管8が閉じて冷媒6はプリクーラ2を通り冷却され
るが、圧縮機1の温度が高いため、もし、プリクーラ2
で一部が凝縮されても圧縮機1内に戻った直後に気化す
ることになる。
In STEP 3, the calculation unit 11b sets T D <T 3
Holds, the three-way valve controller 12 sets the three-way valve 9 to b.
Open in the direction and close the direction a. Therefore, the bypass pipe 8 is opened, and all the refrigerant 6 flows into the bypass pipe 8, and the cooling effect in the precooler 2 is reduced, so that the refrigerant 6 can be prevented from being condensed in the precooler 2. Conversely, if T D <T 3 does not hold, the three-way valve controller 12 controls the three-way valve 9.
Is opened in the direction a, and the direction b is closed. Therefore, although the bypass pipe 8 is closed and the refrigerant 6 is cooled through the pre-cooler 2, if the temperature of the compressor 1 is high, if the pre-cooler 2
Even if a part is condensed, it is vaporized immediately after returning to the inside of the compressor 1.

【0032】前記のように、圧縮機1に圧縮機温度検知
手段15を設けたので、冷却負荷が小さい場合や起動直
後、圧縮機温度TD が低い場合等、プリクーラ2で冷媒
6が凝縮しやすい状態の時には、冷媒6をすべてバイパ
ス配管8を通して圧縮機1に戻し、凝縮を防止すること
ができる。逆に、冷却負荷が大きい場合や圧縮機1の運
転時間が長く圧縮機温度TD が高い場合等、プリクーラ
2で冷媒6が凝縮しにくい状態の時には、冷媒6をすべ
てプリクーラ2を通して冷却し、圧縮機1および冷媒6
の温度上昇を抑えることができる。したがって、プリク
ーラ2での冷媒6の凝縮がなく圧縮機1内の潤滑油7へ
の液冷媒の溶け込みによる潤滑油7の粘度低下を防止で
き、圧縮機1の摺動部の耐摩耗性を高め、冷却装置の信
頼性を向上させることができる。
[0032] As described above, since there is provided a compressor temperature detection means 15 to the compressor 1, immediately after or when starting the cooling load is small, if the compressor temperature T D is low and the like, the refrigerant 6 precooler 2 is condensed In the easy state, all of the refrigerant 6 can be returned to the compressor 1 through the bypass pipe 8 to prevent condensation. Conversely, or when operation time is long the compressor temperature T D of the cooling load is large or when the compressor 1 is high, in a state where the refrigerant 6 is less likely to condense in precooler 2, cooled through all the coolant 6 precooler 2, Compressor 1 and refrigerant 6
Temperature rise can be suppressed. Therefore, the refrigerant 6 does not condense in the precooler 2 and the viscosity of the lubricating oil 7 can be prevented from lowering due to the dissolution of the liquid refrigerant into the lubricating oil 7 in the compressor 1, and the wear resistance of the sliding portion of the compressor 1 can be improved. In addition, the reliability of the cooling device can be improved.

【0033】(実施例4)図10,図11において、1
6は圧縮機動作検知手段であり、例えば圧縮機1の電源
回路にリレー等が取付けられている。17はタイマー
で、前記圧縮機動作検知手段16により圧縮機1の起動
を検知するとその運転時間を0から計数するものであ
る。
(Embodiment 4) In FIG. 10 and FIG.
Reference numeral 6 denotes a compressor operation detecting means, for example, a relay or the like is attached to a power supply circuit of the compressor 1. Reference numeral 17 denotes a timer for counting the operation time from 0 when the compressor operation detecting means 16 detects the start of the compressor 1.

【0034】前記の構成において、図12に示すよう
に、STEP1は、前記圧縮機動作検知手段16で圧縮
機1が起動したかどうかを検知する。
In the above configuration, as shown in FIG. 12, in STEP 1, the compressor operation detecting means 16 detects whether the compressor 1 has started.

【0035】STEP2は、圧縮機1が起動するとタイ
マー17で運転時間Kを0から計数開始する。
In STEP 2, when the compressor 1 is started, the timer 17 starts counting the operation time K from 0.

【0036】STEP3は、演算部11cでタイマー1
7による圧縮機1の運転時間Kと予め設定されている時
間Aとの比較演算を行う。例えば、Aが120秒でタイ
マー17の時間Kが60秒の場合、K≦Aが成り立ち、
タイマー17の時間Kが180秒の場合、K≦Aは成り
立たない。
In STEP 3, the arithmetic unit 11c sets the timer 1
7, a comparison operation between the operating time K of the compressor 1 and a preset time A is performed. For example, when A is 120 seconds and the time K of the timer 17 is 60 seconds, K ≦ A holds,
If the time K of the timer 17 is 180 seconds, K ≦ A does not hold.

【0037】STEP4は、演算部11cでK≦Aが成
り立つ場合、三方弁制御部12により三方弁9をb方向
に開き、a方向を閉じる。したがって、バイパス配管8
が開き、冷媒6はすべてバイパス配管8に流れプリクー
ラ2での冷却効果が少なくなり、プリクーラ2で冷媒6
が凝縮するのを防止できる。逆に、K≦Aが成り立たな
い場合、すなわち圧縮機1が起動してからの時間がAを
超えた場合には、三方弁制御部12により三方弁9をa
方向に開き、b方向を閉じる。したがって、バイパス配
管8が閉じて、冷媒6はすべてプリクーラ2全体を通り
冷却される。しかるに、圧縮機1が起動から一定時間A
を超えているため、プリクーラ2で冷媒6が凝縮しやす
い状態ではないが圧縮機1と冷媒6の温度も上昇してき
ているのでプリクーラ2での冷媒6の冷却は有効であ
る。
In STEP4, when K ≦ A is satisfied in the calculation unit 11c, the three-way valve control unit 12 opens the three-way valve 9 in the direction b and closes the direction a. Therefore, the bypass pipe 8
Is opened, and all the refrigerant 6 flows through the bypass pipe 8, and the cooling effect in the precooler 2 is reduced.
Can be prevented from condensing. Conversely, if K ≦ A does not hold, that is, if the time since the start of the compressor 1 exceeds A, the three-way valve control unit 12 sets the three-way valve 9 to a
Open in the direction and close the direction b. Therefore, the bypass pipe 8 is closed, and the refrigerant 6 is entirely cooled through the entire precooler 2. However, when the compressor 1 is activated for a certain period of time A
, The refrigerant 6 is not easily condensed in the precooler 2, but the temperatures of the compressor 1 and the refrigerant 6 are also increasing, so that the cooling of the refrigerant 6 in the precooler 2 is effective.

【0038】STEP5は、圧縮機動作検知手段16で
圧縮機1が停止したかどうかを検知する。圧縮機1が停
止すると、STEP6で、三方弁制御部12により三方
弁9をb方向に開き、a方向を閉じる。このことによ
り、低外気温時およびデフロスト時のプリクーラ2での
冷媒6の凝縮を抑えることができ、圧縮機1の起動直後
のプリクーラ2からの液戻りを防止することができる。
In STEP 5, the compressor operation detecting means 16 detects whether the compressor 1 has stopped. When the compressor 1 stops, the three-way valve 9 is opened in the direction b by the three-way valve controller 12 and closed in the direction a in STEP6. Thereby, the condensation of the refrigerant 6 in the precooler 2 at the time of low outside air temperature and at the time of defrost can be suppressed, and the liquid return from the precooler 2 immediately after the start of the compressor 1 can be prevented.

【0039】前記のように、圧縮機動作検知手段16と
タイマー17を設けたので、圧縮機1が起動して冷媒6
と圧縮機1の温度が低い起動直後の時間は、プリクーラ
2に冷媒6を通さず、すべてバイパス配管8により圧縮
機1に戻し、プリクーラ2で冷媒6が凝縮するのを防止
できる。逆に、圧縮機1が起動して冷媒6と圧縮機1が
温度上昇してくる起動から一定時間経過後は、バイパス
配管8を通さず、冷媒6をすべてプリクーラ2を通し冷
却することができる。したがって、プリクーラ2での冷
媒6の凝縮および圧縮機1内の潤滑油7への液冷媒の溶
け込みによる潤滑油7の粘度低下を防止でき、圧縮機1
の摺動部の耐摩耗性を高め、冷却装置の信頼性を向上さ
るせことができる。
As described above, since the compressor operation detecting means 16 and the timer 17 are provided, the compressor 1 is started and the refrigerant 6
During the time immediately after the start-up when the temperature of the compressor 1 is low, the refrigerant 6 does not pass through the pre-cooler 2 but is entirely returned to the compressor 1 by the bypass pipe 8, so that the refrigerant 6 can be prevented from condensing in the pre-cooler 2. Conversely, after a certain period of time has elapsed since the compressor 1 started and the refrigerant 6 and the compressor 1 rise in temperature, the entire refrigerant 6 can be cooled through the pre-cooler 2 without passing through the bypass pipe 8. . Therefore, the viscosity of the lubricating oil 7 can be prevented from being reduced due to the condensation of the refrigerant 6 in the precooler 2 and the dissolution of the liquid refrigerant into the lubricating oil 7 in the compressor 1.
The wear resistance of the sliding portion can be increased, and the reliability of the cooling device can be improved.

【0040】[0040]

【発明の効果】前記で説明したように本発明によれば、
プリクーラの入口側と出口側の間にバイパス配管を設
け、前記バイパス配管の入口部と前記プリクーラを接続
する三方弁を配設したので、低外気温状態の中で冷媒が
プリクーラを流れて凝縮しやすい時は、バイパス配管を
介して圧縮機に戻し、プリクーラでの冷媒凝縮をさけ圧
縮機内の潤滑油への液冷媒の溶け込みによる潤滑油の粘
度低下を防止できる。
According to the present invention as described above,
Since a bypass pipe is provided between the inlet side and the outlet side of the precooler, and a three-way valve connecting the inlet part of the bypass pipe and the precooler is provided, the refrigerant flows through the precooler and condenses in a low outside air temperature state. When easy, the refrigerant is returned to the compressor via a bypass pipe to prevent refrigerant condensation in the pre-cooler, thereby preventing a decrease in the viscosity of the lubricating oil due to the dissolution of the liquid refrigerant into the lubricating oil in the compressor.

【0041】また、プリクーラの戻し部と、凝縮器に温
度検知手段を設けたので、プリクーラの戻し部温度が飽
和温度に近くプリクーラで冷媒が凝縮しやすい時は、バ
イパス配管に冷媒を通し、プリクーラで冷媒が凝縮し圧
縮機へ戻るのを防止し、圧縮機内の潤滑油への液冷媒の
溶け込みによる潤滑油の粘度低下を防止でき、マルチエ
バシステムや中身負荷変動大の冷却装置にも確実に対応
できる。
Also, since the return portion of the precooler and the condenser are provided with temperature detecting means, when the temperature of the return portion of the precooler is close to the saturation temperature and the refrigerant is easily condensed by the precooler, the refrigerant is passed through the bypass pipe and the precooler is passed through. Prevents the refrigerant from condensing and returning to the compressor, preventing the viscosity of the lubricating oil from decreasing due to the dissolution of the liquid refrigerant into the lubricating oil in the compressor, and ensuring reliability in multi-evaporation systems and cooling systems with large load fluctuations. Can respond.

【0042】また、圧縮機に圧縮機温度検知手段を設け
たので、冷却負荷が小さい場合や圧縮機が起動直後で圧
縮機温度が低い場合のように、プリクーラで冷媒が凝縮
しやすい時は、バイパス配管に冷媒を通してプリクーラ
での冷媒の凝縮をさけ、圧縮機内の潤滑油への液冷媒の
溶け込みによる潤滑油の粘度低下を防止できる。さら
に、圧縮機のタイプ(レシプロ,ロータリ等)や潤滑油
と冷媒の溶解特性に対し、圧縮機温度で潤滑油温度を代
用できるので、より確実に種々の冷却装置に適用でき
る。
Further, since the compressor is provided with a compressor temperature detecting means, when the cooling load is small, or when the refrigerant is likely to condense in the pre-cooler, such as when the compressor temperature is low immediately after the compressor is started, The refrigerant is prevented from condensing in the pre-cooler by passing the refrigerant through the bypass pipe, and the viscosity of the lubricating oil can be prevented from lowering due to the dissolution of the liquid refrigerant into the lubricating oil in the compressor. Furthermore, since the lubricating oil temperature can be substituted for the compressor type (reciprocating, rotary, etc.) and the dissolution characteristics of the lubricating oil and the refrigerant, it can be more reliably applied to various cooling devices.

【0043】また、圧縮機に圧縮機動作検知手段を設け
たので、冷媒および圧縮機の温度が比較的低い場合、圧
縮機起動直後から一定時間は、バイパス配管に冷媒を通
し、プリクーラで冷媒が凝縮するのを防止し、外気温度
変化や負荷変動に左右されずに圧縮機内の潤滑油への液
冷媒の溶け込みによる潤滑油の粘度低下を防止すること
ができる。
Further, since the compressor is provided with the compressor operation detecting means, when the temperature of the refrigerant and the compressor is relatively low, the refrigerant is passed through the bypass pipe for a certain time immediately after the compressor is started, and the refrigerant is discharged by the pre-cooler. Condensation can be prevented, and the viscosity of the lubricating oil can be prevented from lowering due to the dissolution of the liquid refrigerant into the lubricating oil in the compressor without being affected by a change in the outside air temperature or a change in load.

【0044】したがって、プリクーラに三方弁を介して
バイパス配管を備えた冷却装置を基本に、前記各種制御
手段を配設するものであるが、いずれも冷媒の凝縮をさ
け、圧縮機内の潤滑油への液冷媒の溶け込みによる潤滑
油の粘度低下を防止し圧縮機の摺動部の耐摩耗性を高
め、冷却装置の信頼性を向上することができる。
Therefore, the above-mentioned various control means are arranged on the basis of a cooling device provided with a bypass pipe via a three-way valve in a pre-cooler. In each case, refrigerant is prevented from condensing and lubricating oil in the compressor is removed. This prevents the viscosity of the lubricating oil from decreasing due to the dissolution of the liquid refrigerant, increases the wear resistance of the sliding portion of the compressor, and improves the reliability of the cooling device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す冷却装置の冷却システ
ム図
FIG. 1 is a diagram illustrating a cooling system of a cooling device according to a first embodiment of the present invention.

【図2】同、機能ブロック図FIG. 2 is a functional block diagram of the same.

【図3】同、動作フローチャートFIG. 3 is an operation flowchart of the same.

【図4】本発明の実施例2を示す冷却装置の冷却システ
ム図
FIG. 4 is a cooling system diagram of a cooling device according to a second embodiment of the present invention.

【図5】同、機能ブロック図FIG. 5 is a functional block diagram of the same.

【図6】同、動作フローチャートFIG. 6 is an operation flowchart of the same.

【図7】本発明の実施例3を示す冷却装置の冷却システ
ム図
FIG. 7 is a diagram illustrating a cooling system of a cooling device according to a third embodiment of the present invention.

【図8】同、機能ブロック図FIG. 8 is a functional block diagram of the same.

【図9】同、動作フローチャートFIG. 9 is an operation flowchart of the same.

【図10】本発明の実施例4を示す冷却装置の冷却シス
テム図
FIG. 10 is a diagram illustrating a cooling system of a cooling device according to a fourth embodiment of the present invention.

【図11】同、機能ブロック図FIG. 11 is a functional block diagram of the same.

【図12】同、動作フローチャートFIG. 12 is an operation flowchart of the same.

【図13】従来の冷却装置の冷却システム図FIG. 13 is a diagram of a cooling system of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 プリクーラ 3 凝縮器 4 減圧装置 5 蒸発器 6 冷媒 8 バイパス配管 9 三方弁 11,11a,11b,11c 演算部 12 三方弁制御部 13 戻し部温度検知手段 14 凝縮器温度検知手段 15 圧縮機温度検知手段 16 圧縮機動作検知手段 17 タイマー DESCRIPTION OF SYMBOLS 1 Compressor 2 Precooler 3 Condenser 4 Decompression device 5 Evaporator 6 Refrigerant 8 Bypass piping 9 Three-way valve 11, 11a, 11b, 11c Operation part 12 Three-way valve control part 13 Return part temperature detecting means 14 Condenser temperature detecting means 15 Compression Machine temperature detecting means 16 Compressor operation detecting means 17 Timer

フロントページの続き (72)発明者 都丸 健二郎 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内Continuation of the front page (72) Inventor Kenjiro Tomaru 4-2-5 Takaida Hondori, Higashiosaka City, Osaka Inside Matsushita Refrigeration Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、プリクーラと、凝縮器と、減
圧装置と、蒸発器と、前記プリクーラの入口側と出口側
の間に設けたバイパス配管と、前記バイパス配管の入口
部と前記プリクーラを接続する三方弁とを備えた冷却シ
ステムにおいて、冷媒の凝縮制御機能をもたせた冷却装
置。
1. A compressor, a precooler, a condenser, a decompression device, an evaporator, a bypass pipe provided between an inlet side and an outlet side of the precooler, an inlet of the bypass pipe, and the precooler. In a cooling system comprising a three-way valve for connecting a refrigerant, a cooling device having a refrigerant condensation control function.
【請求項2】 プリクーラの戻し部と、凝縮器に温度検
知手段を設けるとともに、それぞれの温度を比較する演
算部と、前記三方弁を制御する三方弁制御部とを備えた
請求項1記載の冷却装置。
2. The method according to claim 1, further comprising: a return section of the precooler; a temperature detecting section provided in the condenser; a calculating section for comparing respective temperatures; and a three-way valve control section for controlling the three-way valve. Cooling system.
【請求項3】 圧縮機に圧縮機温度検知手段を設けると
ともに、温度を比較する演算部と、前記三方弁を制御す
る三方弁制御部とを備えた請求項1記載の冷却装置。
3. The cooling device according to claim 1, wherein the compressor is provided with a compressor temperature detecting means, and further includes a calculation unit for comparing temperatures, and a three-way valve control unit for controlling the three-way valve.
【請求項4】 圧縮機に圧縮機動作検知手段を設けると
ともに、圧縮機が起動してからの時間を計数するタイマ
ーと、前記タイマーの時間を比較する演算部と、前記三
方弁を制御する三方弁制御部とを備えた請求項1記載の
冷却装置。
4. A compressor, comprising: a compressor operation detecting means; a timer for counting time since the compressor was started; an operation unit for comparing the time of the timer; and a three-way valve for controlling the three-way valve. The cooling device according to claim 1, further comprising a valve control unit.
JP1528098A 1998-01-28 1998-01-28 Cooler Pending JPH11211243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1528098A JPH11211243A (en) 1998-01-28 1998-01-28 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1528098A JPH11211243A (en) 1998-01-28 1998-01-28 Cooler

Publications (1)

Publication Number Publication Date
JPH11211243A true JPH11211243A (en) 1999-08-06

Family

ID=11884453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1528098A Pending JPH11211243A (en) 1998-01-28 1998-01-28 Cooler

Country Status (1)

Country Link
JP (1) JPH11211243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763867A (en) * 2016-08-16 2018-03-06 维克(天津)有限公司 One kind refrigeration water circuit system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763867A (en) * 2016-08-16 2018-03-06 维克(天津)有限公司 One kind refrigeration water circuit system

Similar Documents

Publication Publication Date Title
US6698217B2 (en) Freezing device
EP1826513B1 (en) Refrigerating air conditioner
JP3988779B2 (en) Refrigeration equipment
JP5404110B2 (en) Air conditioner
JPH07120121A (en) Drive controller for air conditioner
JP3610402B2 (en) Heat pump equipment
JPH0330795B2 (en)
JPH09318166A (en) Refrigerating apparatus
JPH04222353A (en) Operation controller for air conditioner
JP4269459B2 (en) Freezer refrigerator
JPH04251158A (en) Operation control device for refrigerating device
JP3175706B2 (en) Binary refrigeration equipment
JP3993540B2 (en) Refrigeration equipment
JPWO2003083380A1 (en) Refrigeration equipment
JPH11211243A (en) Cooler
JP2000180026A (en) Refrigerating unit for refrigerator
JP2006317024A (en) Refrigerating device
JP3042506B2 (en) Refrigeration equipment
JPH0726775B2 (en) Dual refrigerator
JP2757689B2 (en) Refrigeration equipment
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP4153203B2 (en) Cooling system
JPH11351683A (en) Refrigerating cycle apparatus
JP2765391B2 (en) Oil recovery operation control device for air conditioner