JPH11209870A - Production of thin film and device for producing it - Google Patents

Production of thin film and device for producing it

Info

Publication number
JPH11209870A
JPH11209870A JP10050970A JP5097098A JPH11209870A JP H11209870 A JPH11209870 A JP H11209870A JP 10050970 A JP10050970 A JP 10050970A JP 5097098 A JP5097098 A JP 5097098A JP H11209870 A JPH11209870 A JP H11209870A
Authority
JP
Japan
Prior art keywords
resin material
thin film
heating
resin
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10050970A
Other languages
Japanese (ja)
Other versions
JP3485297B2 (en
Inventor
Kazuyoshi Honda
和義 本田
Noriyasu Echigo
紀康 越後
Masaru Odagiri
優 小田桐
Nobuki Sunanagare
伸樹 砂流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05097098A priority Critical patent/JP3485297B2/en
Publication of JPH11209870A publication Critical patent/JPH11209870A/en
Application granted granted Critical
Publication of JP3485297B2 publication Critical patent/JP3485297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformly and stably form a resin thin film of high quality good in surface properties and free from defects at a high deposition rate by evaporating a resin material when it is fluidized along a heating element in a vacuum and sticking the vapor thereof to a supporter while scattering coarse particles are inhibited. SOLUTION: In a vacuum tank 5 provided with an exhaust system 6, a resin material fed in a liq. state from a feed tube 3 is evaporated under heating while it is flowed down on plural gradient heating boards 11 in succession as a liq. film, and the nonevaporated portion is received in a cup 4. The vapor of the resin material is stuck to the surface of a long size base material 1 running on a can 7 while its diffusion is prevented by an ambient wall 13, and the deposited thin film is furthermore hardened by ultraviolet irradiation by a hardening device 14. At this time, a barrier 12 is arranged, and it is allowed that the part to be stuck with the vapor is not directly seen through from the part in which the resin material is first brought into contact with the heating boards 11, and the sticking of the coarse particles of the evaporating material scattering by the rapid increase of the temp. to the base material 1 is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜の製造方法及び
製造装置に関する。
The present invention relates to a method and an apparatus for producing a thin film.

【0002】[0002]

【従来の技術】現代社会に於て薄膜の果たす役割は非常
に広範囲であり、包装紙、磁気テ−プ、コンデンサ、半
導体等日常生活の様々な部分において薄膜が利用されて
いる。これらの薄膜無しには、近年に於ける高性能化や
小型化といった技術の基本トレンドを語ることは出来な
い。同時に、工業的需要を満足する形で薄膜を形成する
方法についても種々の開発がなされており、例えば包装
紙、磁気テ−プ、コンデンサ等の用途においては、高速
大量生産に有利な連続巻取り真空蒸着が行われている。
その際、蒸発材料と基板材料を形成する薄膜の目的に合
わせて選ぶと同時に、必要に応じて真空槽内に反応ガス
を導入することや、基板に電位を設けた状態で薄膜を形
成することによってによって所望の特性を持った薄膜を
形成することが出来る。例えば、磁気記録媒体の製造に
おいてはCo、Ni、Fe等の磁性元素を含む蒸発材料
を用い、真空槽中に酸素ガスを導入しながら反応蒸着を
行うことによって長尺の磁気記録媒体を得ることが出来
る。また、半導体に於いては主にスパッタ法によって薄
膜が形成されている。スパッタ法はセラミック系の材料
を用いた薄膜形成にも特に有効であり、セラミック薄膜
は膜厚数μm以上では塗布焼成法で形成され、1μm以
下ではスパッタ法で形成される場合が多い。
2. Description of the Related Art Thin films play a very wide role in modern society, and are used in various parts of daily life such as wrapping paper, magnetic tape, capacitors, semiconductors and the like. Without these thin films, it is impossible to talk about the basic trends in technology such as high performance and miniaturization in recent years. At the same time, various methods have been developed for forming thin films in a manner that satisfies industrial demand. For example, in applications such as wrapping paper, magnetic tape, and capacitors, continuous winding is advantageous for high-speed mass production. Vacuum deposition is being performed.
At this time, select the evaporation material and the substrate material according to the purpose of the thin film to be formed, and at the same time, introduce a reactive gas into the vacuum chamber as necessary, and form the thin film with the potential applied to the substrate. Can form a thin film having desired characteristics. For example, in the manufacture of a magnetic recording medium, a long magnetic recording medium is obtained by performing a reactive deposition while introducing an oxygen gas into a vacuum chamber using an evaporation material containing a magnetic element such as Co, Ni, and Fe. Can be done. In a semiconductor, a thin film is formed mainly by a sputtering method. The sputtering method is also particularly effective for forming a thin film using a ceramic material. In many cases, a ceramic thin film is formed by a coating and firing method when the film thickness is several μm or more, and is formed by a sputtering method when the film thickness is 1 μm or less.

【0003】一方、樹脂材料を用いた薄膜の形成は塗装
による方法が用いられ、リバースコートや、ダイコート
が工業的に用いられており、溶剤で希釈した材料を塗工
後乾燥硬化させることが一般的である。また、これらの
工法で形成される樹脂薄膜の膜厚の下限は使用する材料
によるが、1μm前後であることが多く、それ以下の膜
厚は得られにくい場合が多い。一般的な塗工手段では塗
工直後の塗布厚が数μm以上となるために、極薄樹脂膜
の形成には溶剤希釈が必要であり、しかも1μm以下の
樹脂薄膜が得られない場合も多い。更に、溶剤希釈を行
うと乾燥後の塗膜に欠陥が生じ易い他、環境保護の観点
からも好ましくない。そこで溶剤希釈を行わなくとも樹
脂薄膜が形成できる方法及び、極薄の樹脂薄膜が安定に
得られる方法が望まれている。これを解決する方法とし
て、真空中で樹脂薄膜を形成する方法が提案されてい
る。これは、真空中で樹脂材料を気化または霧化した後
に支持体に付着させる方法であり、この方々によれば空
隙欠陥のない樹脂薄膜を形成する事が出来ると共に、溶
剤希釈の必要もない。
On the other hand, a thin film using a resin material is formed by a coating method, and a reverse coat or a die coat is industrially used. In general, a material diluted with a solvent is dried and cured after coating. It is a target. Although the lower limit of the thickness of the resin thin film formed by these methods depends on the material used, it is often about 1 μm, and it is often difficult to obtain a thickness less than that. With a general coating method, the coating thickness immediately after coating is several μm or more, so that a solvent dilution is necessary for forming an ultrathin resin film, and a resin thin film of 1 μm or less cannot be obtained in many cases. . Further, when the solvent is diluted, the coating film after drying tends to have defects, and is not preferable from the viewpoint of environmental protection. Therefore, a method capable of forming a resin thin film without performing solvent dilution and a method capable of stably obtaining an extremely thin resin thin film are desired. As a method for solving this, a method of forming a resin thin film in a vacuum has been proposed. This is a method in which a resin material is vaporized or atomized in a vacuum and then attached to a support. According to these methods, a resin thin film having no void defects can be formed, and there is no need for solvent dilution.

【0004】セラミック薄膜や樹脂薄膜の上に更に異種
の薄膜を積層することによって従来得られなかった様々
な複合薄膜が得られる様になり、その工業的利用分野は
非常に多岐にわたる。その中でもチップ形状の電子部品
は非常に有望であり、コンデンサ、コイル、抵抗、容量
性電池あるいはこれらの複合部品等が、薄膜積層によっ
て極めて小型かつ高性能に形成できつつあり、既に商品
化・市場拡大が始まっている。
[0004] By laminating different types of thin films on a ceramic thin film or a resin thin film, various composite thin films which could not be obtained conventionally can be obtained, and their industrial application fields are very diverse. Among them, chip-shaped electronic components are very promising. Capacitors, coils, resistors, capacitive batteries, or composite components of these are being formed into extremely small and high-performance products by laminating thin films. Expansion is beginning.

【0005】[0005]

【発明が解決しようとする課題】樹脂薄膜を用いて電子
部品などを形成する際に重要となるのが樹脂薄膜の表面
性や欠陥である。表面あれや欠陥が存在するとせっかく
の薄膜化の効果が半減してしまい、時には性能不良につ
ながる。
What is important when an electronic component or the like is formed using a resin thin film is the surface properties and defects of the resin thin film. If the surface is rough or defective, the effect of the thinning is reduced by half, sometimes leading to poor performance.

【0006】一方、工業的には薄膜の生産性もまた重要
であることは言うまでもない。従って、生産性と膜質の
両立が重要であるが、これまでの方法では必ずしも十分
ではなかった。即ち、本発明の発明者らによる特願平0
8ー125400号によれば欠陥のない樹脂薄膜が得ら
れるが、一次気化あるいは霧化の速度が必ずしも十分で
はなく、成膜速度を向上するために材料供給速度を高め
た場合に、機械方式では材料のたれ、超音波や加熱方式
では固化につながる事があって高速安定な成膜方法が望
まれていた。
On the other hand, it goes without saying that the productivity of the thin film is also important industrially. Therefore, it is important to achieve both productivity and film quality, but the conventional methods have not always been sufficient. That is, Japanese Patent Application No. Hei.
According to JP-A-8-125400, a resin thin film having no defect can be obtained, but the primary vaporization or atomization speed is not always sufficient, and when the material supply speed is increased in order to increase the film formation speed, the mechanical method is not used. In the case of material dripping, ultrasonic waves or a heating method, solidification may be caused, and a high-speed and stable film forming method has been desired.

【0007】[0007]

【課題を解決するための手段】本発明は、これらの課題
を解決するために、真空中で樹脂材料を蒸発させて支持
体に付着させる薄膜の製造方法において、少なくとも前
記樹脂材料を加熱体に沿って流動させながら蒸発させる
ことを特徴とする薄膜の製造方法であって、望ましくは
前記樹脂材料が最初に前記加熱体に接触する部分から、
前記樹脂材料が前記支持体に付着する部分が直接見通せ
ない位置関係にあり、更に前記樹脂材料が沿って流動す
る前記加熱体を温度の異なる複数の領域とすることを特
徴とする薄膜の製造方法である。
In order to solve these problems, the present invention provides a method for producing a thin film in which a resin material is evaporated in a vacuum to adhere to a support. A method for producing a thin film characterized by being evaporated while flowing along, preferably from the portion where the resin material first contacts the heating body,
A method of manufacturing a thin film, wherein a portion where the resin material adheres to the support is in a positional relationship where it cannot be seen directly, and the heating element along which the resin material flows is a plurality of regions having different temperatures. It is.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、真空中で樹脂材料を蒸発させて支持体に付着させる
薄膜の製造方法において、少なくとも前記樹脂材料を加
熱体に沿って流動させながら蒸発させることを特徴とす
る薄膜の製造方法であり、このことにより、高速で安定
した成膜方法が実現可能となる。
According to a first aspect of the present invention, there is provided a method for producing a thin film in which a resin material is evaporated in a vacuum to adhere to a support, wherein at least the resin material flows along a heating element. This is a method for producing a thin film, characterized in that evaporation is performed while the film is being formed, whereby a high-speed and stable film formation method can be realized.

【0009】以下、本発明の実施の形態について図面を
用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0010】(実施の形態1)図1は本発明の薄膜の製
造方法及び製造装置の一例を示す図である。
(Embodiment 1) FIG. 1 is a diagram showing an example of a method and an apparatus for manufacturing a thin film according to the present invention.

【0011】図1で樹脂材料は供給管3を経て真空槽5
の中に導入される。支持体である長尺の基板1は、巻き
だしロール15から巻き出され、ガイドロールを経て、
円筒状キャン7に沿って走行し、ガイドロール17を経
て巻き取りロール16に巻き取られる。長尺基板上に樹
脂薄膜を形成するための樹脂蒸気は供給管から供給され
た樹脂材料を気化することによって得られる。液状で供
給された樹脂材料は第一の加熱板11(温度:110
℃、水平線に対する傾斜角:20度)に沿って流動中に
その一部が気化しつつ、加熱板に沿って薄い液膜状に拡
がる。第一の加熱板の終端に達した樹脂材料は第二の加
熱板(温度:120℃、水平線に対する傾斜角:10
度)に滴下し、第二の加熱板上で更に蒸発を続ける。即
ち、樹脂材料を加熱体に沿って流動させることにより、
樹脂材料が表面積の大きい状態で均一に加熱され蒸発量
が安定する。樹脂材料を一か所に止まらせて加熱する
と、樹脂材料の対流が悪く均一に加熱されないために加
熱体付近の樹脂材料が熱硬化してしまったり、突沸して
粗大粒子を多数発散させたり、順次供給される低温の樹
脂材料により樹脂材料の温度上昇が妨げられたり、多量
の安定した蒸発量を確保できなかったりする。
In FIG. 1, a resin material is supplied through a supply pipe 3 to a vacuum chamber 5.
Introduced in. The long substrate 1 as a support is unwound from an unwinding roll 15 and passes through a guide roll.
It travels along the cylindrical can 7 and is taken up by the take-up roll 16 via the guide roll 17. Resin vapor for forming a resin thin film on a long substrate is obtained by vaporizing a resin material supplied from a supply pipe. The resin material supplied in a liquid state is supplied to the first heating plate 11 (temperature: 110
C., an inclination angle with respect to the horizontal line: 20 degrees), and a part thereof is vaporized while flowing, and spreads in a thin liquid film along the heating plate. The resin material that has reached the end of the first heating plate is a second heating plate (temperature: 120 ° C., inclination angle to the horizontal line: 10).
) And continue to evaporate further on the second heating plate. That is, by flowing the resin material along the heating element,
The resin material is uniformly heated with a large surface area, and the amount of evaporation is stabilized. When the resin material is stopped in one place and heated, the convection of the resin material is bad and it is not heated uniformly, so the resin material in the vicinity of the heating body is thermoset, or bumping causes many large particles to diverge, The sequentially supplied low-temperature resin material may prevent a rise in the temperature of the resin material, or may not ensure a large amount of stable evaporation.

【0012】図1のように加熱板を複数とすると、装置
を小型化しても蒸発面積が比較的大きくできる他、加熱
温度を変えることで、材料に合わせて最適昇温パターン
に加熱温度を設定することが出来る。第二の加熱板の終
端に達した樹脂材料は加熱カップ4内に注入され、更に
蒸発が行われる。その際、図1に示すように加熱カップ
の内壁を傾斜させ樹脂材料を内壁に沿って導くことで加
熱カップ内での蒸発機会を高め、カップ内での硬化を減
らすことが出来る。
When a plurality of heating plates are provided as shown in FIG. 1, the evaporation area can be relatively large even if the apparatus is miniaturized. In addition, by changing the heating temperature, the heating temperature is set to an optimum heating pattern according to the material. You can do it. The resin material that has reached the end of the second heating plate is injected into the heating cup 4 and is further evaporated. At that time, as shown in FIG. 1, the inner wall of the heating cup is inclined to guide the resin material along the inner wall, so that the chance of evaporation in the heating cup is increased and the hardening in the cup can be reduced.

【0013】尚、第一の加熱板に接触したばかりの樹脂
材料は急激な昇温のために粗大粒子となって一部が飛散
する場合があるので接触開始点から基板上への樹脂薄膜
の形成位置が直接見通せないように防壁12を設けてあ
る。また、周囲壁13及び防壁へ付着する樹脂材料の再
蒸発を行わせ、壁面の汚れを防ぐために、周囲壁及び防
壁もまた加熱構造とした。尚、樹脂薄膜の硬化を行う硬
化装置14として紫外線照射装置を用いた。
Incidentally, the resin material that has just come into contact with the first heating plate may become coarse particles due to a rapid rise in temperature and may be partially scattered. The barrier 12 is provided so that the formation position cannot be seen directly. In addition, the peripheral wall and the barrier were also made to have a heating structure in order to re-evaporate the resin material adhering to the peripheral wall 13 and the barrier. An ultraviolet irradiation device was used as the curing device 14 for curing the resin thin film.

【0014】(実施の形態2)次に、本発明の第2の実
施の形態について図面を用いて説明する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings.

【0015】図2は本発明の薄膜の製造方法及び製造装
置の一例を示す図である。図2で樹脂材料は供給管3を
経て真空槽5の中に導入される。支持体である基板1は
キャリア2に沿って移動しており、基板上に樹脂薄膜を
形成するための樹脂蒸気は供給管から供給された樹脂材
料を気化することによって得られる。液状で供給された
樹脂材料は加熱板11に沿って流動中にその一部が気化
しつつ、加熱板に沿って薄い液膜状に拡がる。加熱板の
終端に達した樹脂材料は紙面で反時計方向に回転する加
熱ローラ9に滴下し、加熱ローラ上で更に蒸発を続け
る。
FIG. 2 is a diagram showing an example of the method and apparatus for manufacturing a thin film according to the present invention. In FIG. 2, the resin material is introduced into the vacuum chamber 5 through the supply pipe 3. The substrate 1 as a support moves along the carrier 2, and a resin vapor for forming a resin thin film on the substrate is obtained by vaporizing a resin material supplied from a supply pipe. The resin material supplied in a liquid state spreads in a thin liquid film along the heating plate while a part thereof evaporates while flowing along the heating plate 11. The resin material that has reached the end of the heating plate is dropped onto the heating roller 9 that rotates counterclockwise on the paper surface, and continues to evaporate on the heating roller.

【0016】図2のように加熱体をローラとすれば薄い
液膜状の樹脂材料を長時間保持することが出来、装置を
小型化しても蒸発状態が安定できる。加熱ローラ上の樹
脂材料が過剰となった場合には、加熱ローラの最下部か
らは余剰の樹脂材料が滴下もしくはブレード8で掻き取
られて加熱カップ4内に滴下し、更に蒸発を続ける。
If the heating element is a roller as shown in FIG. 2, a thin liquid film-shaped resin material can be held for a long time, and the evaporation state can be stabilized even if the apparatus is downsized. When the resin material on the heating roller becomes excessive, the excess resin material is dropped from the lowermost portion of the heating roller or scraped off by the blade 8 and dropped into the heating cup 4, and further evaporates.

【0017】尚、加熱板に接触したばかりの樹脂材料は
急激な昇温のために粗大粒子となって一部が飛散する場
合があるので接触開始点から基板上への樹脂薄膜の形成
位置が直接見通せないように防壁12を設けてある。ま
た、周囲壁13及び防壁へ付着する樹脂材料の再蒸発を
行わせ、壁面の汚れを防ぐために、周囲壁及び防壁もま
た加熱構造とした。尚、樹脂薄膜の硬化を行う硬化装置
14として紫外線照射装置を用いた。
The resin material that has just come into contact with the heating plate may become coarse particles due to a rapid rise in temperature and may be partially scattered. A barrier 12 is provided so that it cannot be seen directly. In addition, the peripheral wall and the barrier were also made to have a heating structure in order to re-evaporate the resin material adhering to the peripheral wall 13 and the barrier. An ultraviolet irradiation device was used as the curing device 14 for curing the resin thin film.

【0018】(実施の形態3)本発明の第3の実施の形
態について図面を用いて説明する。
(Embodiment 3) A third embodiment of the present invention will be described with reference to the drawings.

【0019】図3は本発明の薄膜の製造方法及び製造装
置の一例を示す図である。図3で樹脂材料は供給管3を
経て真空槽5の中に導入される。支持体は円筒状キャン
7でキャン周面上に直接樹脂薄膜を形成する。樹脂蒸気
は供給管から供給された樹脂材料を気化することによっ
て得られる。液状で供給された樹脂材料は紙面で時計方
向に回転する加熱ローラ9に沿って流動中にその一部が
気化しつつ、加熱ローラに沿って薄い液膜状に拡がる。
加熱ローラの下端に達した樹脂材料は滴下もしくはブレ
ード(図示せず)で掻き取られて、加熱板11上に流動
し更に蒸発を続ける。
FIG. 3 is a diagram showing an example of the method and apparatus for manufacturing a thin film according to the present invention. In FIG. 3, the resin material is introduced into the vacuum chamber 5 through the supply pipe 3. The support forms a resin thin film directly on the peripheral surface of the can with the cylindrical can 7. The resin vapor is obtained by vaporizing the resin material supplied from the supply pipe. The resin material supplied in a liquid state spreads in a thin liquid film along the heating roller while a part thereof evaporates while flowing along the heating roller 9 rotating clockwise on the paper surface.
The resin material that has reached the lower end of the heating roller is dropped or scraped off by a blade (not shown), flows on the heating plate 11, and continues to evaporate.

【0020】図3のように加熱体をローラとした場合に
も薄い液膜状の樹脂材料を長時間保持することが出来、
装置を小型化しても蒸発状態が安定できる。蒸発の終わ
らない樹脂材料は加熱板の終端から冷却カップ4内に滴
下し、蒸発を終える。尚、加熱ローラに接触したばかり
の樹脂材料は急激な昇温のために粗大粒子となって一部
が飛散する場合があるので接触開始点から基板上への樹
脂薄膜の形成位置が直接見通せないように防壁12を設
けてある。
As shown in FIG. 3, even when the heating element is a roller, a thin liquid film-shaped resin material can be held for a long time.
The evaporation state can be stabilized even if the apparatus is downsized. The resin material whose evaporation has not ended is dropped into the cooling cup 4 from the end of the heating plate, and the evaporation ends. The resin material that has just come into contact with the heating roller may become coarse particles due to a rapid rise in temperature and may be partially scattered, so that the position where the resin thin film is formed on the substrate from the contact start point cannot be directly seen. A barrier 12 is provided as described above.

【0021】また、周囲壁13及び防壁へ付着する樹脂
材料の再蒸発を行わせ、壁面の汚れを防ぐために、周囲
壁及び防壁もまた加熱構造とした。尚、樹脂薄膜の硬化
を行う硬化装置14として電子線照射装置装置を用い
た。また、図3には金属薄膜と樹脂薄膜の積層を行う際
に用いる電子ビーム(EB)蒸発源20も図示してあ
る。
In order to re-evaporate the resin material adhering to the peripheral wall 13 and the barrier, the peripheral wall and the barrier are also heated. An electron beam irradiation device was used as the curing device 14 for curing the resin thin film. FIG. 3 also shows an electron beam (EB) evaporation source 20 used for laminating a metal thin film and a resin thin film.

【0022】本実施の形態によれば、円筒状キャン7の
外周面上に樹脂薄膜と金属薄膜とが交互に積層された積
層体を得ることができる。また、積層の過程において、
EB蒸発源又は樹脂蒸発源を遮蔽するなどすることによ
り、樹脂薄膜層のみ又は金属薄膜層のみを連続して積層
した層を形成することもできる。
According to the present embodiment, it is possible to obtain a laminate in which resin thin films and metal thin films are alternately laminated on the outer peripheral surface of the cylindrical can 7. In the process of lamination,
By shielding the EB evaporation source or the resin evaporation source or the like, a layer in which only the resin thin film layer or only the metal thin film layer is continuously laminated can be formed.

【0023】(実施の形態4)本発明の別の実施の形態
について図面を用いて説明する。図4は本発明の薄膜の
製造方法及び製造装置の一例を示す図である。図4で樹
脂材料は供給管3を経て真空槽5の中に導入される。支
持体である基板1はキャリア2に沿って移動しており、
基板上に樹脂薄膜を形成するための樹脂蒸気は供給管か
ら供給された樹脂材料を気化することによって得られ
る。液状で供給された樹脂材料は第一の加熱ベルト10
に沿って流動中にその一部が気化しつつ、加熱ベルトに
沿って薄い液膜状に拡がる。第一の加熱ベルトの最下部
に達した樹脂材料は第二の加熱ベルトに滴下し、第二の
加熱ベルト上で更に蒸発を続ける。
(Embodiment 4) Another embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing an example of a method and an apparatus for manufacturing a thin film according to the present invention. In FIG. 4, the resin material is introduced into the vacuum chamber 5 through the supply pipe 3. The substrate 1 as a support is moving along the carrier 2,
Resin vapor for forming a resin thin film on a substrate is obtained by vaporizing a resin material supplied from a supply pipe. The resin material supplied in a liquid state is the first heating belt 10
While a part of the liquid flows along the heating belt, a part thereof evaporates, and spreads in a thin liquid film along the heating belt. The resin material that has reached the lowermost portion of the first heating belt drops on the second heating belt, and continues to evaporate on the second heating belt.

【0024】図4のように加熱体をベルトとすると、装
置を小型化しても蒸発面積が比較的大きくできる。第二
の加熱ベルトで蒸発が終わらない樹脂材料はブレード8
で掻き取られて冷却カップ4内に回収され、蒸発を終え
る。尚、第一の加熱ベルトに接触したばかりの樹脂材料
は急激な昇温のために粗大粒子となって一部が飛散する
場合があるので接触開始点から基板上への樹脂薄膜の形
成位置が直接見通せないように防壁12を設けてある。
また、周囲壁13及び防壁へ付着する樹脂材料の再蒸発
を行わせ、壁面の汚れを防ぐために、周囲壁及び防壁も
また加熱構造とした。尚、樹脂薄膜の硬化を行う硬化装
置14として電子線照射装置を用いた。
When the heating element is a belt as shown in FIG. 4, the evaporation area can be relatively large even if the apparatus is downsized. The resin material whose evaporation is not completed by the second heating belt is blade 8
And is collected in the cooling cup 4 to complete the evaporation. Note that the resin material that has just come into contact with the first heating belt may become coarse particles due to a rapid rise in temperature and may be partially scattered. A barrier 12 is provided so that it cannot be seen directly.
In addition, the peripheral wall and the barrier were also made to have a heating structure in order to re-evaporate the resin material adhering to the peripheral wall 13 and the barrier. Note that an electron beam irradiation device was used as the curing device 14 for curing the resin thin film.

【0025】(比較例1)図5は樹脂薄膜の製造方法の
比較例を示す図である。図5で樹脂材料は供給管3を経
て加熱カップ4に供給されて蒸発する。加熱カップに接
触したばかりの樹脂材料は急激な温度上昇のために粗大
粒子となって一部が飛散する場合があるので加熱カップ
から樹脂薄膜の形成位置が直接見通せないように加熱ロ
ール9を設置する。加熱ロールは回転しており、加熱ロ
ールに付着した樹脂蒸気は再蒸発して支持体上に樹脂薄
膜を形成する。
(Comparative Example 1) FIG. 5 is a diagram showing a comparative example of a method for manufacturing a resin thin film. In FIG. 5, the resin material is supplied to the heating cup 4 via the supply pipe 3 and evaporates. Since the resin material that has just come into contact with the heating cup may become partly scattered as coarse particles due to a rapid rise in temperature, the heating roll 9 is installed so that the formation position of the resin thin film cannot be directly seen from the heating cup. I do. The heating roll is rotating, and the resin vapor attached to the heating roll re-evaporates to form a resin thin film on the support.

【0026】また、周囲壁に付着する樹脂材料の再蒸発
を行わせ、壁面の汚れを防ぐために、周囲壁13もまた
加熱構造とした。尚、樹脂薄膜の硬化を行う硬化装置1
4として紫外線照射装置を用いた。
The peripheral wall 13 is also provided with a heating structure in order to re-evaporate the resin material adhering to the peripheral wall and prevent the wall surface from being stained. The curing device 1 for curing the resin thin film
As No. 4, an ultraviolet irradiation device was used.

【0027】実施の形態1〜実施の形態4及び比較例1
の構成で樹脂薄膜の作製を行い、作製条件と膜質の関係
を調べた。3種の樹脂材料を用い、樹脂薄膜の堆積速度
を変えて成膜を行った。作製した膜の5cmx5cmの
範囲を光学顕微鏡で観察し、直径3μm以上の異常粒の
個数で表面性を評価した。その結果を
Embodiments 1 to 4 and Comparative Example 1
A resin thin film was manufactured with the above configuration, and the relationship between the manufacturing conditions and the film quality was examined. Film formation was performed using three kinds of resin materials while changing the deposition rate of the resin thin film. An area of 5 cm × 5 cm of the prepared film was observed with an optical microscope, and the surface property was evaluated by the number of abnormal grains having a diameter of 3 μm or more. The result

【0028】[0028]

【表1】 [Table 1]

【0029】に示す。表1中、実施例1〜4では、それ
ぞれ順に上記の実施の形態1〜4に示した装置を使用し
た。
Are shown in FIG. In Table 1, in Examples 1 to 4, the devices described in Embodiments 1 to 4 above were used, respectively.

【0030】(表1)から分かるように、比較例1の構
成においても樹脂薄膜の堆積速度が小さい場合には作製
した樹脂薄膜の欠陥は少ない。しかしながら堆積速度が
概ね100nm/s以上となると欠陥が急激に増加す
る。
As can be seen from Table 1, even in the configuration of Comparative Example 1, when the deposition rate of the resin thin film is low, the defect of the produced resin thin film is small. However, when the deposition rate is about 100 nm / s or more, the number of defects increases rapidly.

【0031】これに対して、実施の形態1〜実施の形態
4の構成では堆積速度が100nm/s以上においても
作製した樹脂薄膜の欠陥が少ない。この理由は以下のよ
うに考えられる。即ち、堆積速度を高くするには樹脂材
料の供給量を増やす必要があるが、比較例1の構成では
蒸発面積が不十分になり、堆積速度を確保するためには
若干温度条件を高めにする必要がある。
On the other hand, in the structures of the first to fourth embodiments, even when the deposition rate is 100 nm / s or more, the defect of the resin thin film produced is small. The reason is considered as follows. That is, to increase the deposition rate, it is necessary to increase the supply amount of the resin material. However, in the configuration of Comparative Example 1, the evaporation area becomes insufficient, and the temperature condition is slightly increased to secure the deposition rate. There is a need.

【0032】一方、樹脂材料の供給量が増えると蒸発前
の樹脂の表面積に対する体積が増える傾向となり、温度
条件と相まって、樹脂の一部は熱硬化や突沸現象を起こ
すようになる。比較例1の構成で高堆積速度で見られた
欠陥はこうした突沸粒子の一部が付着したものと思われ
る。突沸粒子は直進性が高いので支持体が直接見通せな
い位置に防壁を設けることでかなり付着防止できるもの
の、それでも一部は衝突反射などで支持体に付着するの
ではないかと思われる。
On the other hand, when the supply amount of the resin material increases, the volume with respect to the surface area of the resin before evaporation tends to increase, and in combination with the temperature condition, a part of the resin causes a thermosetting or bumping phenomenon. The defects observed at a high deposition rate in the configuration of Comparative Example 1 are considered to be due to the attachment of some of the bumping particles. Since bumpy particles have high rectilinearity and can be considerably prevented from adhering by providing a barrier at a position where the support cannot be directly seen, it is thought that some of the particles still adhere to the support due to impact reflection or the like.

【0033】これに対して実施の形態1〜実施の形態4
の構成では蒸発面積を大きくする事を目的とした構造と
なっており、これによって樹脂材料の供給量の多い場
合、即ち堆積速度が高い場合にも突沸や熱硬化が起こり
にい。従って、欠陥の少ない樹脂薄膜が得られるものと
思われる。
On the other hand, Embodiments 1 to 4
Is designed to increase the evaporation area, whereby bumping and thermosetting hardly occur even when the supply amount of the resin material is large, that is, when the deposition rate is high. Therefore, it is considered that a resin thin film with few defects can be obtained.

【0034】また、比較例1の構成では、既に述べたよ
うに高堆積速度で樹脂の熱硬化が起きる割合が大きく、
樹脂材料の蒸発速度が成膜時間と共に変化し易いため、
成膜条件の制御も実施の形態1〜実施の形態4に比べて
困難であった。また、実施の形態3及び実施の形態4の
ように冷却カップに樹脂材料を回収するとカップからの
蒸発は望めないが、カップ内で樹脂材料が熱硬化するこ
とがないので成膜装置全体での蒸発量が非常に安定とな
る。従って、蒸発速度が確保できるならばカップはむし
ろ冷却することが望ましい。
Further, in the configuration of Comparative Example 1, as described above, the rate of thermal curing of the resin at a high deposition rate is large.
Since the evaporation rate of the resin material easily changes with the film formation time,
The control of the film forming conditions was also more difficult than in the first to fourth embodiments. Further, when the resin material is collected in the cooling cup as in the third and fourth embodiments, evaporation from the cup cannot be expected. However, since the resin material does not harden in the cup, the entire film forming apparatus can be used. The amount of evaporation becomes very stable. Therefore, it is preferable to cool the cup if the evaporation rate can be secured.

【0035】(実施の形態5)実施の形態1で説明した
図1と同じ装置を用い、表1の実施例1と同じ条件で樹
脂薄膜を形成した。但し、本実施の形態では、加熱板1
1に樹脂材料を供給するに際して、予め樹脂材料を樹脂
材料加熱装置で加熱してから供給した。樹脂材料加熱装
置としては、樹脂材料タンクの外周面にパネルヒータを
貼り付けたものを用いた。また、樹脂材料加熱装置に接
続した供給管3の周囲に保温ヒータを巻き付け、樹脂材
料の温度が供給過程で下がらないようにした。そして、
60℃に加熱された樹脂材料を、これと同じ温度に保持
された供給管3を通じて、110℃に加熱された第一の
加熱板11に液状で供給した。
(Embodiment 5) A resin thin film was formed under the same conditions as in Example 1 of Table 1 by using the same apparatus as in FIG. 1 described in Embodiment 1. However, in the present embodiment, the heating plate 1
In supplying the resin material to No. 1, the resin material was heated in advance by a resin material heating device and then supplied. As the resin material heating device, a device in which a panel heater was attached to the outer peripheral surface of a resin material tank was used. Further, a heat retention heater was wound around the supply pipe 3 connected to the resin material heating device so that the temperature of the resin material did not decrease during the supply process. And
The resin material heated to 60 ° C. was supplied in liquid form to the first heating plate 11 heated to 110 ° C. through the supply pipe 3 maintained at the same temperature.

【0036】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、欠陥数は2個/m 2であり、実施例1
より良好な表面を有する樹脂薄膜が得られた。また、実
施例1に比べて、加熱板11上での樹脂材料の突沸や熱
硬化は明らかに少なかった。このように、樹脂材料を予
め加熱してから加熱体に供給すると、供給された樹脂材
料と加熱板との温度差が小さくなるために、樹脂材料の
突沸が起こりにくくなる。また、加熱板上での樹脂材料
の液滴内の温度差が比較的小さくなり、ほぼ均一に加熱
されるために、加熱板付近の樹脂材料のみが急激に加熱
されて熱硬化することもない。したがって、表面性がよ
り一層良好な樹脂薄膜が得られることが分かる。
The surface characteristics of the obtained resin thin film were similarly evaluated.
did. As a result, the number of defects was 2 / m TwoExample 1
A resin thin film having a better surface was obtained. In addition,
As compared with the first embodiment, bumping and heat of the resin material on the heating plate 11
The cure was clearly less. Thus, the resin material is reserved.
Heating and then supplying to the heating element, the supplied resin material
Temperature difference between the material and the heating plate
Bumping is unlikely to occur. Also, the resin material on the heating plate
The temperature difference inside the droplets is relatively small, and heating is almost uniform
Only the resin material near the heating plate is rapidly heated
It is not cured by heat. Therefore, the surface properties are good.
It can be seen that a better resin thin film can be obtained.

【0037】また、目標膜厚や堆積速度を種々に変更し
てみたところ、実施例1に比べて、より厚い目標膜厚、
及びより速い堆積速度にも十分対応することができた。
これは、供給された樹脂材料の一部が熱硬化することな
く、無駄なく蒸発したことに加えて、供給される樹脂材
料の粘度が低下して、供給量が経時的に安定し、また、
大量供給にも十分対応できたことによるものと考えられ
る。従って、樹脂材料を予め加熱してから加熱体に供給
すると、堆積効率を向上できることが分かる。
When the target film thickness and the deposition rate were variously changed, the target film thickness and the target film thickness were larger than those in the first embodiment.
And higher deposition rates.
This is because, in addition to the fact that a part of the supplied resin material was not cured by heat and evaporated without waste, the viscosity of the supplied resin material was reduced, and the supply amount became stable with time.
It is considered that this was due to the fact that the company was able to respond to the large supply. Therefore, it is understood that the deposition efficiency can be improved by heating the resin material in advance and then supplying it to the heater.

【0038】また、樹脂材料を所定温度に加熱して供給
すると、供給される樹脂材料の温度の季節変動が少なく
なり、年間を通じて安定した蒸発量を維持することも容
易になる。
Further, when the resin material is heated and supplied to a predetermined temperature, the seasonal fluctuation of the temperature of the supplied resin material is reduced, and it becomes easy to maintain a stable evaporation amount throughout the year.

【0039】なお、供給される樹脂材料の加熱温度は、
樹脂材料により異なるが、通常40〜100℃とするの
が好ましい。加熱温度がこの範囲より高くなると、樹脂
材料が供給管内で熱硬化してしまい、安定した供給が困
難となる場合がある。
The heating temperature of the supplied resin material is as follows:
Although it depends on the resin material, it is usually preferably 40 to 100 ° C. When the heating temperature is higher than this range, the resin material is thermoset in the supply pipe, and stable supply may be difficult.

【0040】(実施の形態6)実施の形態1で説明した
図1の装置において防壁12に代えて、図6に示すよう
な加熱構造の防壁30a、30b、30cを用いた以外
は実施の形態1と同様にして樹脂薄膜を形成した。防壁
30aと防壁30b、及び防壁30aと防壁30cは、
それぞれ所定間隔を隔てて、その一部を対向させて設置
されている。蒸発した樹脂材料は、かかる防壁の対向し
た部分の間を通り抜けるようにして、支持体1の表面に
到達する。また、図1の防壁12が、樹脂材料が最初に
加熱体に接触する部分から支持体の樹脂材料の被付着領
域が直接見通せない位置関係に設置されているのに対し
て、図6の防壁30a、30b、30cは、樹脂材料の
加熱体からの蒸発領域から支持体の被付着領域が直接見
通せないように設置されている。
(Embodiment 6) The embodiment shown in FIG. 1 described in Embodiment 1 except that barriers 12a, 30b and 30c having a heating structure as shown in FIG. A resin thin film was formed in the same manner as in Example 1. The barrier 30a and the barrier 30b, and the barrier 30a and the barrier 30c,
Each of them is installed at a predetermined interval with a part thereof facing each other. The evaporated resin material reaches the surface of the support 1 so as to pass through between the opposed portions of the barrier. Also, the barrier 12 of FIG. 1 is installed in such a position that the region where the resin material is first brought into contact with the heating element cannot directly see through the area where the resin material is adhered to the support, whereas the barrier 12 of FIG. Reference numerals 30a, 30b, and 30c are provided such that the region to which the support is adhered cannot be directly seen from the evaporation region of the resin material from the heater.

【0041】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、欠陥数は3個/m 2であり、実施例1
よりやや良好な表面を有する樹脂薄膜が得られた。ま
た、実施例1に比べて、長尺基板1の長手方向の樹脂薄
膜層の厚みむらが少なかった。また、幅方向の厚みむら
もより均一な樹脂薄膜が得られた。
The surface characteristics of the obtained resin thin film were similarly evaluated.
did. As a result, the number of defects was 3 / m TwoExample 1
A resin thin film having a slightly better surface was obtained. Ma
Further, compared with the first embodiment, the resin thinner in the longitudinal direction of the long substrate 1
The thickness unevenness of the film layer was small. In addition, uneven thickness in the width direction
A more uniform resin thin film was obtained.

【0042】図6の防壁30a、30b、30cのよう
に、樹脂材料の加熱体からの蒸発領域から支持体の被付
着領域が直接見通せないように防壁を設置して蒸発させ
ることにより、樹脂材料が最初に加熱体に接触する部分
以外の蒸発領域からの突沸粒子の付着をも良好に防止す
ることができる。しかも、防壁30a、30b、30c
は、樹脂材料の蒸発量の経時的な変動を吸収し、付着量
を安定化させる。更に、幅方向に対しても樹脂材料蒸気
を均一に拡散させる。従って、表面性が良好で、長手方
向及び幅方向ともに積層厚みが均一な樹脂薄膜が得られ
たものと推測される。
As shown by the barriers 30a, 30b, and 30c in FIG. 6, the resin material is provided by evaporating the resin material by installing the barrier so that the area to which the support is adhered cannot be directly seen from the evaporation region of the resin material from the heating element. Can prevent the adhesion of bumping particles from the evaporation region other than the portion that first comes into contact with the heating element. Moreover, the barriers 30a, 30b, 30c
Absorbs fluctuations in the amount of evaporation of the resin material over time, and stabilizes the amount of adhesion. Further, the resin material vapor is uniformly diffused also in the width direction. Therefore, it is presumed that a resin thin film having good surface properties and a uniform lamination thickness in both the longitudinal direction and the width direction was obtained.

【0043】なお、防壁30a、30b、30cの配置
形態は、図6に示すものに限られず、上記効果が奏され
るように適宜変更可能である。
The arrangement of the barriers 30a, 30b, 30c is not limited to the one shown in FIG. 6, and can be changed as appropriate so as to obtain the above-mentioned effects.

【0044】(実施の形態7)図7は、本発明の薄膜の
製造方法及び装置の一例を示した図である。
(Embodiment 7) FIG. 7 is a view showing an example of a method and an apparatus for producing a thin film according to the present invention.

【0045】樹脂材料は供給管3を経て真空槽5の中に
導入される。液状で供給された樹脂材料は、加熱板11
a上に滴下され、その上を流動中にその一部が気化しつ
つ、薄い液膜状に拡がる。加熱板11aの下端に達した
樹脂材料は、回転する加熱ローラ9上に滴下し、その上
を流動中にその一部が気化しつつ、更に薄い液膜状に拡
がる。加熱ローラの下端に達した樹脂材料は、加熱板1
1b上に滴下し、その上を流動中にその一部が気化しつ
つ、薄い液膜状に拡がる。加熱板11bの下端に達した
樹脂材料は、更に加熱板11c上に滴下し、その上を流
動中にその一部が気化しつつ、薄い液膜状に拡がる。蒸
発しきれなかった樹脂材料は、加熱板11cの下端から
冷却カップ4内に滴下し、蒸発を終える。このように、
加熱体を3枚の加熱板と加熱ローラとしたことにより、
樹脂材料を薄い液膜状で長時間保持できるために、安定
した蒸発が可能である。
The resin material is introduced into the vacuum chamber 5 through the supply pipe 3. The resin material supplied in a liquid state is
The liquid is dropped on a, and while flowing over it, a part thereof evaporates and spreads in a thin liquid film shape. The resin material that has reached the lower end of the heating plate 11a is dropped on the rotating heating roller 9, and while flowing thereover, a part thereof is vaporized and spreads in a thinner liquid film shape. The resin material that has reached the lower end of the heating roller
1b and spreads into a thin liquid film while a part of it is vaporized while flowing over it. The resin material that has reached the lower end of the heating plate 11b is further dropped onto the heating plate 11c, and while flowing over the resin material, a part thereof is vaporized and spreads in a thin liquid film shape. The resin material that has not completely evaporated is dropped into the cooling cup 4 from the lower end of the heating plate 11c, and the evaporation is completed. in this way,
By using three heating plates and heating rollers for the heating element,
Since the resin material can be held in a thin liquid film state for a long time, stable evaporation is possible.

【0046】蒸発した樹脂材料は、防壁30a、30
b、30cの間を通り抜けて、実施の形態1で説明した
図1の装置と同様に、回転する円筒状キャン7の外周面
に沿って走行する長尺基板1上に付着し、樹脂薄膜が形
成される。なお、周囲壁13及び防壁へ付着する樹脂材
料の再蒸発を行わせ、壁面の汚れを防ぐために、周囲壁
及び防壁も加熱構造とした。また、樹脂薄膜の硬化を行
う硬化装置14として紫外線照射装置を用いた。
The evaporated resin material is applied to the barriers 30a, 30
b, 30c, and adheres to the long substrate 1 running along the outer peripheral surface of the rotating cylindrical can 7 in the same manner as in the apparatus of FIG. 1 described in the first embodiment. It is formed. In addition, in order to re-evaporate the resin material adhering to the surrounding wall 13 and the barrier, and to prevent the wall from being stained, the surrounding wall and the barrier were also configured to have a heating structure. An ultraviolet irradiation device was used as the curing device 14 for curing the resin thin film.

【0047】上記の装置を用いて、長尺基板1上に、樹
脂材料としてシクロヘキサンジメタノールジビニルエー
テルを用いて、目標膜厚400nm、堆積速度2000
nm/sで樹脂薄膜層を積層した。得られた樹脂薄膜の
表面特性を同様に評価した。その結果、欠陥数は3個/
2であり、良好な表面を有する樹脂薄膜が得られた。
また、樹脂材料の加熱体からの蒸発領域から長尺基板1
の被付着領域が直接見通せないように防壁30a、30
b、30cを設置したことにより、上記の実施の形態6
と同様に、表面性が良好で、長手方向及び幅方向ともに
積層厚みが均一な樹脂薄膜が得られた。
Using the above apparatus, a target film thickness of 400 nm and a deposition rate of 2,000 were applied on the long substrate 1 using cyclohexane dimethanol divinyl ether as a resin material.
A resin thin film layer was laminated at nm / s. The surface characteristics of the obtained resin thin film were similarly evaluated. As a result, the number of defects was 3 /
m 2 , and a resin thin film having a good surface was obtained.
In addition, the long substrate 1 is moved from the evaporation region of the resin material from the heating body.
Walls 30a, 30 so that the area to which the
b, 30c, the above-described Embodiment 6
Similarly to the above, a resin thin film having good surface properties and uniform lamination thickness in both the longitudinal direction and the width direction was obtained.

【0048】(実施の形態8)実施の形態7で説明した
図7の装置において、供給管3を図8に示す供給管31
に代えた。本実施の形態の供給管31は、矩形状に接続
した中空管33の一辺の略中央部に直状の中空管32を
接続してなる。矩形状中空管33の、直状中空管32が
接続された辺に対向する辺には微細孔34が等間隔で所
定の数だけ開けられている。直状中空管32から供給さ
れた樹脂材料は、矩形状中空管33の内部を通り、複数
の微細孔34から加熱板11a上にほぼ均等に滴下され
る。
(Eighth Embodiment) In the apparatus shown in FIG. 7 described in the seventh embodiment, the supply pipe 3 is replaced with the supply pipe 31 shown in FIG.
Was replaced. The supply pipe 31 of the present embodiment is formed by connecting a straight hollow pipe 32 to a substantially central portion of one side of a hollow pipe 33 connected in a rectangular shape. On the side of the rectangular hollow tube 33 facing the side where the straight hollow tube 32 is connected, a predetermined number of fine holes 34 are formed at equal intervals. The resin material supplied from the straight hollow tube 32 passes through the inside of the rectangular hollow tube 33 and is dripped almost uniformly onto the heating plate 11a from the plurality of fine holes 34.

【0049】このような供給管31を備えた図7の装置
を用いて、実施の形態7と同じ条件でキャン7の外周面
に沿って走行する長尺基板1上に樹脂薄膜層を堆積させ
た。使用した供給管は、直径が0.5mm、間隔dが1
0mmの微細孔を15個有する供給管である。
Using the apparatus shown in FIG. 7 provided with such a supply pipe 31, a resin thin film layer is deposited on the long substrate 1 running along the outer peripheral surface of the can 7 under the same conditions as in the seventh embodiment. Was. The used supply pipe has a diameter of 0.5 mm and an interval d of 1
It is a supply pipe having 15 micropores of 0 mm.

【0050】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、長尺基板1上に幅約180mmの、欠
陥数が2個/m2の良好な表面を有する広幅の樹脂薄膜
が得られた。また、加熱体の蒸発領域から長尺基板1の
被付着領域が直接見通せないように防壁30a、30
b、30cを設置したことにより、表面性が良好で、長
手方向及び幅方向ともに積層厚みが均一な樹脂薄膜が得
られた。
The surface characteristics of the obtained resin thin film were similarly evaluated. As a result, a wide resin thin film having a width of about 180 mm and a good surface having a defect count of 2 / m 2 was obtained on the long substrate 1. Further, the barriers 30a and 30a are provided so that the adhered area of the long substrate 1 cannot be seen directly from the evaporation area of the heating element.
By providing b and 30c, a resin thin film having good surface properties and a uniform lamination thickness in both the longitudinal direction and the width direction was obtained.

【0051】以上のように、広幅の樹脂薄膜層を形成し
たい場合には、形成したい幅に応じて樹脂材料の供給点
を複数箇所設け、蒸発領域を複数箇所にすることによ
り、樹脂材料の蒸発領域の幅を拡大させればよいことが
わかる。更に、このとき樹脂材料の加熱体からの蒸発領
域から長尺基板1の被付着領域が直接見通せないように
防壁を設置することにより、経時的な積層厚み変動が少
なく、また、樹脂材料蒸気が幅方向に均一に拡散して幅
方向の積層厚みむらも少ない薄膜が形成できる。
As described above, when it is desired to form a wide resin thin film layer, a plurality of resin material supply points are provided according to the width to be formed, and a plurality of evaporation regions are provided. It can be seen that the width of the region should be increased. Furthermore, at this time, by providing a barrier so that the area to which the long substrate 1 is adhered cannot be directly seen from the area of evaporation of the resin material from the heating body, there is little variation in lamination thickness with time, and the vapor of the resin material is reduced. It is possible to form a thin film that is uniformly diffused in the width direction and has less lamination thickness unevenness in the width direction.

【0052】(実施の形態9)図9は、本発明の本発明
の薄膜の製造方法及び製造装置の別の一例を示す図であ
る。
(Embodiment 9) FIG. 9 is a view showing another example of the method and apparatus for manufacturing a thin film according to the present invention.

【0053】樹脂材料は供給管3を経て、真空層5内部
の樹脂容器42に供給される。樹脂容器42に蓄えられ
た液状の樹脂材料は、回転する転写ロール41の外周面
に付着して、次いで転写ロール41と相互に外周面で接
して回転する加熱ローラ40の外周面に転写する。本実
施の形態によれば、樹脂材料は加熱ローラ40の外周面
に均一な厚みの薄膜として転写されるため、蒸発量の経
時的な変動が極めて少なくなり、均一な厚みの薄膜が形
成できる。しかも、転写ロール41及び加熱ローラ40
の長さ(図9において紙面に垂直方向)を変えることに
より、樹脂材料の蒸発領域の幅を変えることができ、所
望する幅の樹脂薄膜を容易に得ることができる。
The resin material is supplied to the resin container 42 inside the vacuum layer 5 via the supply pipe 3. The liquid resin material stored in the resin container 42 adheres to the outer peripheral surface of the rotating transfer roll 41, and then transfers to the outer peripheral surface of the rotating heating roller 40 in contact with the outer peripheral surface of the transfer roll 41. According to the present embodiment, since the resin material is transferred to the outer peripheral surface of the heating roller 40 as a thin film having a uniform thickness, the variation with time of the evaporation amount is extremely small, and a thin film having a uniform thickness can be formed. In addition, the transfer roller 41 and the heating roller 40
By changing the length (in the direction perpendicular to the paper of FIG. 9), the width of the evaporation region of the resin material can be changed, and a resin thin film having a desired width can be easily obtained.

【0054】樹脂容器42及び転写ロール41は、加熱
してもしなくてもよい。また、転写ロール41の外周面
に付着した樹脂材料が加熱ローラ40の外周面に接触し
て急激に加熱されて粗大粒子が周囲に飛散するのを防止
するために、両ロールの接触点より被付着面側に防壁4
3a、43bを設けている。
The resin container 42 and the transfer roll 41 may or may not be heated. Further, in order to prevent the resin material adhering to the outer peripheral surface of the transfer roll 41 from coming into contact with the outer peripheral surface of the heating roller 40 and being rapidly heated to prevent the coarse particles from scattering around, the contact point between the two rolls is reduced. 4 barriers on the side of attachment
3a and 43b are provided.

【0055】上記により蒸発した樹脂材料は、防壁30
a、30b、30cの間を通り抜けて、実施の形態1で
説明した図1の装置と同様に、回転する円筒状キャン7
の外周面に沿って走行する長尺基板1上に付着し、樹脂
薄膜が形成される。なお、周囲壁13及び防壁へ付着す
る樹脂材料の再蒸発を行わせ、壁面の汚れを防ぐため
に、周囲壁及び防壁も加熱構造とした。また、樹脂薄膜
の硬化を行う硬化装置14として紫外線照射装置を用い
た。
The resin material evaporated as described above is applied to the barrier 30
a, 30b, and 30c, and rotates like the apparatus of FIG. 1 described in the first embodiment.
Is adhered onto the long substrate 1 running along the outer peripheral surface of the substrate, and a resin thin film is formed. In addition, in order to re-evaporate the resin material adhering to the surrounding wall 13 and the barrier, and to prevent the wall from being stained, the surrounding wall and the barrier were also configured to have a heating structure. An ultraviolet irradiation device was used as the curing device 14 for curing the resin thin film.

【0056】上記の装置を用いて、長尺基板1上に、樹
脂材料としてジメチロールトリシクロデカンジアクリレ
ートを用いて、目標膜厚200nm、堆積速度1500
nm/sで樹脂薄膜層を積層した。使用した転写ロール
41の転写幅は150mmであり、加熱ローラ40の外
周面上にこれと同一幅の樹脂薄膜を転写して形成させ
た。また、防壁30a、30b、30cは、実施の形態
8と同一寸法のものを用いた。
Using the above-described apparatus, a target film thickness of 200 nm and a deposition rate of 1500 were applied on the long substrate 1 using dimethylol tricyclodecane diacrylate as a resin material.
A resin thin film layer was laminated at nm / s. The transfer width of the transfer roll 41 used was 150 mm, and a resin thin film having the same width as this was transferred onto the outer peripheral surface of the heating roller 40 and formed. The barriers 30a, 30b and 30c used were the same dimensions as in the eighth embodiment.

【0057】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、長尺基板1上に幅約170mmの、欠
陥数が3個/m2の良好な表面を有する広幅の樹脂薄膜
が得られた。また、転写ロールにより加熱ローラ40上
に均一な樹脂薄膜が形成されたことに加えて、加熱体の
蒸発領域から長尺基板1の被付着領域が直接見通せない
ように防壁30a、30b、30cを設置したことによ
り、実施の形態8以上に長手方向及び幅方向の積層厚み
が均一な樹脂薄膜が得られた。
The surface characteristics of the obtained resin thin film were similarly evaluated. As a result, a wide resin thin film having a good surface with a defect number of 3 / m 2 and a width of about 170 mm was obtained on the long substrate 1. Further, in addition to the uniform resin thin film being formed on the heating roller 40 by the transfer roll, the barriers 30a, 30b, and 30c are provided so that the adhered area of the long substrate 1 cannot be directly seen from the evaporation area of the heating body. As a result, a resin thin film having a uniform lamination thickness in the longitudinal direction and the width direction was obtained as compared with the eighth embodiment.

【0058】以上のように、広幅の樹脂薄膜層を形成し
たい場合には、形成したい幅に応じて転写ロールの転写
幅を変えて、樹脂材料の蒸発領域の幅を拡大させればよ
いことがわかる。更に、このとき樹脂材料の加熱体から
の蒸発領域から長尺基板1の被付着領域が直接見通せな
いように防壁を設置することにより、経時的な積層厚み
変動が少なく、また、樹脂材料蒸気が幅方向に均一に拡
散して幅方向の積層厚みむらも少ない薄膜が形成でき
る。
As described above, when it is desired to form a wide resin thin film layer, the width of the evaporation region of the resin material may be increased by changing the transfer width of the transfer roll according to the width to be formed. Recognize. Furthermore, at this time, by providing a barrier so that the area to which the long substrate 1 is adhered cannot be directly seen from the area of evaporation of the resin material from the heating body, there is little variation in lamination thickness with time, and the vapor of the resin material is reduced. It is possible to form a thin film that is uniformly diffused in the width direction and has less lamination thickness unevenness in the width direction.

【0059】(実施の形態10)実施の形態1で説明し
た図1の装置において、2枚の加熱板11の温度を変更
した。即ち、第1の加熱板の温度を110℃、第2の加
熱板の温度を130℃に設定した。これ以外は、実施の
形態1と全く同様にして基板1上に樹脂薄膜を形成し
た。
Embodiment 10 In the apparatus of FIG. 1 described in Embodiment 1, the temperatures of the two heating plates 11 were changed. That is, the temperature of the first heating plate was set to 110 ° C, and the temperature of the second heating plate was set to 130 ° C. Except for this, a resin thin film was formed on the substrate 1 in exactly the same manner as in the first embodiment.

【0060】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、欠陥数は2個/m 2であり、実施例1
より良好な表面を有する樹脂薄膜が得られた。また、実
施例1に比べて、第1の加熱板11上での樹脂材料の突
沸や熱硬化は明らかに少なかった。
The surface characteristics of the obtained resin thin film were similarly evaluated.
did. As a result, the number of defects was 2 / m TwoExample 1
A resin thin film having a better surface was obtained. In addition,
As compared with the first embodiment, the protrusion of the resin material on the first heating plate 11
Boiling and heat curing were clearly less.

【0061】これは、以下の理由によると考えられる。
供給管3により供給された樹脂材料は、最初に第1の加
熱板上に滴下される。このとき、第1の加熱板が比較的
低温(110℃)に維持されているために、樹脂材料と
第1の加熱板との温度差が実施例1の場合より小さくな
って、樹脂材料の突沸を防止できたものである。従っ
て、粗大粒子が発散して基板1上に付着するのが減少
し、欠陥数が減少した。また、第1の加熱板が実施例1
より低温であるために、第1の加熱板上の樹脂材料の液
滴は全体として均一に加熱されやすい。従って、実施例
1でわずかに見られたような、第1の加熱板に接する樹
脂材料のみが急激に加熱されて、その部分のみ加熱板上
で熱硬化してしまう現象が起こりにくい。なお、第1の
加熱板と第2の加熱板との温度差もあまり大きくないた
めに、第2の加熱板に滴下した樹脂材料が急激に加熱さ
れて突沸したり、液滴が不均一に加熱されて加熱板に接
する樹脂材料が熱硬化してしまうこともない。
This is considered for the following reason.
The resin material supplied by the supply pipe 3 is first dropped on the first heating plate. At this time, since the first heating plate is maintained at a relatively low temperature (110 ° C.), the temperature difference between the resin material and the first heating plate becomes smaller than that in the first embodiment, and The bumping was prevented. Therefore, the number of coarse particles diverging and adhering to the substrate 1 was reduced, and the number of defects was reduced. Also, the first heating plate is the same as that of the first embodiment.
Since the temperature is lower, the droplets of the resin material on the first heating plate are likely to be uniformly heated as a whole. Therefore, the phenomenon that only the resin material in contact with the first heating plate is rapidly heated, and only that portion is hardened on the heating plate, which is slightly observed in the first embodiment, does not easily occur. Since the temperature difference between the first heating plate and the second heating plate is not so large, the resin material dropped on the second heating plate is rapidly heated and bumps, or the droplets become uneven. The resin material that is heated and is in contact with the heating plate is not cured by heat.

【0062】さらに、本実施の形態のように、高温に維
持された第2の加熱板の傾斜を、低温に維持された第1
の加熱板の傾斜より大きくしておくと、液状の樹脂材料
が高温領域(第2の加熱板)上を流動する速度が大きく
なって、第2の加熱板上での突沸や熱硬化をより一層防
止することができる。このように、高温の加熱板の傾斜
を大きくすることは、高温下で容易に熱硬化しやすい樹
脂材料や、比較的低温でも十分に蒸発可能な樹脂材料で
は特に効果的である。
Further, as in the present embodiment, the inclination of the second heating plate maintained at a high temperature is changed to the first heating plate maintained at a low temperature.
If the inclination of the heating plate is set to be larger than that of the heating plate, the speed at which the liquid resin material flows on the high-temperature region (the second heating plate) increases, so that bumping and thermosetting on the second heating plate become more difficult. It can be further prevented. As described above, increasing the inclination of the high-temperature heating plate is particularly effective for a resin material which is easily thermoset at a high temperature or a resin material which can be sufficiently evaporated even at a relatively low temperature.

【0063】また、目標膜厚や堆積速度を種々に変更し
てみたところ、実施例1に比べて、より厚い目標膜厚、
及びより速い堆積速度にも十分対応することができた。
When the target film thickness and the deposition rate were changed in various ways, the target film thickness and the target film thickness were larger than those in the first embodiment.
And higher deposition rates.

【0064】これは、以下の理由によると考えられる。
加熱板上で樹脂材料が熱硬化してしまうと順次供給され
る樹脂材料の加熱が妨げれれて、安定した蒸発量を維持
することが困難となる。本実施の形態のように、第1の
加熱板の温度を比較的低温にしておくと、樹脂材料の熱
硬化を防止できるので、このような問題を解消すること
ができる。また、第1の加熱板上で流動しながら加熱さ
れた樹脂材料は、その一部は蒸発し、残りは第2の加熱
板上に滴下する。第2の加熱板は、第1の加熱板より高
温に設定されているために、さらに加熱され、蒸発して
いく。このようにして、供給された樹脂材料の一部が熱
硬化することなく、無駄なく蒸発していく。従って、樹
脂材料を予め加熱してから加熱体に供給すると、堆積効
率を向上できることが分かる。
This is considered to be due to the following reasons.
When the resin material is thermally cured on the heating plate, the heating of the sequentially supplied resin material is hindered, and it becomes difficult to maintain a stable evaporation amount. When the temperature of the first heating plate is set to a relatively low temperature as in the present embodiment, the thermosetting of the resin material can be prevented, so that such a problem can be solved. In addition, a part of the resin material heated while flowing on the first heating plate evaporates, and the rest is dropped on the second heating plate. Since the second heating plate is set at a higher temperature than the first heating plate, it is further heated and evaporates. In this way, a part of the supplied resin material evaporates without waste without being thermoset. Therefore, it is understood that the deposition efficiency can be improved by heating the resin material in advance and then supplying it to the heater.

【0065】なお、本実施の形態では、第1の加熱板を
比較的低温に、第2の加熱板を比較的高温にそれぞれに
加熱したが、本発明はこれに限定されない。例えば、第
1の加熱板と第2の加熱板との間に、さらに1又は2以
上の加熱板を設け、それぞれ順に温度が高くなるように
加熱してもよい。また、一つの独立した加熱板を全て均
一に加熱するのではなく、樹脂材料が最初に滴下される
領域を比較的低温に維持しておき、樹脂材料が流動する
経路に沿って加熱体の温度が徐々に高くなくように、連
続する1つの加熱体内に複数の温度領域を設けておいて
もよい。さらに、このような複数の温度領域を有する加
熱体を複数個分離して設置して、樹脂材料がこれらの加
熱体上を順次流動していくことにより徐々に加熱されて
いくようにしてもよい。
In the present embodiment, the first heating plate is heated to a relatively low temperature and the second heating plate is heated to a relatively high temperature. However, the present invention is not limited to this. For example, one or more heating plates may be further provided between the first heating plate and the second heating plate, and the heating may be performed so that the temperature increases in order. Also, instead of heating all the independent heating plates uniformly, the area where the resin material is first dropped is maintained at a relatively low temperature, and the temperature of the heating element is set along the path along which the resin material flows. May be provided in a single continuous heating body so that the temperature is not gradually increased. Furthermore, a plurality of such heating elements having a plurality of temperature regions may be separately installed, and the resin material may be gradually heated by flowing sequentially over these heating elements. .

【0066】また、本実施の形態では、高温に維持され
た第2の加熱板の傾斜を、低温に維持された第1の加熱
板の傾斜より大きくしたが、本発明はこれに限定されな
い。例えば、本実施の形態とは逆に、高温に維持された
第2の加熱板の傾斜を、低温に維持された第1の加熱板
の傾斜より小さくしてもよい。このような傾斜の設定
は、例えば、比較的低温では粘度が高く流動性が悪かっ
たり、蒸発しにくい樹脂材料に対しては特に有効であ
る。低温に維持された第1の加熱板の傾斜を大きくする
ことにより、樹脂材料の流動性を確保して、液滴内の対
流を助けて均一な昇温を促進し、同時に熱硬化を防ぐこ
とができ、また、高温に維持された第2の加熱板の傾斜
を小さくすることにより、流動速度を遅くして十分な蒸
発量を確保することができるからである。
Further, in the present embodiment, the inclination of the second heating plate maintained at a high temperature is made larger than the inclination of the first heating plate maintained at a low temperature, but the present invention is not limited to this. For example, contrary to the present embodiment, the inclination of the second heating plate maintained at a high temperature may be smaller than the inclination of the first heating plate maintained at a low temperature. Such a setting of the inclination is particularly effective, for example, for a resin material that has a high viscosity at a relatively low temperature, has poor fluidity, and is difficult to evaporate. By increasing the inclination of the first heating plate maintained at a low temperature, the fluidity of the resin material is ensured, the convection in the liquid droplets is promoted, and a uniform temperature rise is promoted, and at the same time, thermal curing is prevented. This is because, by reducing the inclination of the second heating plate maintained at a high temperature, the flow rate can be reduced and a sufficient amount of evaporation can be secured.

【0067】さらに、連続する1つの加熱体内に複数の
異なる温度領域を有する加熱体において、各温度領域で
の樹脂材料の流動速度を最適化するために、各温度領域
における傾斜を連続的に又は段階的に変化(例えば、傾
斜を徐々に大きく、又は徐々に小さくしていく)させて
もよい。
Further, in a heating element having a plurality of different temperature zones in one continuous heating element, the inclination in each temperature zone is continuously or in order to optimize the flow rate of the resin material in each temperature zone. It may be changed stepwise (for example, the inclination is gradually increased or gradually decreased).

【0068】本実施の形態で説明した装置に、実施の形
態5で説明した予め加熱された樹脂材料を供給すると、
樹脂材料と第1の加熱板との温度差がさらに小さくなっ
て、樹脂材料が急激に加熱されて突沸したり、液滴が不
均一に加熱されて加熱板に接する樹脂材料が熱硬化して
しまう現象をより一層防ぐことができるので好ましい。
When the preheated resin material described in the fifth embodiment is supplied to the device described in the present embodiment,
The temperature difference between the resin material and the first heating plate is further reduced, and the resin material is suddenly heated and bumped, or the droplets are unevenly heated and the resin material in contact with the heating plate is thermally cured. This is preferable because the phenomenon can be further prevented.

【0069】なお、加熱体の設定温度や、その傾斜は上
記の本実施の形態のものに限定されない。使用する樹脂
の種類に応じて、適宜最適な温度及び傾斜を設定するこ
とができる。
The set temperature of the heating element and its inclination are not limited to those in the above-described embodiment. The optimum temperature and gradient can be set appropriately according to the type of the resin used.

【0070】(実施の形態11)実施の形態6で説明し
た図6の装置において防壁30a,30b,30cに加
えて、図10に示すような加熱構造の防壁44a,44
b,44cを用いた以外は実施の形態6と同様にして樹
脂薄膜を形成した。防壁44aと防壁44b、及び防壁
44aと防壁44cは、それぞれ所定間隔を隔てて、そ
の一部を対向させて設置されている。蒸発した樹脂材料
は、防壁44aと防壁44b、又は防壁44aと防壁4
4cの対向した部分の間を通り抜け、さらに防壁30a
と防壁30b、又は防壁30aと防壁30cの対向した
部分の間を通り抜けて、支持体1の表面に到達する。こ
こで、防壁30aと防壁30b、及び防壁30aと防壁
30cの対向した部分における間隔をd1、防壁44a
と防壁44b、及び防壁44aと防壁44cの対向した
部分における間隔をd2とすると、d1>d2となるよ
うに、各防壁が設置されている。
(Embodiment 11) In addition to the barriers 30a, 30b and 30c in the apparatus of FIG. 6 described in Embodiment 6, barriers 44a and 44 having a heating structure as shown in FIG.
A resin thin film was formed in the same manner as in Embodiment 6 except that b and 44c were used. The barrier 44a and the barrier 44b, and the barrier 44a and the barrier 44c are installed at predetermined intervals and partly opposed to each other. The evaporated resin material is used as the barrier 44a and the barrier 44b or the barrier 44a and the barrier 4
4c between the opposing portions, and furthermore the barrier 30a
And reaches the surface of the support 1 through the space between the opposed portions of the barrier 30b and the barrier 30a and the barrier 30c. Here, the distance between the opposed portions of the barrier 30a and the barrier 30b and between the barrier 30a and the barrier 30c is d1, and the barrier 44a is
The barriers are installed such that d1> d2, where d2 is the distance between opposing portions of the barrier 44b and the barrier 44a and the barrier 44c.

【0071】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、欠陥数は1個/m 2であり、実施の形
態6よりやや良好な表面を有する樹脂薄膜が得られた。
また、実施の形態6に比べて、長尺基板1の長手方向の
樹脂薄膜層の厚みむらが少なかった。また、幅方向の厚
みむらもより均一な樹脂薄膜が得られた。
The surface characteristics of the obtained resin thin film were similarly evaluated.
did. As a result, the number of defects was 1 / m TwoAnd the form of implementation
A resin thin film having a slightly better surface than that of State 6 was obtained.
Further, compared to the sixth embodiment, the length of the long substrate 1
The thickness unevenness of the resin thin film layer was small. Also, the thickness in the width direction
A more uniform resin thin film was obtained.

【0072】これは以下の理由によると考えられる。蒸
発した樹脂材料が支持体の被付着領域に到達するまでに
通過する防壁の対向部分の数が、実施の形態6の場合が
1であるのに対して、本実施の形態では2である。樹脂
材料が通過しなければならない防壁の対向部分の数が増
加したことにより、蒸発領域で発生した樹脂材料の突沸
粒子が被付着領域に到達しにくくなって、表面性の良好
な樹脂薄膜が得られたものと考えられる。また、樹脂材
料が液滴状で断続的に供給される場合は特に蒸発領域内
での樹脂材料蒸気の分圧は経時的に変動する。防壁を対
向部分を有するように設置することにより、このような
蒸発領域内での樹脂材料蒸気の分圧の変動が、被付着領
域に至る過程でならされていく。本実施の形態のよう
に、防壁を多段に設けることにより、この作用が強くな
り、樹脂材料の蒸発量の経時的な変動が吸収され、付着
量が安定化する。更に、幅方向に対しても樹脂材料蒸気
を均一に拡散させる作用が強くなる。従って、実施の形
態6に増して、長手方向及び幅方向ともに積層厚みが均
一な樹脂薄膜が得られたものと推測される。
This is considered for the following reasons. In the sixth embodiment, the number of the facing portions of the barrier that the evaporated resin material passes through before reaching the adhered region of the support is one, whereas in the present embodiment it is two. The increase in the number of opposing portions of the barrier, through which the resin material must pass, makes it difficult for bumping particles of the resin material generated in the evaporation area to reach the area to be adhered, resulting in a resin thin film having good surface properties. It is thought that it was done. In addition, when the resin material is intermittently supplied in the form of droplets, the partial pressure of the resin material vapor in the evaporation region fluctuates with time. By arranging the barrier so as to have the opposing portion, the variation in the partial pressure of the resin material vapor in the evaporation region is smoothed in the process of reaching the deposition region. By providing the barriers in multiple stages as in the present embodiment, this effect is enhanced, and the temporal variation in the amount of evaporation of the resin material is absorbed, and the amount of adhesion is stabilized. Further, the effect of uniformly diffusing the resin material vapor also in the width direction is enhanced. Therefore, it is presumed that a resin thin film having a uniform lamination thickness in both the longitudinal direction and the width direction was obtained as compared with the sixth embodiment.

【0073】なお、防壁の配置形態や数は、図10に示
すものに限られない。
The arrangement and number of the barriers are not limited to those shown in FIG.

【0074】(実施の形態12)実施の形態11で説明
した図10の装置において、防壁30aと防壁30b、
及び防壁30aと防壁30cの対向した部分における間
隔d1と、防壁44aと防壁44b、及び防壁44aと
防壁44cの対向した部分における間隔d2とが、d1
<d2となるように、即ち、本実施の形態の間隔d1が
実施の形態11の間隔d2と同じになるように、また、
本実施の形態の間隔d2が実施の形態11の間隔d1と
同じになるように、各防壁を設置した以外は実施の形態
11と同様にして樹脂薄膜を形成した。
(Embodiment 12) In the apparatus shown in FIG. 10 described in Embodiment 11, a barrier 30a and a barrier 30b are provided.
The distance d1 between the opposing portions of the barriers 30a and 30c and the distance d2 between the opposing portions of the barriers 44a and 44b and between the opposing walls 44a and 44c are represented by d1.
<D2, that is, the distance d1 in the present embodiment is the same as the distance d2 in the eleventh embodiment,
A resin thin film was formed in the same manner as in Embodiment 11 except that each barrier was provided so that the interval d2 in this embodiment was the same as the interval d1 in Embodiment 11.

【0075】得られた樹脂薄膜の表面特性を同様に評価
した。その結果、欠陥数は1個/m 2であり、実施の形
態11と同等の表面を有する樹脂薄膜が得られた。ま
た、長尺基板1の長手方向の樹脂薄膜層の厚みむらは、
実施の形態11に比べて若干劣っていた。また、幅方向
の樹脂薄膜層の厚みむらも、実施の形態11に比べてや
や劣っていた。
The surface characteristics of the obtained resin thin film were similarly evaluated.
did. As a result, the number of defects was 1 / m TwoAnd the form of implementation
A resin thin film having a surface equivalent to that of Embodiment 11 was obtained. Ma
In addition, the thickness unevenness of the resin thin film layer in the longitudinal direction of the long substrate 1 is
It was slightly inferior to the eleventh embodiment. Also, in the width direction
The thickness unevenness of the resin thin film layer is slightly smaller than that of the eleventh embodiment.
And it was inferior.

【0076】この理由は、以下のように考えることがで
きる。上記のように、防壁の対向部分は、蒸発領域内で
の樹脂材料蒸気の分圧の変動を吸収し、滑らかにする緩
衝作用を有する。蒸発領域により近い防壁(本実施の形
態の例では防壁44a,44b,44c)の対向部分の
間隔を、これより遠い防壁(本実施の形態の例では防壁
30a,30b,30c)の対向部分の間隔より小さく
すると、分圧の変動発生源により近い防壁の上記緩衝作
用が強化されることとなって、防壁の緩衝作用が有効に
機能して、被付着領域での付着量がより安定化するもの
と考えられる。同様に、幅方向に対しても樹脂材料蒸気
が均一に拡散させる作用が強くなるものと考えられる。
The reason can be considered as follows. As described above, the opposing portion of the barrier has a buffering function of absorbing fluctuations in the partial pressure of the resin material vapor in the evaporation region and smoothing it. The distance between the facing portions of the barriers (the barriers 44a, 44b, 44c in the present embodiment) closer to the evaporation region is set to the distance between the facing portions of the barriers farther than this (the barriers 30a, 30b, 30c in the embodiment of the present invention). When the distance is smaller than the interval, the buffering action of the barrier closer to the source of the variation in the partial pressure is strengthened, and the buffering action of the barrier functions effectively, and the amount of adhesion in the adhered area is more stabilized. It is considered something. Similarly, it is considered that the effect of uniformly diffusing the resin material vapor in the width direction is enhanced.

【0077】以上の結果から、本発明の薄膜の製造方法
及び製造装置によれば樹脂材料を効率よく蒸発させると
共に、熱硬化や突沸を出来るだけ抑えて安定な成膜を高
堆積速度で行うことが出来、工業上の意義が大きいもの
と思われる。
From the above results, according to the method and apparatus for manufacturing a thin film of the present invention, it is possible to efficiently evaporate a resin material and to perform stable film formation at a high deposition rate while suppressing thermosetting and bumping as much as possible. It is thought that industrial significance is great.

【0078】尚、上記実施の形態では、誘電体としてア
クリレート系の樹脂材料を用いた場合について述べた
が、エポキシ系等の他の材料も用いることが出来る。ま
た、実施の形態では硬化の方法として紫外線硬化及び電
子線硬化を用いた場合について述べたが、本発明は特に
硬化の手段によって限定されるものではない。
In the above embodiment, the case where an acrylate-based resin material is used as the dielectric has been described. However, other materials such as an epoxy-based material can also be used. Further, in the embodiment, the case where ultraviolet curing and electron beam curing are used as the curing method has been described, but the present invention is not particularly limited by the curing means.

【0079】[0079]

【発明の効果】以上の様に本発明の薄膜の製造方法及び
製造装置によれば、高堆積速度で優れた樹脂薄膜が得ら
れる。
As described above, according to the method and apparatus for producing a thin film of the present invention, an excellent resin thin film can be obtained at a high deposition rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の薄膜の製造方法及び製造装置の一例
を示す概略図である。
FIG. 1 is a schematic view showing an example of a method and an apparatus for producing a thin film according to the present invention.

【図2】 本発明の薄膜の製造方法及び製造装置の別の
一例を示す概略図である。
FIG. 2 is a schematic view showing another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図3】 本発明の薄膜の製造方法及び製造装置の更に
別の一例を示す概略図である。
FIG. 3 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図4】 本発明の薄膜の製造方法及び製造装置の更に
別の一例を示す概略図である。
FIG. 4 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図5】 薄膜の製造方法及び製造装置の比較例の一例
を示す概略図である。
FIG. 5 is a schematic view showing an example of a comparative example of a method and an apparatus for manufacturing a thin film.

【図6】 本発明の薄膜の製造方法及び製造装置の更に
別の一例を示す概略図である。
FIG. 6 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図7】 本発明の薄膜の製造方法及び製造装置の更に
別の一例を示す概略図である。
FIG. 7 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図8】 本発明の薄膜の製造方法及び製造装置に使用
される樹脂供給管の一例を示す概略斜視図である。
FIG. 8 is a schematic perspective view showing an example of a resin supply pipe used in the method and apparatus for manufacturing a thin film according to the present invention.

【図9】 本発明の薄膜の製造方法及び製造装置の更に
別の一例を示す概略図である。
FIG. 9 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【図10】 本発明の薄膜の製造方法及び製造装置の更
に別の一例を示す概略図である。
FIG. 10 is a schematic view showing still another example of the method and apparatus for manufacturing a thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1 長尺基板 2 キャリア 3 供給管 4 カップ 5 真空槽 6 排気系 7 キャン 8 ブレード 9 加熱ローラ 10 加熱ベルト 11、11a、11b、11c 加熱板 12 防壁 13 周囲壁 14 硬化装置 15 巻きだしロール 16 巻き取りロール 17 ガイドロール 18 移動方向 19 隔壁 20 EB蒸発源 30a、30b、30c 防壁 31 供給管 32 直状中空管 33 矩形状中空管 34 微細孔 40 加熱ローラ 41 転写ロール 42 樹脂容器 43a、43b 防壁 44a、44b、44c 防壁 Reference Signs List 1 long substrate 2 carrier 3 supply pipe 4 cup 5 vacuum tank 6 exhaust system 7 can 8 blade 9 heating roller 10 heating belt 11, 11a, 11b, 11c heating plate 12 barrier 13 peripheral wall 14 curing device 15 unwinding roll 16 winding Take-up roll 17 Guide roll 18 Moving direction 19 Partition wall 20 EB evaporation source 30a, 30b, 30c Barrier wall 31 Supply pipe 32 Straight hollow pipe 33 Rectangular hollow pipe 34 Micro hole 40 Heating roller 41 Transfer roll 42 Resin container 43a, 43b Barrier 44a, 44b, 44c

フロントページの続き (72)発明者 砂流 伸樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuation of the front page (72) Inventor Nobuki Sunaru 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (32)

【特許請求の範囲】[Claims] 【請求項1】 真空中で樹脂材料を蒸発させて支持体に
付着させる薄膜の製造方法において、少なくとも前記樹
脂材料を加熱体に沿って流動させながら蒸発させること
を特徴とする薄膜の製造方法。
1. A method for producing a thin film, wherein a resin material is evaporated in a vacuum to adhere to a support, wherein at least the resin material is evaporated while flowing along a heating element.
【請求項2】 前記樹脂材料が最初に前記加熱体に接触
する部分から、前記樹脂材料が前記支持体に付着する部
分が直接見通せない位置関係にあることを特徴とする請
求項1に記載の薄膜の製造方法。
2. The position according to claim 1, wherein a portion where the resin material first comes into contact with the heating element has a positional relationship where a portion where the resin material adheres to the support is not directly visible. Manufacturing method of thin film.
【請求項3】 前記樹脂材料が沿って流動する前記加熱
体が温度の異なる複数の領域からなることを特徴とする
請求項1又は2に記載の薄膜の製造方法。
3. The method according to claim 1, wherein the heating element along which the resin material flows comprises a plurality of regions having different temperatures.
【請求項4】 前記樹脂材料が最初に接触する前記加熱
体の温度よりも前記加熱体の他の部分の少なくとも一部
が高温であることを特徴とする請求項3に記載の薄膜の
製造方法。
4. The method for producing a thin film according to claim 3, wherein at least a part of the other portion of the heating element is higher in temperature than the temperature of the heating element that the resin material contacts first. .
【請求項5】 前記樹脂材料が前記加熱体に沿って流動
後、一旦前記加熱体を液状で離れ、再び前記加熱体の別
の部分に沿って流動することを特徴とする請求項1乃至
4のいずれかに記載の薄膜の製造方法。
5. The heating method according to claim 1, wherein the resin material flows along the heating element, then leaves the heating element in a liquid state, and flows again along another part of the heating element. The method for producing a thin film according to any one of the above.
【請求項6】 前記樹脂材料が沿って流動する前記加熱
体が、傾斜の異なる複数の領域からなることを特徴とす
る請求項1乃至5のいずれかに記載の薄膜の製造方法。
6. The method according to claim 1, wherein the heating element along which the resin material flows comprises a plurality of regions having different inclinations.
【請求項7】 前記加熱体の少なくとも一部が移動、回
転あるいはその両方の動作を行うことを特徴とする請求
項1乃至6のいずれかに記載の薄膜の製造方法。
7. The method for producing a thin film according to claim 1, wherein at least a part of the heating element performs a movement, a rotation, or both operations.
【請求項8】 前記加熱板に沿って流動した前記樹脂材
料の一部を前記加熱体の最高温度よりも低温の部分に液
状で蓄積することを特徴とする請求項1乃至7のいずれ
かに記載の薄膜の製造方法。
8. The method according to claim 1, wherein a part of the resin material flowing along the heating plate is accumulated in a liquid state at a temperature lower than a maximum temperature of the heating element. A method for producing the thin film according to the above.
【請求項9】 樹脂材料を加熱体に供給するに際して、
予め樹脂材料を加熱しておくことを特徴とする請求項1
に記載の薄膜の製造方法。
9. When supplying a resin material to a heating element,
2. The method according to claim 1, wherein the resin material is heated in advance.
3. The method for producing a thin film according to item 1.
【請求項10】 樹脂材料の蒸発領域から支持体の被付
着領域が直接見通せないようにして樹脂材料を蒸発させ
ることを特徴とする請求項1に記載の薄膜の製造方法。
10. The method for producing a thin film according to claim 1, wherein the resin material is evaporated such that the region to which the support is adhered cannot be directly seen from the evaporation region of the resin material.
【請求項11】 蒸発した樹脂材料が、所定間隔を隔て
て、対向する部分を形成するように設置された防壁の間
を通って支持体の被付着領域に到達することを特徴とす
る請求項10に記載の薄膜の製造方法。
11. The apparatus according to claim 1, wherein the evaporated resin material reaches a region to which the support is adhered at a predetermined interval through a barrier provided to form an opposing portion. 11. The method for producing a thin film according to item 10.
【請求項12】 蒸発した樹脂材料が支持体の被付着領
域に到達するまでに通過する防壁の対向部分が複数存在
することを特徴とする請求項11に記載の薄膜の製造方
法。
12. The method for producing a thin film according to claim 11, wherein there are a plurality of opposing portions of the barrier wall through which the evaporated resin material passes before reaching the adhesion region of the support.
【請求項13】 前記複数存在する防壁の対向部分のう
ち、ある対向部分の間隔が、これより樹脂材料の蒸着領
域側にある対向部分の間隔より大きいことを特徴とする
請求項12に記載の薄膜の製造方法。
13. The space according to claim 12, wherein an interval between certain opposing portions of the plurality of opposing portions of the barrier is larger than an interval between the opposing portions closer to the vapor deposition region of the resin material. Manufacturing method of thin film.
【請求項14】 支持体に樹脂材料を付着する幅に応じ
て樹脂材料の蒸発領域に幅をもたせることを特徴とする
請求項1に記載の薄膜の製造方法。
14. The method for producing a thin film according to claim 1, wherein the evaporation region of the resin material has a width according to the width of the resin material attached to the support.
【請求項15】 支持体に樹脂材料を付着する幅に応じ
て樹脂材料の蒸発領域を複数箇所設けることを特徴とす
る請求項1に記載の薄膜の製造方法。
15. The method for manufacturing a thin film according to claim 1, wherein a plurality of evaporation regions of the resin material are provided according to a width of the resin material attached to the support.
【請求項16】 加熱体に樹脂材料を転写ロールにより
供給することを特徴とする請求項1に記載の薄膜の製造
方法。
16. The method according to claim 1, wherein a resin material is supplied to the heating element by a transfer roll.
【請求項17】 支持体を周回させることにより、薄膜
を積層することを特徴とする請求項1に記載の薄膜の製
造方法。
17. The method for producing a thin film according to claim 1, wherein the thin film is laminated by rotating the support.
【請求項18】 真空槽と、前記真空槽中で樹脂材料を
供給するための供給装置と、前記樹脂材料を蒸発させる
ための蒸発装置と、蒸発した前記樹脂材料を付着させて
樹脂薄膜を形成するための支持体を有する薄膜の製造装
置において、前記蒸発装置が前記樹脂材料を移動させな
がら蒸発させる手段を有することを特徴とする薄膜の製
造装置。
18. A vacuum vessel, a supply device for supplying a resin material in the vacuum vessel, an evaporator for evaporating the resin material, and a resin thin film formed by adhering the evaporated resin material. An apparatus for manufacturing a thin film having a support for performing the above, wherein the evaporator has means for evaporating while moving the resin material.
【請求項19】 樹脂材料を移動させながら蒸発させる
手段が少なくとも加熱板からなることを特徴とする請求
項18に記載の薄膜の製造装置。
19. The apparatus according to claim 18, wherein the means for evaporating the resin material while moving the resin material comprises at least a heating plate.
【請求項20】 樹脂材料を移動させながら蒸発させる
手段が少なくとも加熱ローラからなることを特徴とする
請求項18に記載の薄膜の製造装置。
20. The apparatus according to claim 18, wherein the means for evaporating the resin material while moving the resin material comprises at least a heating roller.
【請求項21】 樹脂材料を移動させながら蒸発させる
手段が少なくとも加熱ベルトからなることを特徴とする
請求項18に記載の薄膜の製造装置。
21. The apparatus for manufacturing a thin film according to claim 18, wherein the means for evaporating the resin material while moving the resin material comprises at least a heating belt.
【請求項22】 樹脂材料の供給位置と樹脂薄膜の形成
位置を結ぶ直線を遮断する防壁を設けたことを特徴とす
る請求項18乃至21のいずれかに記載の薄膜の製造装
置。
22. The thin film manufacturing apparatus according to claim 18, wherein a barrier is provided to block a straight line connecting a resin material supply position and a resin thin film formation position.
【請求項23】 樹脂材料の一部を冷却容器に回収する
ことを特徴とする請求項18乃至22のいずれかに記載
の薄膜の製造装置。
23. The apparatus according to claim 18, wherein a part of the resin material is collected in a cooling container.
【請求項24】 樹脂材料の一部を加熱容器の傾斜内壁
面に導いて回収することを特徴とする請求項18乃至2
2のいずれかに記載の薄膜の製造装置。
24. The method according to claim 18, wherein a part of the resin material is guided to the inclined inner wall surface of the heating vessel and collected.
3. The apparatus for producing a thin film according to any one of 2.
【請求項25】 樹脂材料を供給するに際して、予め樹
脂材料を加熱しておく樹脂材料加熱装置を有することを
特徴とする請求項18に記載の薄膜の製造装置。
25. The thin film manufacturing apparatus according to claim 18, further comprising a resin material heating device for heating the resin material in advance when supplying the resin material.
【請求項26】 樹脂材料の蒸発領域から支持体の被付
着領域が直接見通せないように防壁を設けたことを特徴
とする請求項18に記載の薄膜の製造装置。
26. The thin film manufacturing apparatus according to claim 18, wherein a barrier is provided so that a region to which the support is adhered cannot be directly seen from an evaporation region of the resin material.
【請求項27】 前記防壁が、所定間隔を隔てて対向す
る部分を形成するように設置されていることを特徴とす
る請求項22又は26に記載の薄膜の製造装置。
27. The thin-film manufacturing apparatus according to claim 22, wherein the barrier is provided so as to form a portion facing each other at a predetermined interval.
【請求項28】 蒸発した樹脂材料が支持体の被付着領
域に到達するまでに複数の防壁の対向部分を通過するよ
うに、前記防壁が設置されていることを特徴とする請求
項27に記載の薄膜の製造装置。
28. The barrier according to claim 27, wherein the barrier is provided such that the evaporated resin material passes through the facing portions of the plurality of barriers before reaching the adhesion area of the support. Thin film manufacturing equipment.
【請求項29】 樹脂材料が通過する前記複数の対向部
分のうち、ある対向部分の間隔が、これより樹脂材料の
蒸着領域側にある対向部分の間隔より大きくなるように
前記防壁が設置されていることを特徴とする請求項28
に記載の薄膜の製造装置。
29. The barrier according to claim 29, wherein the distance between certain opposing portions of the plurality of opposing portions through which the resin material passes is greater than the distance between the opposing portions on the resin material deposition region side. 29. The method of claim 28, wherein
2. The apparatus for producing a thin film according to claim 1.
【請求項30】 支持体に樹脂材料を付着させる幅に応
じて樹脂材料の供給点を複数箇所設けたことを特徴とす
る請求項18に記載の薄膜の製造装置。
30. The apparatus for manufacturing a thin film according to claim 18, wherein a plurality of supply points of the resin material are provided according to a width of the resin material adhered to the support.
【請求項31】 樹脂材料の供給を転写ロールにより行
うことを特徴とする請求項18に記載の薄膜の製造装
置。
31. The apparatus for manufacturing a thin film according to claim 18, wherein the supply of the resin material is performed by a transfer roll.
【請求項32】 支持体が周回することを特徴とする請
求項18に記載の薄膜の製造装置。
32. The apparatus for producing a thin film according to claim 18, wherein the support rotates.
JP05097098A 1997-03-17 1998-03-03 Thin film manufacturing method and manufacturing apparatus Expired - Fee Related JP3485297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05097098A JP3485297B2 (en) 1997-03-17 1998-03-03 Thin film manufacturing method and manufacturing apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9-62651 1997-03-17
JP6265197 1997-03-17
JP9-317413 1997-11-18
JP31741397 1997-11-18
JP05097098A JP3485297B2 (en) 1997-03-17 1998-03-03 Thin film manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH11209870A true JPH11209870A (en) 1999-08-03
JP3485297B2 JP3485297B2 (en) 2004-01-13

Family

ID=27294147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05097098A Expired - Fee Related JP3485297B2 (en) 1997-03-17 1998-03-03 Thin film manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3485297B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013204A (en) * 2001-06-27 2003-01-15 Toppan Printing Co Ltd Method and apparatus for manufacturing organic vapor, organic matter-coated substrate, and manufacturing method and apparatus therefor
JP2008540841A (en) * 2005-05-10 2008-11-20 シン フイルム エレクトロニクス エイエスエイ Method for forming a ferroelectric thin film, use of the method, and memory having ferroelectric oligomer memory material
JP2009084676A (en) * 2007-09-10 2009-04-23 Ulvac Japan Ltd Vapor production device, vapor deposition apparatus and film-forming method
WO2012133201A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Deposition particle emitting device, deposition particle emission method, and deposition device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013204A (en) * 2001-06-27 2003-01-15 Toppan Printing Co Ltd Method and apparatus for manufacturing organic vapor, organic matter-coated substrate, and manufacturing method and apparatus therefor
JP2008540841A (en) * 2005-05-10 2008-11-20 シン フイルム エレクトロニクス エイエスエイ Method for forming a ferroelectric thin film, use of the method, and memory having ferroelectric oligomer memory material
JP2009084676A (en) * 2007-09-10 2009-04-23 Ulvac Japan Ltd Vapor production device, vapor deposition apparatus and film-forming method
WO2012133201A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Deposition particle emitting device, deposition particle emission method, and deposition device
CN103476962A (en) * 2011-03-30 2013-12-25 夏普株式会社 Deposition particle emitting device, deposition particle emission method, and deposition device
JP5512881B2 (en) * 2011-03-30 2014-06-04 シャープ株式会社 Vapor deposition processing system and vapor deposition processing method
CN103476962B (en) * 2011-03-30 2015-07-01 夏普株式会社 Deposition particle emitting device, deposition particle emission method, and deposition device

Also Published As

Publication number Publication date
JP3485297B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US8480804B2 (en) Thin film, method and apparatus for forming the same, and electronic component incorporating the same
KR100400981B1 (en) Method of producing thin resin films
US7592043B2 (en) Method and apparatus for coating a patterned thin film on a substrate from a fluid source with continuous feed capability
US6611420B2 (en) Layered product and capacitor
KR100372863B1 (en) Laminate, capacitor, and method for producing laminate
JP3614644B2 (en) Manufacturing method of laminate
CN103392025A (en) Thin-film production method and production device
JPH11209870A (en) Production of thin film and device for producing it
JP3502261B2 (en) Method for manufacturing resin thin film
JP3630357B2 (en) Manufacturing method of laminate
JP3397210B2 (en) Thin film manufacturing method and manufacturing apparatus
WO2021039308A1 (en) Method for producing battery, and battery
JP2002057065A (en) Thin-film capacitor and its manufacturing method
JPH09310172A (en) Production of resin thin film and apparatus for production and electronic parts
JP4100894B2 (en) Thin film manufacturing method and manufacturing apparatus thereof
JP3365207B2 (en) Vacuum deposition equipment
JPH10237623A (en) Production of electronic parts and device for producing thin coating
JP2013044050A (en) Thin film evaporator
JP2000243658A (en) Method and apparatus for manufacturing film, film, film laminated body, and film component
JPH04212717A (en) Vacuum deposition method and device
JP2000178718A (en) Vacuum depositing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees