JPH04212717A - Vacuum deposition method and device - Google Patents

Vacuum deposition method and device

Info

Publication number
JPH04212717A
JPH04212717A JP4553291A JP4553291A JPH04212717A JP H04212717 A JPH04212717 A JP H04212717A JP 4553291 A JP4553291 A JP 4553291A JP 4553291 A JP4553291 A JP 4553291A JP H04212717 A JPH04212717 A JP H04212717A
Authority
JP
Japan
Prior art keywords
molten metal
crucible
evaporation
electron beam
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4553291A
Other languages
Japanese (ja)
Inventor
Tadashi Yasunaga
正 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4553291A priority Critical patent/JPH04212717A/en
Priority to US07/662,309 priority patent/US5122389A/en
Priority to DE4106579A priority patent/DE4106579A1/en
Publication of JPH04212717A publication Critical patent/JPH04212717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To considerably increase the efficiency of vacuum deposition, to ensure high productivity and to reduce the size of a device even when two or more layers are formed by melting a material to be vacuum-deposited and irradiating the resulting melt with an electron beam. CONSTITUTION:A material to be vacuum-deposited is melted, the resulting melt 8 is allowed to flow down continuously and a prescribed position of the flowing melt 8 is irradiated with an electron beam 7. Vacuum deposition is carried out on a continuously transferred flexible beltlike substrate 30 with flows 9 of vapor generated in the direction of a normal line of the surface of the flowing melt.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は真空蒸着方法および装置
に関し、特に連続して移送される可撓性帯状支持体上に
金属薄膜を真空蒸着法にて形成するための真空蒸着方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum evaporation method and apparatus, and more particularly to a vacuum evaporation method and apparatus for forming a metal thin film on a continuously transferred flexible strip support by vacuum evaporation. .

【0002】0002

【従来の技術】従来、高分子成形物等の基材上に単金属
、合金等の金属薄膜を形成し、磁気記録媒体、薄膜集積
回路、エネルギー変換装置等を作成する各種の薄膜形成
方法が知られているが、連続して移送される可撓性帯状
支持体(以下、ウエブと言う)上に金属薄膜を生産性良
く形成する形成方法としては、真空蒸着方法が有効であ
る。例えば、従来の磁気記録媒体の製造方法としては、
非磁性支持体上に粉末磁性材料を有機バインダー等と共
に塗布、乾燥せしめて磁性層を形成する塗布型製造方法
が広く使用されてきた。
[Prior Art] Conventionally, various thin film forming methods have been used to form magnetic recording media, thin film integrated circuits, energy conversion devices, etc. by forming metal thin films of single metals, alloys, etc. on base materials such as polymer moldings. As is known, a vacuum evaporation method is effective as a forming method for forming a metal thin film with good productivity on a flexible strip-shaped support (hereinafter referred to as a web) that is continuously transported. For example, as a conventional manufacturing method for magnetic recording media,
A coating-type production method has been widely used in which a powder magnetic material is coated on a nonmagnetic support together with an organic binder and dried to form a magnetic layer.

【0003】しかしながら、近年に至り、磁気記録媒体
の記憶容量を高めることが強く要望されており、磁気記
録媒体の磁気エネルギーを高め、磁性層を薄層化するこ
とが必要となってきている。そこで、上記の如き粉末磁
性材料を有機バインダー中に分散せしめた磁性塗布液を
非磁性支持体上に塗布、乾燥させる塗布型の磁気記録媒
体に対して、抗磁力Hc や残留磁束密度Br が大き
く磁性層の厚みを極めて薄くすることができる、非磁性
支持体上に強磁性金属材料からなる金属薄膜を直接被着
形成した強磁性金属薄膜型の磁気記録媒体が使用され始
めている。
However, in recent years, there has been a strong demand for increasing the storage capacity of magnetic recording media, and it has become necessary to increase the magnetic energy of magnetic recording media and to make the magnetic layer thinner. Therefore, the coercive force Hc and the residual magnetic flux density Br are large compared to a coating type magnetic recording medium in which a magnetic coating liquid in which a powder magnetic material as described above is dispersed in an organic binder is coated on a non-magnetic support and dried. 2. Description of the Related Art Ferromagnetic metal thin film type magnetic recording media, in which a metal thin film made of a ferromagnetic metal material is directly deposited on a nonmagnetic support, are beginning to be used, which allows the thickness of the magnetic layer to be extremely thin.

【0004】そして、この様な強磁性金属薄膜型の磁気
記録媒体を製造する方法としては、電解メッキや無電解
メッキ等の湿式方法、更に真空蒸着法、スパッタリング
法、イオンプレーテング法、CVD法等の乾式方法など
があるが、連続して移送されるウエブ上に磁性層を形成
する方法としては、成膜速度や生産性の点から真空蒸着
法が最も適している。
Methods for manufacturing such ferromagnetic metal thin film magnetic recording media include wet methods such as electrolytic plating and electroless plating, as well as vacuum evaporation, sputtering, ion plating, and CVD. Although there are dry methods such as the above, vacuum evaporation is the most suitable method for forming a magnetic layer on a continuously transported web from the viewpoint of film formation speed and productivity.

【0005】図4に従来の真空蒸着装置20の概略を示
す。真空容器32の内部は排気装置33によって10−
4Toor〜10−6Torrの範囲内の圧力に必要に
応じて保持されており、円筒状の冷却キャン24の周側
面に沿って、送り出しロール22から送り出され巻取り
ロール23に巻き取られるポリエチレンテレフタレート
等の高分子材料から成るウエブ30が、前記冷却キャン
24の回転と同期して矢印A方向へ移動搬送されるよう
に構成されている。
FIG. 4 schematically shows a conventional vacuum evaporation apparatus 20. The inside of the vacuum container 32 is heated to 10-
Polyethylene terephthalate or the like is maintained at a pressure in the range of 4 Torr to 10-6 Torr as necessary, and is sent out from the delivery roll 22 and wound up on the take-up roll 23 along the circumferential side of the cylindrical cooling can 24. A web 30 made of a polymeric material is configured to be moved and conveyed in the direction of arrow A in synchronization with the rotation of the cooling can 24.

【0006】前記冷却キャン24の下方には蒸発源21
が配設されており、るつぼ27内の蒸着材料28を電子
ビーム31で加熱、溶融して蒸発蒸気流29を発生させ
ている。そして、この蒸発蒸気流29は前記ウエブ30
に差し向けられ該ウエブ30上に薄膜を形成する。前記
電子ビーム31は、所定幅を有する前記ウエブ30上に
連続的に蒸着を行うため、通常、図5に示すようにウエ
ブ幅方向に走査しながら前記蒸着材料28を加熱してい
る。そこで、前記るつぼ27は少なくともウエブ幅方向
に平行な容器幅を有している。
An evaporation source 21 is located below the cooling can 24.
is provided, and the vapor deposition material 28 in the crucible 27 is heated and melted by an electron beam 31 to generate an evaporation vapor flow 29. This evaporated vapor flow 29 is then transferred to the web 30.
to form a thin film on the web 30. In order to perform continuous vapor deposition on the web 30 having a predetermined width, the electron beam 31 normally heats the vapor deposition material 28 while scanning in the web width direction as shown in FIG. Therefore, the crucible 27 has a container width that is at least parallel to the web width direction.

【0007】ところで、前記蒸発源21は、一般に前記
冷却キャン24の中心軸26と一致しない位置に配設し
て、成膜結晶構造が前記ウエブ30上に斜めに形成でき
るようにしている。更に、この様な真空蒸着装置20に
よって強磁性金属薄膜型の磁気記録媒体を製造しようと
する場合には、強磁性金属材料を加熱、溶融して得られ
た前記蒸発蒸気流29の一部成分をマスク25で遮断す
ることにより、前記ウエブ30上に成膜される磁性層の
抗磁力Hcや角型比SQといった磁気特性が向上するこ
とが知られている。
By the way, the evaporation source 21 is generally arranged at a position that does not coincide with the central axis 26 of the cooling can 24 so that the film-forming crystal structure can be formed obliquely on the web 30. Furthermore, when manufacturing a ferromagnetic metal thin film type magnetic recording medium using such a vacuum evaporation apparatus 20, a part of the evaporated vapor flow 29 obtained by heating and melting the ferromagnetic metal material It is known that the magnetic properties of the magnetic layer formed on the web 30, such as the coercive force Hc and the squareness ratio SQ, can be improved by blocking the magnetic field with the mask 25.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
如き蒸発源によって得られる蒸着材料の蒸発蒸気流は、
溶融した蒸着材料の液面の法線である鉛直方向に最も密
度が高くcosn αで表される密度分布を有している
ので、所定の入射角度で前記蒸発蒸気流をウエブ30上
に差し向けようとすると、前記蒸発源が前記冷却キャン
24の中心軸26と一致しない位置に配設される従来の
蒸着装置では、前記蒸発蒸気流の指向性の中心軸(蒸発
蒸気流の単位立体角当たりの蒸気流密度が最大である方
向)が前記ウエブ30上から外れてしまい、前記蒸発蒸
気流のごく一部がウエブ上に蒸着されるにすぎず、更に
その一部成分をマスクで遮断されてしまう。
[Problems to be Solved by the Invention] However, the evaporation vapor flow of the evaporation material obtained by the above-mentioned evaporation source is
Since the evaporated vapor flow has a density distribution expressed by cosn α, with the highest density in the vertical direction, which is the normal to the liquid surface of the molten vapor deposition material, the evaporated vapor flow is directed onto the web 30 at a predetermined incident angle. In a conventional vapor deposition apparatus in which the evaporation source is disposed at a position that does not coincide with the central axis 26 of the cooling can 24, (the direction in which the vapor flow density is maximum) is deviated from above the web 30, and only a small portion of the evaporated vapor flow is deposited on the web, and furthermore, a part of the vapor flow is blocked by the mask. Put it away.

【0009】このため、上記の如き連続して移送される
ウエブ上に蒸着材料を蒸着する従来の真空蒸着方法では
、ウエブ上に蒸着される蒸着材料の蒸着効率が著しく低
いという問題を有しており、いくつかの解決策が提案さ
れているが、大幅な蒸着効率向上は望めなかった。従っ
て、例えばCo、Co合金等の比較的高価な非鉄金属を
蒸着材料として使用する場合の材料費のコストダウンや
生産速度の向上を図ることに支障を来たし、生産性が良
くないという問題があった。
[0009] For this reason, the conventional vacuum evaporation method in which the evaporation material is deposited onto a web that is continuously transferred as described above has the problem that the evaporation efficiency of the evaporation material deposited onto the web is extremely low. Several solutions have been proposed, but no significant improvement in deposition efficiency could be expected. Therefore, when relatively expensive nonferrous metals such as Co and Co alloys are used as vapor deposition materials, it is difficult to reduce material costs and improve production speed, and there is a problem that productivity is poor. Ta.

【0010】一方、二層の磁性層やその他の蒸着膜層を
一つの蒸着工程により形成しようとすると、従来におい
ては冷却キャンを複数設置する必要があった。この理由
は、上述のように一つのキャンを用いて所定の入射角度
で前記蒸発蒸気流をウエブ30上に差し向けようとする
場合において、その条件にあった位置はそれほど広範囲
になく、この範囲に複数のるつぼを設置して良好な2層
以上の蒸着を達成することはきわめて困難であり、冷却
キャンを複数設けるざるを得なかった。したがって、2
層以上の蒸着を行うには比較的大きなスペースを必要と
していた。
On the other hand, in order to form two magnetic layers or other vapor deposited film layers by one vapor deposition process, it has conventionally been necessary to install a plurality of cooling cans. The reason for this is that when trying to direct the evaporated vapor flow onto the web 30 at a predetermined angle of incidence using one can as described above, there are not so many positions that meet that condition; It is extremely difficult to achieve good vapor deposition of two or more layers by installing multiple crucibles in the process, and it is necessary to install multiple cooling cans. Therefore, 2
Deposition of more than one layer requires a relatively large space.

【0011】そこで、本発明の目的は上記課題を解決す
ることにあり、蒸着材料の蒸着効率を大幅に向上させる
ことが可能で生産性がよく、かつ2層以上の蒸着を行う
場合でも装置の大型化を回避でき、装置の小型化をも可
能にする真空蒸着方法及び装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems.It is possible to significantly improve the vapor deposition efficiency of the vapor deposition material, to improve productivity, and to reduce the cost of the apparatus even when vapor depositing two or more layers. It is an object of the present invention to provide a vacuum evaporation method and apparatus that can avoid increasing the size of the apparatus and also enable miniaturization of the apparatus.

【0012】0012

【課題を解決するための手段】本発明に係る上記目的は
、予め溶融した蒸着材料から成る溶湯を下方へ連続的に
流すと共に、流動中の該溶湯の所定位置に電子ビームを
照射し、該流動溶湯表面の法線方向に蒸発させた蒸発蒸
気流によって、連続して移送される可撓性帯状支持体上
に前記蒸着材料を蒸着することを特徴とする真空蒸着方
法により達成される。
[Means for Solving the Problems] The above object of the present invention is to continuously flow a molten metal made of a pre-melted vapor deposition material downward and to irradiate a predetermined position of the flowing molten metal with an electron beam. This is achieved by a vacuum evaporation method characterized in that the evaporation material is evaporated onto a flexible strip-shaped support that is continuously transported by a stream of evaporated vapor evaporated in the normal direction to the surface of the fluidized molten metal.

【0013】又、他の手段によれば、本発明に係る上記
目的は、蒸着材料を溶融する加熱手段を備えて下方へ連
続的に溶湯を流出する第一のるつぼと、該第一のるつぼ
から流出した溶湯を所定の傾斜角度を以て一定方向に流
動させるガイド部材と、該ガイド部材に沿って流れ落ち
る溶湯を受容する第二のるつぼと、電子ビーム発生手段
とから成る蒸発源を有する真空蒸着装置であって、前記
ガイド部材に沿って流れる溶湯の所定位置に電子ビーム
を照射し、該流動溶湯表面の法線方向に蒸発させた蒸発
蒸気流によって、連続して移送される可撓性帯状支持体
上に前記蒸着材料を蒸着することを特徴とする真空蒸着
装置により達成される。
According to another means, the above object of the present invention is achieved by providing a first crucible that is equipped with a heating means for melting the vapor deposition material and that continuously flows out the molten metal downward; A vacuum evaporation apparatus having an evaporation source consisting of a guide member that allows the molten metal flowing out from the guide member to flow in a fixed direction at a predetermined inclination angle, a second crucible that receives the molten metal that flows down along the guide member, and an electron beam generating means. A flexible band-shaped support that is continuously transported by an evaporative vapor flow that is irradiated with an electron beam to a predetermined position of the molten metal flowing along the guide member and evaporated in the normal direction of the surface of the flowing molten metal. This is achieved by a vacuum evaporation apparatus characterized in that the evaporation material is evaporated onto the body.

【0014】また、本発明に係る上記目的は、予め溶融
した蒸着材料から成る溶湯を斜め下方へ連続的に流した
溶湯表面に電子ビームを照射して、該溶湯表面の法線方
向に発生させた蒸発蒸気流と、水平の溶湯表面に電子ビ
ームを照射してほぼ鉛直方向に発生させた蒸発蒸気流と
を、連続して移送される可撓性帯状支持体上の別々の箇
所に同時に照射することにより、複数の蒸着層を一度に
形成することを特徴とする真空蒸着方法によっても達成
される。
Furthermore, the above object of the present invention is to irradiate the surface of a molten metal made of pre-melted vapor deposition material flowing diagonally downward and generate electron beams in the normal direction of the surface of the molten metal. The evaporative vapor flow generated by irradiating the horizontal molten metal surface with an electron beam and the evaporative vapor flow generated almost vertically by irradiating the horizontal molten metal surface are simultaneously irradiated at different locations on a continuously transported flexible strip support. This can also be achieved by a vacuum evaporation method characterized by forming a plurality of evaporation layers at once.

【0015】さらに、本発明に係る上記目的は、蒸着材
料を溶融する加熱手段を備えて下方へ連続的に溶湯を流
出する第一のるつぼと、該第一のるつぼから流出した溶
湯を冷却キャン上で連続移送される可撓性帯状支持体に
対面するように傾斜したガイド部材と、水平な溶湯を前
記可撓性帯状支持体に対面させることの出来る他のるつ
ぼと、複数の電子ビーム発生手段とを備えており、前記
ガイド部材上の傾斜した溶湯表面から発生させた蒸発蒸
気流と、前記他のるつぼの溶湯表面から発生させた蒸発
蒸気流とを、前記可撓性帯状支持体上の別々の箇所に同
時に照射して、複数の蒸着層を一度に形成するように構
成したことを特徴とする真空蒸着装置によるり達成する
ことができる。
Furthermore, the above object of the present invention is to provide a first crucible that is equipped with a heating means for melting the vapor deposition material and that continuously flows out the molten metal downward, and a cooling can for the molten metal that flows out from the first crucible. a guide member that is inclined so as to face the flexible band-shaped support that is continuously transferred thereon; another crucible that allows the horizontal molten metal to face the flexible band-shaped support; and a plurality of electron beam generators. means for directing the evaporated vapor flow generated from the inclined molten metal surface on the guide member and the evaporated vapor flow generated from the molten metal surface of the other crucible onto the flexible strip-shaped support. This can be achieved by using a vacuum evaporation apparatus characterized in that it is configured to form a plurality of evaporated layers at once by irradiating different parts of the evaporation layer at the same time.

【0016】[0016]

【実施態様】以下、添付図面に基づいて本発明の実施態
様を詳細に説明する。図1は本発明を実施するための一
実施態様に基づく真空蒸着装置の要部拡大断面図である
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings. FIG. 1 is an enlarged sectional view of essential parts of a vacuum evaporation apparatus based on one embodiment of the present invention.

【0017】真空容器内において、ウエブ30が円筒状
の冷却キャン24の周側面に沿って走行案内されており
、該冷却キャン24の下方に本発明に基づく蒸着源1が
配設されている。前記蒸着源1は、例えばFe,Co,
Ni等の強磁性金属から成る蒸着材料を溶融する予備加
熱手段を備えた第一のるつぼ2と、該第一のるつぼ2か
ら連続して流出する蒸着材料の溶湯8を所定の傾斜角度
を以て一定方向に流動させるガイド部材4と、該ガイド
部材4に沿って流れ落ちる溶湯8を受容する第二のるつ
ぼ5と、図示しない電子ビーム発生手段とから構成され
ている。
In the vacuum container, a web 30 is guided along the circumferential side of a cylindrical cooling can 24, and the vapor deposition source 1 according to the present invention is disposed below the cooling can 24. The vapor deposition source 1 is made of, for example, Fe, Co,
A first crucible 2 equipped with preheating means for melting a vapor deposition material made of a ferromagnetic metal such as Ni, and a molten metal 8 of the vapor deposition material continuously flowing out from the first crucible 2 at a predetermined angle of inclination. It is comprised of a guide member 4 that causes the melt to flow in the same direction, a second crucible 5 that receives the molten metal 8 that flows down along the guide member 4, and an electron beam generating means (not shown).

【0018】前記第一のるつぼ2は、容器幅方向に延び
る回転軸線を中心に揺動可能に構成されている耐熱容器
である。そこで、前記第一のるつぼ2の近傍に設けられ
た電子源フィラメント3から照射された電子ビーム6に
よって加熱、溶融された蒸着材料の溶湯8は、該第一の
るつぼ2を適宜揺動させて傾けることによって、下方に
揺動される前記第一のるつぼ2の容器上縁部に容器幅方
向に沿って設けられている切り欠き部よりほぼ容器幅全
体に亘って均一に連続して流出される。尚、前記電子ビ
ーム6は、前記溶湯8を予備加熱して流動可能に溶融す
るだけであり、該溶湯8を蒸発させ膜形成に寄与するほ
どの蒸気流は実質的に生じさせない程度のビーム強度に
とどめるものである。
The first crucible 2 is a heat-resistant container configured to be swingable about a rotation axis extending in the width direction of the container. Therefore, the molten metal 8 of the vapor deposition material heated and melted by the electron beam 6 irradiated from the electron source filament 3 provided near the first crucible 2 is heated and melted by appropriately shaking the first crucible 2. By tilting, the first crucible 2, which is swung downward, is uniformly and continuously flowed out over almost the entire width of the container through a notch provided along the width direction of the container at the upper edge of the container. Ru. Note that the electron beam 6 only preheats the molten metal 8 and melts it so that it can flow, and the beam intensity is such that it does not substantially generate a vapor flow that evaporates the molten metal 8 and contributes to film formation. It should be kept at .

【0019】前記ガイド部材4は、少なくともその法線
が前記ウエブ30の幅方向と直交し、前記冷却キャン2
4の周側面に対向する傾斜底面を有する幅広溝を有して
おり、前記第一のるつぼ2から流出した溶湯8を所定の
傾斜角度を以て流動させる。また、該ガイド部材4は、
その傾斜角度を任意に変更可能に構成されている。前記
第二のるつぼ5は、前記ガイド部材4の下端部から帯状
に連続して流れ落ちる前記溶湯8を受容する耐熱容器で
あり、前記溶湯8の流動幅に対して十分な容器幅を有し
ている。
The guide member 4 has at least its normal line perpendicular to the width direction of the web 30, and the cooling can 2
It has a wide groove having an inclined bottom surface facing the circumferential side of the crucible 4, and allows the molten metal 8 flowing out from the first crucible 2 to flow at a predetermined angle of inclination. Further, the guide member 4 is
The inclination angle can be changed arbitrarily. The second crucible 5 is a heat-resistant container that receives the molten metal 8 that continuously flows down in a band shape from the lower end of the guide member 4, and has a container width sufficient for the flow width of the molten metal 8. There is.

【0020】また、前記第一のるつぼ2、ガイド部材4
及び第二のるつぼ5は、それぞれMgO,Al2 O 
3,CaO,ZrO 等を含んだ耐火物から出来ている
。そこで、上記の如き蒸発源1により前記ウエブ30上
に所望の金属薄膜を形成する際には、前記ガイド部材4
の幅広溝内を帯状に連続して流動している前記溶湯8の
所定位置に電子ビーム7を溝幅方向に走査しながら照射
する。ここで、該電子ビーム7は10kV以上の加速電
圧を有することが望ましい。すると、前記電子ビーム7
を照射された前記溶湯8の表面から蒸発蒸気流9が発生
し、該ガイド部材4の対向位置に走行案内されているウ
エブ30上に金属薄膜を形成する。
[0020] Also, the first crucible 2 and the guide member 4
and the second crucible 5 are MgO and Al2O, respectively.
3. Made of refractory containing CaO, ZrO, etc. Therefore, when forming a desired metal thin film on the web 30 using the evaporation source 1 as described above, the guide member 4
The electron beam 7 is irradiated to a predetermined position of the molten metal 8 which is continuously flowing in a band shape in the wide groove while scanning in the width direction of the groove. Here, it is desirable that the electron beam 7 has an accelerating voltage of 10 kV or more. Then, the electron beam 7
An evaporated vapor flow 9 is generated from the surface of the molten metal 8 irradiated with the molten metal 8, and a thin metal film is formed on the web 30 that is guided to run in a position opposite to the guide member 4.

【0021】この時、前記蒸発蒸気流9は、前記溶湯8
の液表面の法線方向に最も密度が高い密度分布を有する
ように蒸発するので、所定の傾斜角度を以て流動させら
れている前記溶湯8の表面から蒸発する前記蒸発蒸気流
9の指向性の中心軸は、前記ガイド部材4の傾斜角度と
同じ角度だけ鉛直方向から傾くことになる。即ち、前記
ガイド部材4の傾斜角度を適宜変更することにより、前
記蒸発蒸気流9の指向性の中心軸を任意に傾けることが
できる。
[0021] At this time, the evaporated vapor flow 9 flows into the molten metal 8.
Since the molten metal 8 evaporates with the highest density distribution in the normal direction of the liquid surface, the directivity center of the evaporated vapor flow 9 evaporates from the surface of the molten metal 8 that is flowing at a predetermined angle of inclination. The axis is inclined from the vertical direction by the same angle as the inclination angle of the guide member 4. That is, by appropriately changing the inclination angle of the guide member 4, the central axis of the directivity of the evaporated vapor flow 9 can be arbitrarily inclined.

【0022】従って、前記蒸発蒸気流9の指向性の中心
軸を前記ウエブ30に対して所望の入射角度に差し向け
ることができ、ウエブ30に対して所定の入射角度を有
する前記蒸発蒸気流9の成膜に与かる部分を拡大するこ
とができるので、前記ウエブ30上に蒸着される蒸着材
料の蒸着効率を高めることができる。また、前記蒸発蒸
気流9の指向性の中心軸を任意に傾けることができるの
で、特に強磁性金属薄膜型の磁気記録媒体を製造しよう
とする場合には、成膜される磁性層の抗磁力Hcや角型
比SQといった磁気特性が最適となる様に、前記ウエブ
30への蒸発蒸気流の入射角を任意に設定することが容
易となり、磁気特性の良好な磁気記録媒体を得ることが
できる。
Therefore, the central axis of the directivity of the evaporated vapor flow 9 can be directed at a desired incident angle with respect to the web 30, and the evaporated vapor flow 9 having a predetermined incident angle with respect to the web 30 can be directed. Since the portion involved in film formation can be expanded, the deposition efficiency of the deposition material deposited on the web 30 can be increased. In addition, since the central axis of the directivity of the evaporated vapor flow 9 can be tilted arbitrarily, the coercive force of the magnetic layer to be formed is particularly useful when manufacturing a ferromagnetic metal thin film type magnetic recording medium. It becomes easy to arbitrarily set the incident angle of the evaporated vapor flow to the web 30 so that magnetic properties such as Hc and squareness ratio SQ are optimized, and a magnetic recording medium with good magnetic properties can be obtained. .

【0023】図2は、本発明を実施するための他の実施
態様に基づく蒸発源を有する真空蒸着装置の要部拡大断
面図である。蒸発源14は、予備加熱手段を備えた第一
のるつぼ15と、該第一のるつぼ15から連続して流出
する蒸着材料の溶湯8を所定の傾斜角度を以て一定方向
に流動させるガイド部材16と、該ガイド部材16に沿
って流れ落ちる溶湯8を受容する第二のるつぼ17と、
図示しない電子ビーム発生手段とから構成されている。 前記第一のるつぼ15は、少なくとも前記ウエブ30の
幅方向に平行で前記ウエブ30の幅にほぼ等しい容器幅
を有する耐熱容器である。そして、その前記ウエブ30
に対峙する側の側壁には、容器幅方向に沿ってスリット
開口19が設けられている。
FIG. 2 is an enlarged sectional view of a main part of a vacuum evaporation apparatus having an evaporation source according to another embodiment of the present invention. The evaporation source 14 includes a first crucible 15 equipped with a preheating means, and a guide member 16 that causes the molten metal 8 of the vapor deposition material continuously flowing out from the first crucible 15 to flow in a constant direction at a predetermined inclination angle. , a second crucible 17 that receives the molten metal 8 flowing down along the guide member 16;
It is composed of electron beam generating means (not shown). The first crucible 15 is a heat-resistant container having a container width that is at least parallel to the width direction of the web 30 and approximately equal to the width of the web 30. And the web 30
A slit opening 19 is provided along the width direction of the container in the side wall facing the container.

【0024】そこで、前記第一のるつぼ15の近傍に設
けられた電子源フィラメント3から照射された電子ビー
ム6によって加熱、溶融された蒸着材料の溶湯8は、前
記スリット開口19よりほぼ容器幅全体に亘って均一に
連続して流出され、該スリット開口19に連続して配設
されたガイド部材16の幅広溝に沿って流れ落ちる。該
ガイド部材16の幅広溝は、少なくともその法線が前記
ウエブ30の幅方向と直交し、前記冷却キャン24の周
側面に対向する傾斜底面を有しており、前記スリット開
口19から流出した溶湯8を所定の傾斜角度を以て流動
させる。また、前記ガイド部材16の幅広溝は、前記第
一のるつぼ15の容器幅及び前記ウエブ30の幅とほぼ
等しい溝幅を有しており、該幅広溝内を流動する前記溶
湯8は、前記ウエブ30の幅とほぼ等しい幅を有する帯
状に連続して流れ落ち、第二のるつぼ17に受容される
。又、該ガイド部材16の傾斜角度は、任意に変更可能
に構成されている。
Therefore, the molten metal 8 of the vapor deposition material heated and melted by the electron beam 6 irradiated from the electron source filament 3 provided near the first crucible 15 is spread over almost the entire width of the container from the slit opening 19. The liquid flows uniformly and continuously over the slit opening 19, and flows down along the wide groove of the guide member 16 that is continuously disposed in the slit opening 19. The wide groove of the guide member 16 has an inclined bottom surface whose normal line is at least perpendicular to the width direction of the web 30 and which faces the circumferential side of the cooling can 24. 8 is made to flow at a predetermined angle of inclination. Further, the wide groove of the guide member 16 has a groove width that is approximately equal to the container width of the first crucible 15 and the width of the web 30, and the molten metal 8 flowing in the wide groove is It flows down continuously in a strip having a width approximately equal to the width of the web 30 and is received in the second crucible 17 . Further, the inclination angle of the guide member 16 is configured to be changeable as desired.

【0025】そこで、本実施態様の蒸発源14によれば
、前記実施態様に示した第一のるつぼ2の様に容器を適
宜揺動させなくとも、前記溶湯8を一定量ずつ流動させ
ることができる。また、前記蒸発源1と同様に、前記ガ
イド部材16の傾斜角度を適宜設定することにより、該
ガイド部材16の幅広溝内を帯状に連続して流動してい
る前記溶湯8の所定位置に電子ビーム7を溝幅方向に走
査しながら照射して蒸発させる前記蒸発蒸気流9の指向
性の中心軸を任意に傾けることができる。
Therefore, according to the evaporation source 14 of this embodiment, the molten metal 8 can be made to flow in a fixed amount at a time without appropriately shaking the container as in the first crucible 2 shown in the above embodiment. can. Similarly to the evaporation source 1, by appropriately setting the inclination angle of the guide member 16, electrons can be directed to a predetermined position of the molten metal 8 that is continuously flowing in a band shape within the wide groove of the guide member 16. The central axis of the directivity of the evaporative vapor flow 9 that is irradiated and evaporated while scanning the beam 7 in the groove width direction can be arbitrarily tilted.

【0026】従って、前記ウエブ30上に蒸着される蒸
着材料の蒸着効率を高めることができ、特に強磁性金属
薄膜型の磁気記録媒体を製造しようとする場合には、磁
気特性の良好な磁気記録媒体を得ることができる。
Therefore, the deposition efficiency of the deposition material deposited on the web 30 can be increased, and especially when manufacturing a ferromagnetic metal thin film type magnetic recording medium, a magnetic recording medium with good magnetic properties can be obtained. medium can be obtained.

【0027】更に、本発明の真空蒸着方法によれば、前
記蒸発蒸気流9の指向性の中心軸を水平方向に向けるこ
とも可能である。蒸着装置の構造、例えば、冷却キャン
やウエブの搬送系等の配置関係、更には他の設備との兼
ね合いにより、るつぼの位置がほぼ上下に並べなければ
ならないような場合も生じる。このような場合、図3に
示す蒸発源10の様に、少なくとも前記ウエブ30の幅
方向に平行で前記ウエブ30の幅にほぼ等しい容器幅を
有すると共に、該容器幅方向に延びる回転軸線を中心に
揺動可能に構成されている耐熱容器である第一のるつぼ
11を適宜揺動させて傾ける。そして、該第一のるつぼ
11の近傍に設けられた電子源フィラメント3から照射
された電子ビーム6によって加熱、溶融された蒸着材料
の溶湯8を、下方に揺動される前記第一のるつぼ11の
容器上縁部に容器幅方向に沿って設けられている切り欠
き部よりほぼ容器幅全体に亘って均一に連続して自然落
下させ、第二のるつぼ12に受容する。そこで、帯状に
落下している前記溶湯8の所定位置に電子ビーム7を水
平方向に走査しながら照射すれば、指向性の中心軸が水
平方向に向いた蒸発蒸気流9を得ることができる。
Furthermore, according to the vacuum deposition method of the present invention, it is also possible to direct the central axis of the directivity of the evaporated vapor flow 9 in the horizontal direction. Depending on the structure of the vapor deposition apparatus, for example, the arrangement of cooling cans, web conveyance systems, etc., as well as the balance with other equipment, there may be cases where the crucibles must be arranged almost vertically. In such a case, like the evaporation source 10 shown in FIG. The first crucible 11, which is a heat-resistant container configured to be swingable, is tilted by swinging as appropriate. Then, the molten metal 8 of the vapor deposition material heated and melted by the electron beam 6 irradiated from the electron source filament 3 provided near the first crucible 11 is transferred to the first crucible 11 which is swung downward. It is allowed to fall evenly and continuously over substantially the entire width of the container from a notch provided along the width direction of the container at the upper edge of the container, and is received in the second crucible 12 . Therefore, by irradiating a predetermined position of the molten metal 8 falling in a band shape with the electron beam 7 while scanning it in the horizontal direction, it is possible to obtain an evaporated vapor flow 9 whose central axis of directivity is oriented in the horizontal direction.

【0028】前記実施態様においては蒸発源が一つの場
合について述べたが、本発明はこのような形態に限定さ
れるものではなく、例えば図6および図7に示すように
することもできる。なお、図6および図7における図中
の符号については、同じ構成要素については同符合を付
して説明を適宜省略する。
[0028] In the embodiment described above, the case where there is one evaporation source has been described, but the present invention is not limited to this embodiment, and can also be configured as shown in FIGS. 6 and 7, for example. Note that with regard to the reference numerals in FIGS. 6 and 7, the same components are given the same reference numerals, and the description thereof will be omitted as appropriate.

【0029】図6に示した装置は、下層である第1蒸着
層40を形成する蒸発源は図2に示した蒸発源と同じ構
造である。すなわち、予め溶融した蒸着材料から成る溶
湯8を斜め下方へ連続的に流した溶湯表面に、図中の左
斜め上方から電子ビーム7を照射して、該溶湯表面の法
線方向に発生させた蒸発蒸気流9により前記第1蒸着層
40を形成する。また、第二のるつぼ17とほぼ並んだ
位置に設置した第三のるつぼ27により、上層である第
2蒸着層50を形成する。すなわち、前記第三のるつぼ
27内における蒸着材料28の水平の溶湯表面に電子ビ
ーム31を照射してほぼ鉛直方向に発生させた蒸発蒸気
流29により、前記第2蒸着層50を形成する。なお、
前記蒸発蒸気流9と前記蒸発蒸気流29とを隔てるため
に、中央のマスク25が適宜設けられている。
In the apparatus shown in FIG. 6, the evaporation source for forming the first vapor deposited layer 40, which is the lower layer, has the same structure as the evaporation source shown in FIG. That is, the surface of the molten metal 8 made of pre-melted vapor deposition material was continuously flowed diagonally downward, and the electron beam 7 was irradiated from diagonally above the left in the figure to generate electron beams in the normal direction of the molten metal surface. The first vapor deposition layer 40 is formed by the vapor flow 9 . Further, a second vapor deposition layer 50, which is an upper layer, is formed using a third crucible 27 installed at a position substantially parallel to the second crucible 17. That is, the second vapor deposition layer 50 is formed by the evaporation vapor flow 29 generated in a substantially vertical direction by irradiating the horizontal molten metal surface of the vapor deposition material 28 in the third crucible 27 with an electron beam 31 . In addition,
A central mask 25 is optionally provided to separate the vaporized vapor stream 9 and the vaporized vapor stream 29.

【0030】このように一つの冷却キャン24上を連続
して移送されるウェブ30に二つ以上の蒸発蒸気流を適
宜離れた箇所で同時に照射して、複数の蒸着層を一度に
形成することができる。これは、従来において例えば前
記第二のるつぼ17と第三のるつぼ27と併設した構造
を用いて、前記第1蒸着層40と前記第2蒸着層50と
を同時に形成しようとした場合に、効率のよい入射角度
で前記各蒸発蒸気流をウエブ30上に差し向けようとす
る場合に、両蒸着層を効率良く形成できる条件を満足で
きるるつぼ設置位置は狭くほとんど重なってしまい、る
つぼ設置の自由度も殆どない。しかし、本発明によれば
、図6に示すごとく蒸発蒸気流の照射角度を自由度は飛
躍的に向上し、複数のるつぼを設置して良好な2層以上
の蒸着を達成することができ、従来のように冷却キャン
を複数設ける必要がなく、蒸着材料の蒸着効率を低下さ
せずに、かつ2層以上の蒸着を行うことができ、装置の
大型化を回避することができる。なお、本実施態様の場
合、前記第1蒸着層40と前記第2蒸着層50との蒸着
金属材料はことなったものを用いることができる。
[0030] In this way, the web 30 continuously transferred on one cooling can 24 is simultaneously irradiated with two or more evaporated vapor streams at appropriately separated locations to form a plurality of vapor deposited layers at once. I can do it. This is because conventionally, for example, when trying to simultaneously form the first vapor deposition layer 40 and the second vapor deposition layer 50 by using a structure in which the second crucible 17 and the third crucible 27 are installed together, the efficiency is reduced. When trying to direct each of the evaporated vapor streams onto the web 30 at a good incident angle, the crucible installation positions that satisfy the conditions for efficiently forming both evaporation layers are narrow and almost overlap, which reduces the degree of freedom in crucible installation. There are hardly any. However, according to the present invention, as shown in FIG. 6, the degree of freedom in controlling the irradiation angle of the evaporated vapor flow is dramatically improved, and multiple crucibles can be installed to achieve good vapor deposition of two or more layers. There is no need to provide a plurality of cooling cans as in the conventional method, and two or more layers can be deposited without reducing the deposition efficiency of the deposition material, and it is possible to avoid increasing the size of the apparatus. In the case of this embodiment, the first vapor deposited layer 40 and the second vapor deposited layer 50 may be made of different vapor deposited metal materials.

【0031】図7に示した装置の場合には、図6に示し
た装置と相異する点は一か所だけであり、その他は全く
同じである。すなわち、図6における前記第三のるつぼ
27を無くして前記第二のるつぼ17を兼用する構造で
ある。この装置は各蒸着層の蒸着材料が同じ場合に向い
ており、図6に示した装置に比べても前記第三のるつぼ
27を省略できることから、装置の小型化の面ではさら
に前進させることができる。
The device shown in FIG. 7 differs from the device shown in FIG. 6 in only one point, and is otherwise completely the same. That is, this is a structure in which the third crucible 27 in FIG. 6 is eliminated and the second crucible 17 is also used. This device is suitable for cases in which the vapor deposition material for each vapor deposition layer is the same, and since the third crucible 27 can be omitted compared to the device shown in FIG. 6, further progress can be made in terms of miniaturization of the device. can.

【0032】図6及び図7に示した装置においては、二
つの蒸発蒸気流を発生させる構成としたが、この形態に
限るものではなく、本発明は三つ以上の蒸発蒸気流を発
生させることができる。この場合、例えば図6に示した
左側の蒸発源と同様な蒸発源を前記第三のるつぼ27の
右側に設置することで、第3蒸着層を形成することがで
きる。又、例えば図7に示した左側の蒸発源と同様な蒸
発源を右側に設置することで、第1と第2蒸着層の蒸着
材料と違った第3及び第4蒸着層を形成することができ
る。
Although the apparatus shown in FIGS. 6 and 7 is configured to generate two evaporative vapor streams, the present invention is not limited to this configuration, and the present invention can generate three or more evaporative vapor streams. I can do it. In this case, for example, by installing an evaporation source similar to the evaporation source on the left side shown in FIG. 6 on the right side of the third crucible 27, the third evaporation layer can be formed. Furthermore, for example, by installing an evaporation source similar to the evaporation source on the left side shown in FIG. 7 on the right side, it is possible to form third and fourth evaporation layers that are different from the evaporation materials of the first and second evaporation layers. can.

【0033】尚、上記各実施態様においては、蒸着材料
を加熱、溶融するための予備加熱手段として電子ビーム
加熱を用いたが、本発明はこれに限定するものではなく
、例えば抵抗加熱、誘導加熱等の他の加熱手段を用いる
こともできる。又、本発明の真空蒸着方法は強磁性金属
薄膜を得るものに限らず電導膜やSi薄膜といった種々
の薄膜を得ることができる。更に、上記の如き各るつぼ
及びガイド部材の形状は上記実施態様の形状に限るもの
ではなく、種々の形状を採りうることは勿論である。
In each of the embodiments described above, electron beam heating is used as a preheating means for heating and melting the vapor deposition material, but the present invention is not limited to this. For example, resistance heating, induction heating, etc. Other heating means can also be used. Further, the vacuum evaporation method of the present invention is not limited to obtaining a ferromagnetic metal thin film, but can also obtain various thin films such as a conductive film and a Si thin film. Further, the shapes of the crucibles and guide members as described above are not limited to the shapes of the embodiments described above, and of course they can take various shapes.

【0034】[0034]

【発明の効果】本発明によれば、予め溶融した蒸着材料
から成る溶湯を下方へ連続的に流すと共に、流動中の該
溶湯の所定位置に電子ビームを照射し、該流動溶湯表面
の法線方向に蒸発させた蒸発蒸気流によって、連続して
移送される可撓性帯状支持体上に前記蒸着材料を蒸着す
る。
According to the present invention, a molten metal made of pre-melted vapor deposition material is continuously flowed downward, and an electron beam is irradiated to a predetermined position of the flowing molten metal, and the normal line of the surface of the flowing molten metal is The vapor deposition material is deposited onto a flexible strip support that is continuously transported by a directional vapor stream.

【0035】そこで、前記溶湯の流動方向を適宜傾斜さ
せることにより、該流動溶湯表面の法線方向に蒸発する
蒸発蒸気流の指向性の中心軸を前記可撓性帯状支持体に
対して所定の入射角度で差し向けることができ、前記可
撓性帯状支持体に対して所定の入射角度を有する前記蒸
発蒸気流の成膜に与かる部分を拡大することができるの
で、前記可撓性帯状支持体上に蒸着される蒸着材料の蒸
着効率を高めることができる。また、前記蒸発蒸気流の
指向性の中心軸を任意の方向に傾けることができるので
、例えば強磁性金属薄膜型の磁性層を前記可撓性帯状支
持体上に蒸着する際などには、該磁性層の磁気特性が最
適となるように蒸発蒸気流の入射角を任意に設定するこ
とが容易となり、磁気特性の良好な磁気記録媒体を得る
ことができる。従って、前記可撓性帯状支持体上に蒸着
される蒸着材料の蒸着効率が高まることにより該蒸着材
料の無駄が減ると共に、該可撓性帯状支持体の移送速度
を速めることができるので、生産性が良好で、且つ良質
の薄膜が得られる良好な真空蒸着方法及び装置を提供す
ることができる。
Therefore, by appropriately inclining the flowing direction of the molten metal, the central axis of the directivity of the evaporated vapor flow evaporating in the normal direction to the surface of the flowing molten metal can be set at a predetermined angle with respect to the flexible band-shaped support. The flexible strip support can be directed at an angle of incidence to enlarge the part of the evaporated vapor flow that has a predetermined angle of incidence with respect to the flexible strip support. The vapor deposition efficiency of the vapor deposition material deposited on the body can be increased. In addition, since the central axis of the directivity of the evaporated vapor flow can be tilted in any direction, for example, when depositing a ferromagnetic metal thin film type magnetic layer on the flexible strip-shaped support, It becomes easy to arbitrarily set the incident angle of the evaporated vapor flow so that the magnetic properties of the magnetic layer are optimized, and a magnetic recording medium with good magnetic properties can be obtained. Therefore, the vapor deposition efficiency of the vapor deposition material deposited on the flexible strip-shaped support is increased, which reduces waste of the vapor-deposition material, and the transfer speed of the flexible strip-shaped support can be increased. Accordingly, it is possible to provide a vacuum deposition method and apparatus that can provide a thin film with good properties and high quality.

【0036】また、本発明によれば、蒸発蒸気流の向き
を所望に設定できるので、一つの冷却キャン上を連続し
て移送される前記可撓性帯状支持体に二つ以上の蒸発蒸
気流を適宜離れた箇所で同時に照射でき、複数の蒸着層
を一度に形成することができる。したがって、従来にお
いては効率のよい入射角度で複数の蒸発蒸気流を前記可
撓性帯状支持体に差し向けようとする場合に、各蒸着層
を効率良く形成できる条件を満足できるるつぼ設置位置
は狭くるつぼ設置の自由度が殆どなかったのに対し、本
発明によれば、蒸発蒸気流の照射角度を自由度は飛躍的
に向上し、一つの冷却キャンに対して、複数のるつぼを
設置して良好な複数層の蒸着を達成することができ、蒸
着材料の蒸着効率を低下させずに、かつ2層以上の蒸着
を行うことができて装置の大型化を回避することができ
る。
Further, according to the present invention, since the direction of the evaporative vapor flow can be set as desired, two or more evaporative vapor flows can be directed to the flexible strip support that is continuously transferred on one cooling can. can be irradiated simultaneously at suitably distant locations, and multiple vapor deposited layers can be formed at once. Therefore, conventionally, when trying to direct multiple evaporated vapor streams to the flexible strip support at an efficient incident angle, the crucible installation position that satisfies the conditions for efficiently forming each vapor deposition layer is narrow. Whereas there was almost no flexibility in installing crucibles, according to the present invention, the degree of freedom in controlling the irradiation angle of the evaporated vapor flow has been dramatically improved, and multiple crucibles can be installed in one cooling can. Good multi-layer vapor deposition can be achieved, two or more layers can be vapor-deposited without reducing the vapor deposition efficiency of the vapor deposition material, and it is possible to avoid increasing the size of the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するための一実施態様に基づく真
空蒸着装置の要部拡大断面図である。
FIG. 1 is an enlarged cross-sectional view of essential parts of a vacuum evaporation apparatus based on one embodiment of the present invention.

【図2】本発明を実施するための他の実施態様に基づく
真空蒸着装置の要部拡大断面図である。
FIG. 2 is an enlarged sectional view of essential parts of a vacuum evaporation apparatus based on another embodiment for carrying out the present invention.

【図3】本発明を実施するための他の実施態様に基づく
真空蒸着装置の要部拡大断面図である。
FIG. 3 is an enlarged sectional view of essential parts of a vacuum evaporation apparatus based on another embodiment for carrying out the present invention.

【図4】従来の真空蒸着装置の概要を示す概略図である
FIG. 4 is a schematic diagram showing an outline of a conventional vacuum evaporation apparatus.

【図5】図4に示した蒸発源の拡大斜視図である。5 is an enlarged perspective view of the evaporation source shown in FIG. 4. FIG.

【図6】本発明における蒸発源が二つある場合の実施態
様に基づく真空蒸着装置の要部拡大断面図である。
FIG. 6 is an enlarged sectional view of a main part of a vacuum evaporation apparatus based on an embodiment in which there are two evaporation sources in the present invention.

【図7】本発明における蒸発源が二つある場合の他の実
施態様に基づく真空蒸着装置の要部拡大断面図である。
FIG. 7 is an enlarged sectional view of a main part of a vacuum evaporation apparatus according to another embodiment of the present invention in which there are two evaporation sources.

【符号の説明】[Explanation of symbols]

1        蒸発源 2        第一のるつぼ 3        電子源フィラメント4      
  ガイド部材 5        第二のるつぼ 6,7    電子ビーム 8        溶湯 9        蒸発蒸気流 10        蒸発源 11        第一のるつぼ 12        第二のるつぼ 14        蒸発源 15        第一のるつぼ 16        ガイド部材 17        第二のるつぼ 19        スリット開口 20        真空蒸着装置 21        蒸発源 22        送り出しロール 23        巻取りロール 24        冷却キャン 25        マスク 26        中心軸 27        るつぼ(第3のるつぼ)28  
      蒸着材料 29        蒸発蒸気流 30        ウエブ 31        電子ビーム 32        真空容器 33        排気装置 40        第1蒸着層 50        第2蒸着層
1 Evaporation source 2 First crucible 3 Electron source filament 4
Guide member 5 Second crucible 6, 7 Electron beam 8 Molten metal 9 Evaporation vapor flow 10 Evaporation source 11 First crucible 12 Second crucible 14 Evaporation source 15 First crucible 16 Guide member 17 Second crucible 19 Slit opening 20 Vacuum deposition device 21 Evaporation source 22 Delivery roll 23 Take-up roll 24 Cooling can 25 Mask 26 Central shaft 27 Crucible (third crucible) 28
Vapor deposition material 29 Evaporated vapor flow 30 Web 31 Electron beam 32 Vacuum container 33 Exhaust device 40 First vapor deposition layer 50 Second vapor deposition layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  予め溶融した蒸着材料から成る溶湯を
下方へ連続的に流すと共に、流動中の該溶湯の所定位置
に電子ビームを照射し、該流動溶湯表面の法線方向に蒸
発させた蒸発蒸気流によって、連続して移送される可撓
性帯状支持体上に前記蒸着材料を蒸着することを特徴と
する真空蒸着方法。
Claim 1: Evaporation in which a molten metal made of pre-melted vapor deposition material is continuously flowed downward, and an electron beam is irradiated to a predetermined position of the flowing molten metal to evaporate in the normal direction of the surface of the flowing molten metal. A vacuum deposition method, characterized in that the vapor deposition material is deposited on a flexible strip-shaped support that is continuously transported by a vapor flow.
【請求項2】  蒸着材料を溶融する加熱手段を備えて
下方へ連続的に溶湯を流出する第一のるつぼと、該第一
のるつぼから流出した溶湯を冷却キャンに対面するよう
に所定の傾斜角度を以て一定方向に流動させるガイド部
材と、該ガイド部材に沿って流れ落ちる溶湯を受容する
第二のるつぼと、電子ビーム発生手段とから成る蒸発源
を有する真空蒸着装置であって、前記ガイド部材に沿っ
て流れる溶湯の所定位置に電子ビームを照射し、該流動
溶湯表面の法線方向に蒸発させた蒸発蒸気流によって、
連続して移送される可撓性帯状支持体上に前記蒸着材料
を蒸着することを特徴とする真空蒸着装置。
2. A first crucible that is equipped with heating means for melting the vapor deposition material and that continuously flows out the molten metal downward, and a predetermined slope so that the molten metal that flows out from the first crucible faces the cooling can. A vacuum evaporation apparatus having an evaporation source consisting of a guide member that causes the molten metal to flow in a certain direction at an angle, a second crucible that receives the molten metal flowing down along the guide member, and an electron beam generating means, An electron beam is irradiated onto a predetermined position of the flowing molten metal, and the evaporation vapor flow is evaporated in the normal direction of the surface of the flowing molten metal.
A vacuum evaporation apparatus characterized in that the evaporation material is evaporated onto a flexible strip-shaped support that is continuously transferred.
【請求項3】  予め溶融した蒸着材料から成る溶湯を
斜め下方へ連続的に流した溶湯表面に電子ビームを照射
して、該溶湯表面の法線方向に発生させた蒸発蒸気流と
、水平の溶湯表面に電子ビームを照射してほぼ鉛直方向
に発生させた蒸発蒸気流とを、連続して移送される可撓
性帯状支持体上の別々の箇所に同時に照射することによ
り、複数の蒸着層を一度に形成することを特徴とする真
空蒸着方法。
3. A molten metal made of pre-melted vapor deposition material is continuously flowed diagonally downward, and an electron beam is irradiated onto the surface of the molten metal to generate an evaporation vapor flow in the normal direction of the molten metal surface and a horizontal evaporation vapor flow. By irradiating the surface of the molten metal with an electron beam to generate an evaporative vapor flow in a nearly vertical direction, the evaporated vapor flow is simultaneously irradiated at different locations on a continuously transported flexible strip-shaped support, thereby forming multiple evaporated layers. A vacuum evaporation method characterized by forming .
【請求項4】  蒸着材料を溶融する加熱手段を備えて
下方へ連続的に溶湯を流出する第一のるつぼと、該第一
のるつぼから流出した溶湯を冷却キャン上で連続移送さ
れる可撓性帯状支持体に対面するように傾斜したガイド
部材と、水平な溶湯を前記可撓性帯状支持体に対面させ
ることの出来る他のるつぼと、複数の電子ビーム発生手
段とを備えており、前記ガイド部材上の傾斜した溶湯表
面から発生させた蒸発蒸気流と、前記他のるつぼの溶湯
表面から発生させた蒸発蒸気流とを、前記可撓性帯状支
持体上の別々の箇所に同時に照射して、複数の蒸着層を
一度に形成するように構成したことを特徴とする真空蒸
着装置。
4. A first crucible that is equipped with a heating means for melting the vapor deposition material and allows the molten metal to continuously flow downward; and a flexible crucible that continuously transfers the molten metal that flows out from the first crucible on a cooling can. a guide member inclined so as to face the flexible band-shaped support, another crucible capable of allowing the horizontal molten metal to face the flexible band-shaped support, and a plurality of electron beam generating means, An evaporative vapor flow generated from the inclined molten metal surface on the guide member and an evaporative vapor flow generated from the molten metal surface of the other crucible are simultaneously irradiated to separate locations on the flexible strip-shaped support. A vacuum evaporation apparatus characterized in that it is configured to form a plurality of evaporation layers at once.
【請求項5】  前記他のるつぼが前記第一のるつぼか
ら流出した溶湯を受ける第二のるつぼであることを特徴
とする請求項4の真空蒸着装置。
5. The vacuum evaporation apparatus according to claim 4, wherein said other crucible is a second crucible that receives the molten metal flowing out from said first crucible.
JP4553291A 1990-03-02 1991-02-20 Vacuum deposition method and device Pending JPH04212717A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4553291A JPH04212717A (en) 1990-03-05 1991-02-20 Vacuum deposition method and device
US07/662,309 US5122389A (en) 1990-03-02 1991-02-28 Vacuum evaporation method and apparatus
DE4106579A DE4106579A1 (en) 1990-03-02 1991-03-01 METHOD AND DEVICE FOR VACUUM EVAPORATION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-51636 1990-03-05
JP5163690 1990-03-05
JP4553291A JPH04212717A (en) 1990-03-05 1991-02-20 Vacuum deposition method and device

Publications (1)

Publication Number Publication Date
JPH04212717A true JPH04212717A (en) 1992-08-04

Family

ID=26385536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4553291A Pending JPH04212717A (en) 1990-03-02 1991-02-20 Vacuum deposition method and device

Country Status (1)

Country Link
JP (1) JPH04212717A (en)

Similar Documents

Publication Publication Date Title
US5122389A (en) Vacuum evaporation method and apparatus
US4395439A (en) Method of manufacturing magnetic recording medium
JPH04212717A (en) Vacuum deposition method and device
JPH0916960A (en) Manufacturing device for information recording medium
JPH0625839A (en) Sputtering device and cathode
US5122392A (en) Method and apparatus for manufacturing magnetic recording medium
JPH0798861A (en) Production of magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPS63277752A (en) Vacuum deposition device
JPH09143723A (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
JPH0798868A (en) Production of magnetic recording medium
JPH04321208A (en) Vacuum vapor depositing device and method therefor
JP3781154B2 (en) Vacuum deposition equipment
JPH0888137A (en) Method and device for manufacturing evaporated thin film
JPH0757260A (en) Device for producing magnetic recording medium
JPH0562186A (en) Manufacture of magnetic recording medium
JPS5920468A (en) Vapor deposition method
Feuerstein et al. Video tape manufacture by high vacuum evaporation—aspects of machine technology
JPH0121534B2 (en)
JPH07192259A (en) Production of magnetic recording medium
JP2000030964A (en) Device and method for manufacturing magnetic recording medium
JPH05182196A (en) Formation of thin film and device therefor and crucible for vacuum vapor deposition
JPH03254423A (en) Method and device for vacuum vapor-deposition
JPH0590060A (en) Manufacture of magnetic recording medium and crucible for vacuum evaporation
JPH03291376A (en) Method and device for vacuum vapor deposition