JP2013044050A - Thin film evaporator - Google Patents

Thin film evaporator Download PDF

Info

Publication number
JP2013044050A
JP2013044050A JP2011195461A JP2011195461A JP2013044050A JP 2013044050 A JP2013044050 A JP 2013044050A JP 2011195461 A JP2011195461 A JP 2011195461A JP 2011195461 A JP2011195461 A JP 2011195461A JP 2013044050 A JP2013044050 A JP 2013044050A
Authority
JP
Japan
Prior art keywords
resin material
resin
needle valve
heating plate
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195461A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kasebe
強 加瀬部
Hisahiro Nishigori
寿裕 錦織
Yuji Konishi
勇二 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACH TECHNOLOGY KK
MACHINE TECHNOLOGY KK
Original Assignee
MACH TECHNOLOGY KK
MACHINE TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MACH TECHNOLOGY KK, MACHINE TECHNOLOGY KK filed Critical MACH TECHNOLOGY KK
Priority to JP2011195461A priority Critical patent/JP2013044050A/en
Publication of JP2013044050A publication Critical patent/JP2013044050A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems that the conventional resin material coating method requires time to make a resin material flow to the extent of a heating plate surface to be coated due to a natural flow by gravity, and also easily causes uneven coating thickness and defective coating during flow, while the practical use of thin films requires both the quality of the films and productivity because uneven coating thickness and defective coating occurring in forming an electronic component using the thin resin film reduce the effect of using the thin films in half and lead to poor performance of the electronic component.SOLUTION: It is feasible to discharge an even amount of the resin onto the heating plate by utilizing an ejecting method using a needle valve as the method of applying the resin material. Further, the efficient and even ejection of the resin is practicable by installing a plurality of resin supply points according to the width of applying the resin. It is also feasible to control the grain diameter and amount of the resin to be ejected. It is feasible to form a thin film on a base material stably at a high speed, without being likely to be influenced by variations in the viscosity of the resin, by evaporating the films while the resin is evenly discharged, because the application of the resin is not of the type of a natural flow by gravity.

Description

本発明は、薄膜の製造方法および製造装置に関するものである。  The present invention relates to a thin film manufacturing method and manufacturing apparatus.

コンデンサ、半導体など電子材料として樹脂薄膜は広く利用されている。広く利用されるには安定かつ経済的に製造できることが重要である。これらを満足する樹脂薄膜の形成方法として多くの試みがなされている。例えばコンデンサなどの用途においては、高速大量生産に有利な連続巻取り真空蒸着が行われている。その際、蒸発材料と基板材料を形成する薄膜の目的に合わせて選ぶと同時に、必要に応じて真空槽内に反応ガスを導入することや、基板に電位を設けた状態で薄膜を形成することにより目的の特性を持った薄膜を形成することが出来る。(特許文献1〜5)  Resin thin films are widely used as electronic materials such as capacitors and semiconductors. To be widely used, it is important to be able to manufacture stably and economically. Many attempts have been made as a method of forming a resin thin film that satisfies these requirements. For example, in applications such as capacitors, continuous winding vacuum deposition, which is advantageous for high-speed mass production, is performed. At that time, it is selected according to the purpose of the thin film that forms the evaporation material and the substrate material, and at the same time, the reactive gas is introduced into the vacuum chamber as necessary, or the thin film is formed with the potential applied to the substrate. Thus, a thin film having desired characteristics can be formed. (Patent Documents 1 to 5)

従来の樹脂薄膜の製造方法は、図10に示すように、樹脂材料は供給弁4を経て真空槽5の中に導入される。支持体である長尺基板1は、捲き出しロール15から捲き出され、ガイドロールを経て、円筒状キャン7に沿って走行し、ガイドロール17を経て捲き取りロール16に捲き取られる。長尺基板上に樹脂薄膜を形成するための樹脂蒸気は供給管から供給された樹脂材料を気化することによって得られる。液状で供給された樹脂材料は加熱板11に沿って流動中にその一部が気化しつつ、加熱板に沿い薄い液膜状に拡がる。樹脂材料を一か所に止まらせて加熱すると、樹脂材料の対流が悪く均一に加熱されないため加熱体付近の樹脂材料が熱硬化してしまったり、突沸して粗大粒子を多数発生させたり、順次供給される低温の樹脂材料により樹脂温度上昇が妨げられたり、多量の安定した蒸発量を確保できなかったりする。即ち、自然重力による樹脂材料の供給方法の場合、樹脂材料の熱効果による供給管の目詰まりが生じ、安定した樹脂材料の供給が得難くなる。また、供給された樹脂材料の自然重力による加熱板上の流動方法の場合、樹脂材料の供給量によっては加熱板上の樹脂材料の流動が不均一となり易く安定した蒸発量が確保出来なくなったりする。  In the conventional method for producing a resin thin film, as shown in FIG. 10, the resin material is introduced into the vacuum chamber 5 through the supply valve 4. The long substrate 1 serving as a support is rolled out from the rolling-out roll 15, travels along the cylindrical can 7 through the guide roll, and is scraped off by the winding-up roll 16 through the guide roll 17. Resin vapor for forming a resin thin film on a long substrate is obtained by vaporizing a resin material supplied from a supply pipe. A part of the resin material supplied in liquid form is vaporized while flowing along the heating plate 11, and spreads in a thin liquid film along the heating plate. If the resin material is stopped in one place and heated, the convection of the resin material is poor and it will not be heated uniformly, so the resin material near the heating body will be thermally cured, or a large number of coarse particles may be generated due to bumping. The low temperature resin material supplied prevents the resin temperature from rising, and a large amount of stable evaporation cannot be secured. That is, in the case of the method for supplying a resin material by natural gravity, the supply pipe is clogged due to the thermal effect of the resin material, making it difficult to obtain a stable supply of the resin material. In addition, in the case of the flow method on the heating plate by natural gravity of the supplied resin material, depending on the supply amount of the resin material, the flow of the resin material on the heating plate tends to be uneven, and a stable evaporation amount cannot be secured. .

樹脂材料を用いた薄膜の形成は塗装による方法が広く使われ、リバースコート方式や、ダイコート方式が工業的に使われており、溶剤で希釈した樹脂材料を塗布後乾燥硬化させることが一般的である。また、これらの工法で形成される樹脂膜厚の膜厚の下限は使用する材料によるが、1μm前後であることが多く、それ以下の膜厚は得難い場合が多い。一般的な塗布手段では塗布直後の厚みが数μm以上となるために極薄樹脂厚の形成には溶剤希釈が必要であり、しかも1μm以下の樹脂薄膜が得られない場合も多い。更に、溶剤希釈を行うと乾燥後の塗膜に欠陥が生じ易い。また、環境保護の観点からも好ましくない。そこで溶剤希釈を行わなくとも樹脂薄膜が形成できる方法が提案されている。これは、真空中で樹脂材料を気化または霧化した後に支持体に付着させる方法であり、この方法によれば空隙欠陥の無い樹脂薄膜を形成することが出来ると共に、溶剤希釈の必要もない。  Thin film formation using resin materials is widely used by painting, and reverse coating and die coating methods are used industrially. Generally, resin materials diluted with solvents are applied and dried and cured. is there. Moreover, although the minimum of the film thickness of the resin film formed by these construction methods is based on the material to be used, it is often about 1 μm, and a film thickness of less than that is often difficult to obtain. In a general coating means, the thickness immediately after coating is several μm or more, and therefore, it is necessary to dilute the solvent to form an extremely thin resin thickness, and a resin thin film of 1 μm or less cannot often be obtained. Further, when the solvent is diluted, defects are likely to occur in the dried coating film. Further, it is not preferable from the viewpoint of environmental protection. Therefore, a method has been proposed in which a resin thin film can be formed without solvent dilution. This is a method in which a resin material is vaporized or atomized in vacuum and then adhered to a support. According to this method, a resin thin film without void defects can be formed, and there is no need for solvent dilution.

樹脂薄膜の上に更に異種の薄膜を組合せて堆積することによって、高耐熱または高耐湿など従来得られなかった様々な性能の複合被膜が得られるようになり、利用分野も多岐にわたる。なかでも電子部品分野での需要は非常に有望であり、コンデンサ、コイル、抵抗、容量性電池あるいはこれらの複合部品等が、薄膜積層によって極めて小型かつ高性能に形成出来つつあり、商品化が始まっている。  By depositing a combination of different types of thin films on the resin thin film, it becomes possible to obtain composite coatings having various performances such as high heat resistance and high moisture resistance, which have not been obtained in the past. In particular, the demand in the field of electronic parts is very promising, and capacitors, coils, resistors, capacitive batteries, or composite parts of these are being made extremely thin and high performance by thin film stacking, and commercialization has begun. ing.

特開2004−346339号公報JP 2004-346339 A 特表2007−517134号公報Special Table 2007-517134 特開平9−310172号公報JP-A-9-310172 特許第3485297号公報Japanese Patent No. 3485297 特許第3500395号公報Japanese Patent No. 3500395

これらの樹脂薄膜を形成する際に、重要となるのが樹脂薄膜の厚みむらや欠陥である。厚みむらや欠陥があると薄膜化の効率が半減し、場合によっては性能不良に繋がる。  When forming these resin thin films, the thickness unevenness and defects of the resin thin film are important. If there is uneven thickness or defects, the efficiency of thinning will be halved, leading to poor performance in some cases.

薄膜の実用化には膜質と生産性の両立が求められるが、従来の方法では必ずしも十分ではなかった。膜質の確保に於いては、従来の樹脂材料塗布方法では塗布量および塗布した加熱板面の範囲に対して均一性の確保が困難であった。また、生産性の確保には従来の方法では樹脂材料の重力による自然流動のため塗布したい加熱板面の範囲に対してある程度の流動時間を要し、また、加熱板面上を流動する樹脂材料量が樹脂材料供給位置とそれから離れた位置により差が生じる場合があり、高速でかつ安定な成膜方法が望まれていた。  The practical use of thin films requires compatibility between film quality and productivity, but the conventional methods have not always been sufficient. In securing the film quality, it has been difficult to ensure uniformity with respect to the coating amount and the range of the applied heating plate surface by the conventional resin material coating method. In addition, in order to ensure productivity, the conventional method requires a certain amount of flow time for the range of the heating plate surface to be applied due to the natural flow of the resin material due to gravity, and the resin material that flows on the heating plate surface There is a case where the amount differs depending on the resin material supply position and a position away from the resin material supply position, and a high-speed and stable film forming method has been desired.

本発明は、これらの課題を解決するために真空中で樹脂材料を蒸発させ、支持体に均一に付着させる製造方法において、樹脂材料の供給方法としてニードルバルブを用いて樹脂材料を加熱板面上の所定範囲に一定の厚みでかつむら無く塗布し、蒸発させることを特徴とする製造装置である。また、支持体に樹脂材料を付着させる幅に応じ、複数個所の樹脂供給点を設けることで効率良く均一な供給が可能となる。特に本発明はニードルバルブのノズル部の制御により、供給量および供給速度の制御が可能となる。また、ニードルバルブの先端がノズル穴から飛び出る構造とすることで、ニードルを開閉動作させ樹脂材料の目詰まりを防止回避できる。従って樹脂材料の供給部は、連続して安定した樹脂材料を供給できることになる。即ち、高速でかつ安定した薄膜の成膜の両立が実現可能となる。また、ニードルの制御に電動アクチュエータを用いることで、樹脂材料の供給量および供給速度の遠隔操作が可能となる。  In order to solve these problems, the present invention provides a method for evaporating a resin material in a vacuum and uniformly adhering it to a support. The manufacturing apparatus is characterized in that it is applied to the predetermined range with a constant thickness and uniformly and evaporated. Further, by providing a plurality of resin supply points according to the width of the resin material attached to the support, efficient and uniform supply is possible. In particular, according to the present invention, the supply amount and the supply speed can be controlled by controlling the nozzle portion of the needle valve. Further, by adopting a structure in which the tip of the needle valve protrudes from the nozzle hole, the needle can be opened and closed to prevent clogging of the resin material. Therefore, the resin material supply unit can continuously supply a stable resin material. That is, it is possible to realize both high-speed and stable film formation. Further, by using an electric actuator to control the needle, it is possible to remotely control the supply amount and supply speed of the resin material.

本発明によれば、高速でかつ安定した膜質の薄膜の製造が可能となる。  According to the present invention, it is possible to manufacture a thin film having a high quality and a stable film quality.

本発明の薄膜の製造および製造装置の一実施例を示す図である。It is a figure which shows one Example of manufacture of the thin film of this invention, and a manufacturing apparatus. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブと加熱板との設定距離の事例を示した図である。It is the figure which showed the example of the setting distance of a needle valve and a heating plate, using a needle valve as a resin material supply method used for this invention. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブと加熱板との設定相対角度の事例を示す図である。It is a figure which shows the example of the setting relative angle of a needle valve and a heating plate, using a needle valve as a resin material supply method used for this invention. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブを加熱板の幅方向に複数個設けた事例を示す図である。It is a figure which shows the example which used the needle valve as a resin material supply method used for this invention, and provided multiple needle valves in the width direction of the heating plate. 本発明に使用される樹脂材料供給方法としてニードルを用い、ニードルバルブを加熱板の進行方向に複数個設けた事例を示す図である。It is a figure which shows the example which used the needle | hook as a resin material supply method used for this invention, and provided multiple needle valves in the advancing direction of the heating plate. 本発明に使用される樹脂材料供給方法および樹脂材料蒸発方法としてとして加熱板の進行方向にニードルバルブと加熱板を複数個設けた事例を示す図である。It is a figure which shows the example which provided multiple needle valves and a heating plate in the advancing direction of a heating plate as a resin material supply method used for this invention, and a resin material evaporation method. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブ弁の開閉および調整方法に電動アクチュエータを採用した事例を示す図である。It is a figure which shows the example which employ | adopted the electric actuator as the opening / closing and adjustment method of a needle valve valve, using a needle valve as the resin material supply method used for this invention. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブ弁を閉じた方向に動作させたとき、ニードルバルブの針先がノズルの穴から飛び出る構造にした事例を示す図である。It is a figure which shows the example made into the structure which used the needle valve as a resin material supply method used for this invention, and when the needle valve valve was operated in the closed direction, the needle tip of the needle valve protruded from the nozzle hole. 本発明に使用される樹脂材料供給方法としてニードルバルブを用い、ニードルバルブ弁を開けた場合を示す事例である。It is an example which shows the case where a needle valve is used as a resin material supply method used in the present invention and the needle valve valve is opened. 従来に係る薄膜の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the conventional thin film.

以下、本発明の実施の形態を図1から図10に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の薄膜の製造および製造装置の一実施例を示す図である。
図1で樹脂材料は供給弁4を経て真空槽の中に導入される。支持体である長尺基板1は捲き出しロール15から捲き出され、ガイドロール17を経て円筒状キャン7に沿って走行し、ガイドロール17を経て捲き取りロール16に捲き取られる。長尺基板上に樹脂薄膜を形成するための樹脂蒸気は供給弁4から供給された樹脂材料を気化することによって得られる。液状で供給された樹脂材料は加熱板11に薄い液膜状に霧状に拡がる。即ち、樹脂材料は加熱板面に均一に供給、塗布されることにより加熱板面上で均一に加熱され蒸発量が安定する。樹脂材料を一か所に止まらせ加熱すると、樹脂材料の供給量が過大となり、均一に加熱されないために加熱体付近の樹脂材料が熱硬化してしまったり、突沸して粗大粒子を多数個発散させたり、順次供給される低温の樹脂材料により樹脂材料の温度上昇が妨げられたり、多量の安定した蒸発量を確保できなかったりする。
FIG. 1 is a diagram showing an embodiment of a thin film manufacturing and manufacturing apparatus of the present invention.
In FIG. 1, the resin material is introduced into the vacuum chamber through the supply valve 4. The long substrate 1 that is a support is rolled out from the rolling roll 15, travels along the cylindrical can 7 through the guide roll 17, and is rolled up by the winding roll 16 through the guide roll 17. The resin vapor for forming the resin thin film on the long substrate is obtained by vaporizing the resin material supplied from the supply valve 4. The resin material supplied in the form of a liquid spreads in the form of a mist in a thin liquid film form on the heating plate 11. That is, the resin material is uniformly supplied and applied to the surface of the heating plate, whereby the resin material is uniformly heated on the surface of the heating plate and the evaporation amount is stabilized. If the resin material is stopped in one place and heated, the amount of resin material supplied becomes excessive and the resin material in the vicinity of the heating body is thermally cured because it is not heated uniformly, or a large number of coarse particles are emitted due to bumping. The temperature of the resin material is hindered by the low-temperature resin materials that are sequentially supplied, or a large amount of stable evaporation cannot be ensured.

図1のように樹脂材料の供給部にニードルバルブを用いることにより、加熱板面上に樹脂材料を必要量および必要面積に供給、塗布できる。また、加熱板の加熱温度を変えることで樹脂材料に合わせて最適昇温パターンに設定することが出来る。  By using a needle valve in the resin material supply section as shown in FIG. 1, the resin material can be supplied and applied to the required amount and the required area on the heating plate surface. Further, by changing the heating temperature of the heating plate, an optimum temperature rising pattern can be set according to the resin material.

尚、加熱板に接触したばかりの樹脂材料は急激な昇温のため粗大粒子となって一部が飛散する場合がある。これは樹脂材料が滴下方式の場合、加熱板面に滴下した際、小径とはいえ樹脂材料の塊となるためと考えられる。樹脂材料供給部にニードルバルブを用いれば樹脂材料を微小粒径または霧状に加熱板面上に塗布できるため加熱板に接触した時の急激な昇温の影響を受け難く、従って粗大粒子が出来ず飛散が生じ難い。また、周囲壁も加熱構造にして、微量であるが周囲壁に付着する樹脂材料の再蒸発を行わせることで、樹脂材料の材料効率を向上できる。樹脂薄膜の硬化を行う硬化装置14として、紫外線照射装置を用いた。  The resin material just in contact with the heating plate may become coarse particles due to rapid temperature rise and partly scatter. This is thought to be because when the resin material is dropped, it becomes a lump of resin material even though it has a small diameter when dropped onto the heating plate surface. If a needle valve is used in the resin material supply section, the resin material can be applied to the surface of the heating plate in a fine particle size or in the form of a mist, so that it is not easily affected by a sudden rise in temperature when contacting the heating plate. Scattering is unlikely to occur. Also, the material efficiency of the resin material can be improved by making the surrounding wall a heating structure and causing the resin material that adheres to the surrounding wall to re-evaporate even though it is in a small amount. As the curing device 14 for curing the resin thin film, an ultraviolet irradiation device was used.

次に、本発明の第2の実施の形態について図面を用いて説明する。
図2は本発明の薄膜の製造方法および製造装置に使用される樹脂材料供給の一例を示す概略図である。
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic view showing an example of resin material supply used in the thin film manufacturing method and manufacturing apparatus of the present invention.

図2のように樹脂材料の供給方法としてニードルバルブを用いる。ニードルバルブの先端部から加熱板面までの距離を5〜200mmに設定することにより、ニードルバルブの先端部から供給した樹脂材料は加熱板上に広い面積で拡がる。即ち、広い面積に樹脂材料を塗布しながら拡がることが可能となるため、樹脂材料は均一にかつ蒸発効率が向上する。即ち、高速で安定した薄膜の成膜が実現できる。  As shown in FIG. 2, a needle valve is used as a method for supplying the resin material. By setting the distance from the tip of the needle valve to the heating plate surface to 5 to 200 mm, the resin material supplied from the tip of the needle valve spreads over a wide area on the heating plate. That is, since the resin material can be spread over a wide area while being spread, the resin material is uniform and the evaporation efficiency is improved. That is, it is possible to form a thin film stably at high speed.

次に、本発明の第3の実施の形態について図面を用いて説明する。  Next, a third embodiment of the present invention will be described with reference to the drawings.

図3は本発明の薄膜の製造方法および製造装置に使用される樹脂材料供給方法の更に別の一例を示す概略図である。  FIG. 3 is a schematic view showing still another example of the resin material supply method used in the thin film manufacturing method and manufacturing apparatus of the present invention.

図3のように樹脂材料の供給方法としてニードルバルブを用いる。ニードルバルブの先端部から加熱板面までの距離を5〜200mmおよびニードルバルブの先端部と加熱板との相対角度を95〜150度に設定することにより、ニードルバルブの先端部から供給した樹脂材料は加熱板上に広い面積で拡がる。即ち、高速でかつ広い面積に樹脂材料を塗布しながら拡がることが可能となるため、樹脂材料は均一に効率良く蒸発する。即ち、高速で安定した薄膜の成膜が実現できる。  As shown in FIG. 3, a needle valve is used as a method for supplying the resin material. Resin material supplied from the tip of the needle valve by setting the distance from the tip of the needle valve to the heating plate surface to 5 to 200 mm and the relative angle between the tip of the needle valve and the heating plate to 95 to 150 degrees Spreads over a large area on the heating plate. That is, since the resin material can be spread while being applied to a large area at a high speed, the resin material is uniformly and efficiently evaporated. That is, it is possible to form a thin film stably at high speed.

次に、本発明の第4の実施の形態について図面を用いて説明する。  Next, a fourth embodiment of the present invention will be described with reference to the drawings.

図4は本発明の薄膜の製造方法および製造装置に使用される樹脂材料供給方法の更に別の一例を示す概略図である。図4のように樹脂材料の供給方法としてニードルバルブを用いる。支持体に樹脂材料を付着させる幅に応じてニードルバルブを複数個設けることを特徴とする。加熱板面の幅方向にニードルを複数個設けることにより、樹脂材料を広い面積に高速で供給することで樹脂材料の蒸発効率が向上、即ち高速で安定した薄膜の成膜が実現できる。  FIG. 4 is a schematic view showing still another example of the resin material supplying method used in the thin film manufacturing method and manufacturing apparatus of the present invention. As shown in FIG. 4, a needle valve is used as a method for supplying the resin material. A plurality of needle valves are provided in accordance with the width of the resin material attached to the support. By providing a plurality of needles in the width direction of the heating plate surface, it is possible to improve the evaporation efficiency of the resin material by supplying the resin material to a large area at a high speed, that is, to form a stable thin film at a high speed.

次に、本発明の第5の実施の形態について図面を用いて説明する。  Next, a fifth embodiment of the present invention will be described with reference to the drawings.

図5は本発明の薄膜の製造方法および製造装置に使用される樹材料供給方法の更に別の一例を示す概略図である。 図5のように支持体に樹脂材料を付着させる幅に応じて加熱板に対して進行方向にニードルバルブを複数個設けることを特徴とする。加熱板面の進行方向にニードルバルブを複数個設けることにより、樹脂材料を広い面積に高速で供給することで樹脂材料の蒸発効率が向上、即ち、高速で安定した薄膜の成膜が実現出来る。  FIG. 5 is a schematic view showing still another example of the method for supplying a tree material used in the thin film manufacturing method and manufacturing apparatus of the present invention. As shown in FIG. 5, a plurality of needle valves are provided in the traveling direction with respect to the heating plate in accordance with the width of the resin material attached to the support. By providing a plurality of needle valves in the traveling direction of the heating plate surface, the evaporation efficiency of the resin material can be improved by supplying the resin material to a large area at a high speed, that is, a stable thin film can be formed at a high speed.

次に、本発明の第6の実施の形態について図面を用いて説明する。  Next, a sixth embodiment of the present invention will be described with reference to the drawings.

図6は本発明の薄膜の製造方法および製造装置に使用される樹脂材料供給方法の更に別の一例を示す概略図である。図6のようにニードルと加熱板を複数個設け、装置を小型化しても蒸発面積を大きくできることを特徴とする。図6のように個々のニードルバルブはニードルバルブ先端部と加熱板面との距離を5〜200mmの範囲に任意に設定できかつニードルバルブ先端部と加熱板面との相対角度を95〜150度の範囲に任意に設定できることにより装置を小型化しても、装置を小型化しても蒸発面積を大きくすることが可能となる。即ち、高速で安定した薄膜の成膜が実現出来る。  FIG. 6 is a schematic view showing still another example of the resin material supplying method used in the thin film manufacturing method and manufacturing apparatus of the present invention. As shown in FIG. 6, a plurality of needles and heating plates are provided, and the evaporation area can be increased even if the apparatus is downsized. As shown in FIG. 6, each needle valve can arbitrarily set the distance between the needle valve tip and the heating plate surface within a range of 5 to 200 mm, and the relative angle between the needle valve tip and the heating plate surface is 95 to 150 degrees. Therefore, even if the apparatus is downsized or the apparatus is downsized, the evaporation area can be increased. That is, it is possible to form a thin film stably at high speed.

次に、本発明の第7の実施の形態について図面を用いて説明する。  Next, a seventh embodiment of the present invention will be described with reference to the drawings.

図7は本発明の薄膜の製造方法および製造装置に使用される樹脂材料方法の更に別の一例を示す概略図である。 図7のように樹脂材料の供給方法としてニードルバルブを用いる。ニードルバルブの調整方法として電動アクチュエータを用いニードルバルブ先端部からの樹脂材料の供給量を任意にかつ自動的に制御が可能となる。また、ニードルバルブを複数用いる場合、個々のニードルバルブの調整が任意にかつ自動的に制御が出来る。また、ニードルバルブの調整方法として電動アクチュエータを用いることにより遠隔操作が可能となる。従って、支持体への付着厚み情報とニードルバルブからの樹脂材料の供給量情報をリンクさせることで、任意の厚みの薄膜が安定して得られることが可能となる。  FIG. 7 is a schematic view showing still another example of the resin material method used in the thin film manufacturing method and manufacturing apparatus of the present invention. As shown in FIG. 7, a needle valve is used as a method for supplying the resin material. As an adjustment method of the needle valve, an electric actuator can be used to arbitrarily and automatically control the amount of resin material supplied from the needle valve tip. Further, when a plurality of needle valves are used, the adjustment of each needle valve can be arbitrarily and automatically controlled. In addition, remote control is possible by using an electric actuator as a method for adjusting the needle valve. Therefore, it is possible to stably obtain a thin film having an arbitrary thickness by linking the information on the thickness of adhesion to the support and the information on the amount of resin material supplied from the needle valve.

次に、本発明の第8の実施の形態について図面を用いて説明する。  Next, an eighth embodiment of the present invention will be described with reference to the drawings.

図8および図9は本発明の薄膜の製造方法および製造装置に使用される樹脂材料供給方法の更に別の一例を示す概略図である。図8はノズルバルブのニードルバブル弁が閉状態、図9は開状態を示す。図9のようにニードルバルブ弁開の状態で樹脂材料の熱硬化でノズル穴が目詰まりした場合、図8のように針先が穴から飛び出る構造にすることで目詰まり部を除去、正常な樹脂供給を回復出来る。この構造により、樹脂材料が万一熱硬化していてもニードルバルブ弁を開閉させることで目詰まりを回復出来、かつ作業前に動作することで目詰まりが防止可能となる。即ち、連続で安定した薄膜の成膜が実現出来る。  8 and 9 are schematic views showing still another example of the resin material supply method used in the thin film manufacturing method and manufacturing apparatus of the present invention. 8 shows a closed state of the needle bubble valve of the nozzle valve, and FIG. 9 shows an opened state. When the nozzle hole is clogged due to the heat curing of the resin material with the needle valve valve open as shown in FIG. 9, the clogged portion is removed by making the needle tip protrude from the hole as shown in FIG. Resin supply can be recovered. With this structure, even if the resin material is cured by heat, clogging can be recovered by opening and closing the needle valve valve, and clogging can be prevented by operating before work. That is, a continuous and stable thin film can be formed.

図1のように、樹脂材料の供給方法としてニードルバルブを用いると樹脂材料を加熱板面上の所定範囲に一定の厚みでかつむら無く塗布出来る。これにより加熱板上からの安定した樹脂量の確保また、支持体に樹脂材料を付着させる幅に応じて、複数個所の樹脂供給点を設けることにより、より効率良く均一な供給が可能となる。樹脂材料の供給方法にニードルバルブを用いることで、安定した樹脂供給がなることを述べた。更にニードルバルブの先端がノズル穴から飛び出る構造とすることで設備稼働中にニードルバルブ弁を開閉させ、樹脂材料の目詰まりを防止回避できる。また、樹脂材料は加熱板上に均一に塗布されるため、自然重力だけによる樹脂材料の拡がりで無いため、加熱板上での樹脂材料の停滞が防止できる。尚、樹脂薄膜の硬化を行う硬化装置14として紫外線照射装置を用いた。  As shown in FIG. 1, when a needle valve is used as a method for supplying a resin material, the resin material can be uniformly applied to a predetermined range on the heating plate surface with a constant thickness. As a result, it is possible to ensure a stable amount of resin from the heating plate and to provide more efficient and uniform supply by providing a plurality of resin supply points in accordance with the width of the resin material attached to the support. It has been described that a stable resin supply can be achieved by using a needle valve in the resin material supply method. Further, by adopting a structure in which the tip of the needle valve protrudes from the nozzle hole, the needle valve valve can be opened and closed during operation of the equipment, and clogging of the resin material can be prevented and avoided. In addition, since the resin material is uniformly applied on the heating plate, the resin material does not spread only by natural gravity, so that the stagnation of the resin material on the heating plate can be prevented. An ultraviolet irradiation device was used as the curing device 14 for curing the resin thin film.

実施の形態2〜実施の形態8および比較例の構成で樹脂薄膜の作成を行い、作成条件と膜質の関係を調べた。アクリレート系の樹脂材料を用い、樹脂薄膜の堆積速度を変えて成膜を行った。作成した膜の5cm×5cmの範囲を光学顕微鏡で観察し、直径3μm以上の粒を欠陥とし、この個数で樹脂膜質を評価した。その結果を表1に示す。  A resin thin film was prepared using the configurations of Embodiments 2 to 8 and the comparative example, and the relationship between the preparation conditions and the film quality was examined. Film formation was performed using an acrylate resin material and changing the deposition rate of the resin thin film. A range of 5 cm × 5 cm of the prepared film was observed with an optical microscope, and grains having a diameter of 3 μm or more were regarded as defects, and the resin film quality was evaluated by this number. The results are shown in Table 1.

Figure 2013044050
Figure 2013044050

(表1)に示す実施例2〜6では、それぞれ順に上記の形態2〜8に示した装置を使用した。  In Examples 2 to 6 shown in (Table 1), the devices shown in the above forms 2 to 8 were used in order.

(表1)から、従来例の構成においても樹脂薄膜の堆積速度が小さい場合には作成した樹脂薄膜の欠陥数は少ない。しかしながら堆積速度が概ね1000mm/sec以上となると欠陥数が急激に増加することがわかる。  From Table 1, the number of defects in the produced resin thin film is small when the deposition rate of the resin thin film is low even in the configuration of the conventional example. However, it can be seen that the number of defects increases rapidly when the deposition rate is approximately 1000 mm / sec or more.

これに対して、実施の形態2〜実施の形態8の構成では堆積速度が1000mm/sec以上においても作成した樹脂薄膜の欠陥数が少ない。この理由は以下のように考えられる。即ち、堆積速度を高くするには樹脂材料の供給量を増やす必要があるが、従来例の構成では蒸発面積が不足となり、堆積速度を確保するためには加熱板上の温度条件を高める必要があることが示されている。  On the other hand, in the configurations of the second to eighth embodiments, the number of defects in the resin thin film produced is small even when the deposition rate is 1000 mm / sec or more. The reason is considered as follows. That is, in order to increase the deposition rate, it is necessary to increase the supply amount of the resin material. However, in the configuration of the conventional example, the evaporation area becomes insufficient, and in order to ensure the deposition rate, it is necessary to increase the temperature condition on the heating plate. It is shown that there is.

次に実施の形態2〜実施の形態8の構成で、ニードルバルブ先端部と加熱板面との距離およびニードルバルブ先端部と加熱板面との相対角度を変えてノズル詰まり状態の評価を行った。その結果を表2に示す。    Next, in the configurations of Embodiments 2 to 8, the nozzle clogging state was evaluated by changing the distance between the needle valve tip and the heating plate surface and the relative angle between the needle valve tip and the heating plate surface. . The results are shown in Table 2.

Figure 2013044050
Figure 2013044050

(表2)から、ニードルバルブのノズル詰まりが生じないのはニードル先端部と加熱板面との距離は5〜200mmの範囲に設定かつニードルバルブ先端部と加熱板面との相対角度を95〜150度の範囲に設定すればよいことがわかる。  From Table 2, the nozzle clogging of the needle valve does not occur because the distance between the needle tip and the heating plate surface is set in the range of 5 to 200 mm, and the relative angle between the needle valve tip and the heating plate surface is 95 to It can be seen that the range of 150 degrees may be set.

従って、ニードルバルブ先端部と加熱板面との距離を5〜200mmの範囲に任意に設定できかつニードルバルブ先端部と加熱板面との相対角度を95〜150度の範囲に任意に設定できることにより装置を小型化しても樹脂材料を広い面積に高速で供給することで可能となり、また、装置を小型化しても蒸発面積を大きくすることが可能となる。即ち、高速で安定した薄膜の成膜が実現出来ることが示されている。  Therefore, the distance between the needle valve tip and the heating plate surface can be arbitrarily set within a range of 5 to 200 mm, and the relative angle between the needle valve tip and the heating plate surface can be arbitrarily set within a range of 95 to 150 degrees. Even if the apparatus is downsized, it is possible to supply the resin material to a large area at high speed, and even if the apparatus is downsized, the evaporation area can be increased. That is, it has been shown that a thin film can be formed stably at high speed.

一方、樹脂材料の供給量が増えると加熱板上の表面積に対して樹脂材料の拡がり量が不均一となり易い傾向となり、加熱板上の温度条件を高め設定と相まって、樹脂の一部は熱硬化や突沸現象を起こすようになる。従来例の構成で高堆積速度の場合に見られた欠陥数はこうした突沸粒子の一部が支持体に付着するものと思われる。真空を利用した蒸発方法の場合、こうした突沸粒子は直進性が高く支持体に付着する確立が高い。  On the other hand, when the amount of resin material supplied increases, the amount of resin material spread tends to be non-uniform with respect to the surface area on the heating plate. And sudden bumping occurs. The number of defects observed at a high deposition rate in the configuration of the conventional example is considered that a part of such bumping particles adhere to the support. In the case of an evaporation method using a vacuum, such bumping particles are highly straight and highly likely to adhere to the support.

これに対して実施の形態1〜8の構成では樹脂材料の供給量が加熱板面に均一にかつ広くできることを目的とした構造となっており、これによって樹脂材料の供給量の多い場合、即ち、堆積速度が高い場合でも突沸や熱硬化が起こり難い。従って、欠陥数の少ない樹脂薄膜が得られるものと思われる。  On the other hand, in the configurations of the first to eighth embodiments, the resin material supply amount is designed to be uniform and wide on the heating plate surface. Even when the deposition rate is high, bumping and thermosetting hardly occur. Therefore, it seems that a resin thin film with a small number of defects can be obtained.

また、実施の形態3の構成では樹脂材料の供給個所を樹脂材料の進行方向に加熱板の幅に応じて複数設定することで均一に短時間に樹脂材料を供給できる構造となっており、これによって樹脂材料の供給量の多い場合、即ち、堆積速度が高い場合にも突沸や熱硬化が起こりにくい。従って、欠陥数の少ない樹脂薄膜が得られるものと思われる。  Further, in the configuration of the third embodiment, the resin material can be supplied uniformly and in a short time by setting a plurality of resin material supply locations in the traveling direction of the resin material according to the width of the heating plate. Therefore, bumping and thermosetting hardly occur even when the amount of the resin material supplied is large, that is, when the deposition rate is high. Therefore, it seems that a resin thin film with a small number of defects can be obtained.

また、実施の形態4〜5の構成では樹脂材料の供給個所と加熱板の組み合わせを複数設定することで樹脂材料を均一かつ短時間に供給できかつ蒸発できる構造となっており、これによって樹脂材料の供給量の多い場合、即ち堆積速度が高い場合にも突沸や熱硬化が起こりにくい。 従って、欠陥数の少ない樹脂薄膜が得られるものと思われる。  In the configurations of the fourth to fifth embodiments, a resin material can be supplied uniformly and in a short time by setting a plurality of combinations of resin material supply locations and heating plates, thereby allowing the resin material to evaporate. Bumping and thermal curing are unlikely to occur even when the supply amount of is large, that is, when the deposition rate is high. Therefore, it seems that a resin thin film with a small number of defects can be obtained.

また、比較例の構成では、すでに述べたように堆積速度が高い場合、樹脂の熱硬化が起こる割合が大きく樹脂材料の蒸発速度が成膜時間と共に変化し易いため、成膜条件の制御も実施の形態1〜実施の形態8に比べて困難であった。また、実施の形態1〜8のように樹脂材料の高堆積速度を望む場所においても突沸や熱硬化が起こりにくく、即ち、樹脂材料の飛散が起こりにくいため飛散防止壁が不要となり、蒸発装置の機構がシンプルになる。  In the configuration of the comparative example, as described above, when the deposition rate is high, the rate at which the resin is thermally cured is large, and the evaporation rate of the resin material easily changes with the deposition time. It was difficult as compared with the first to eighth embodiments. Further, as in the first to eighth embodiments, bumping and thermosetting hardly occur even in a place where a high deposition rate of the resin material is desired. That is, since the resin material hardly scatters, a scattering prevention wall becomes unnecessary, and The mechanism becomes simple.

以上の結果から、本発明の薄膜の製造方法および製造装置によれば樹脂材料を効率良く蒸発させると共に、熱硬化や突沸を出来るだけ抑えて安定な成膜を高堆積速度で行うことができ、また、蒸発部の機構がシンプルであることから工業上の意義が大きいものと思われる。  From the above results, according to the thin film manufacturing method and manufacturing apparatus of the present invention, the resin material can be efficiently evaporated, and stable film formation can be performed at a high deposition rate while suppressing thermosetting and bumping as much as possible. Moreover, since the mechanism of an evaporation part is simple, it seems that the industrial significance is large.

尚、上記実施の形態では、誘電体としてアクリレート系の樹脂材料を用いた場合について述べたが、エポキシ系等の他の材料を用いることが出来る。また、実施の形態では硬化の方法として紫外線硬化および電子線硬化を用いた場合について述べたが、本発明は特に硬化の手段によって限定されるものではない。  In the above embodiment, the case where an acrylate resin material is used as the dielectric has been described. However, other materials such as an epoxy resin can be used. In the embodiment, the case where ultraviolet curing and electron beam curing are used as the curing method has been described, but the present invention is not particularly limited by the curing means.

以上の様に本発明の薄膜の製造方法および製造装置によれば、高速で優れた樹脂薄膜が得られる。  As described above, according to the thin film manufacturing method and manufacturing apparatus of the present invention, an excellent resin thin film can be obtained at high speed.

1 長尺基板
2、2a、2b、2c、2d ニードルバルブ
3、3a、3b、3c、3d ノズル
4 供給弁
5 真空槽
6 排気系
7 キャン
11,11a、11b 加熱板
13 周囲壁
14 硬化装置
15 捲き出しロール
16 捲き取りロール
17 ガイドロール
18 駆動方向
DESCRIPTION OF SYMBOLS 1 Long board | substrate 2, 2a, 2b, 2c, 2d Needle valve 3, 3a, 3b, 3c, 3d Nozzle 4 Supply valve 5 Vacuum tank 6 Exhaust system 7 Can 11, 11a, 11b Heating plate 13 Perimeter wall 14 Curing apparatus 15 Separation roll 16 Separation roll 17 Guide roll 18 Driving direction

Claims (11)

真空中で樹脂材料を蒸発させて支持体に付着させる薄膜の製造方法において、樹脂材料を噴射により加熱板面に均一の厚みに吐出させながら蒸発させることを特徴とする蒸発装置の製造方法。  A method of manufacturing an evaporation apparatus, wherein a resin material is evaporated in vacuum and adhered to a support, wherein the resin material is evaporated while being jetted onto a heating plate surface to a uniform thickness. 前記樹脂材料の供給方法において、ニードルバルブを用いることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The method for manufacturing an evaporation apparatus according to claim 1, wherein a needle valve is used in the method for supplying the resin material. 前記樹脂材料の供給方法において、ニードルバルブの開閉駆動および制御に電動アクチュエータを用いることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The method for manufacturing an evaporation apparatus according to claim 1, wherein in the resin material supply method, an electric actuator is used for opening / closing drive and control of the needle valve. 前記樹脂材料の供給方法において、支持体に樹脂材料を付着させる長さに応じてニードルバルブを用いた樹脂材料の供給点を加熱板の長さ方向に複数個所設けることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The resin material supply method according to claim 1, wherein a plurality of resin material supply points using a needle valve are provided in a length direction of the heating plate in accordance with a length of the resin material attached to the support. The manufacturing method of the evaporation apparatus as described in any one of. 前記樹脂材料の供給方法において、支持体に樹脂材料を付着させる幅に応じてニードルバルブを用いた樹脂材料の供給点を加熱板の幅方向に複数個所設けることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The resin material supply method according to claim 1, wherein a plurality of resin material supply points using a needle valve are provided in a width direction of the heating plate in accordance with a width in which the resin material is attached to the support. Method for manufacturing the evaporation apparatus. 前記樹脂材料の供給方法において、ニードルバルブを用いた樹脂材料の供給部と加熱板の組み合わせをひとつのユニットとして加熱板の長さ方向に複数ユニット設けることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The evaporation according to claim 1, wherein in the resin material supply method, a plurality of units are provided in the length direction of the heating plate as a unit consisting of a combination of a resin material supply unit using a needle valve and the heating plate. Device manufacturing method. 前記樹脂材料の供給方法において、ニードルバブルの先端部から加熱板までの距離を、5〜200mmとすることを特徴とする請求項1に記載の製造装置。  2. The manufacturing apparatus according to claim 1, wherein in the resin material supply method, a distance from a tip of the needle bubble to the heating plate is set to 5 to 200 mm. 前記樹脂材料の供給方法において、ニードルバルブの先端部と加熱板面との相対角度を、95〜150度とすることを特徴とする請求項1に記載の製造装置。  2. The manufacturing apparatus according to claim 1, wherein in the resin material supply method, a relative angle between a tip portion of the needle valve and a heating plate surface is set to 95 to 150 degrees. 前記樹脂材料の供給方法において、ニードルバルブの先端針先部がニードルバルブノズル部下面から飛出し出来ることを特徴とする請求項1に記載の製造装置。  2. The manufacturing apparatus according to claim 1, wherein, in the resin material supply method, a tip needle tip portion of the needle valve can be ejected from a lower surface of the needle valve nozzle portion. 前記樹脂材料の供給方法において、ニードルバルブノズル部下面からのニードルバルブ先端針先部までの飛出し距離を2mmとすることを特徴とする請求項1に記載の製造装置。  2. The manufacturing apparatus according to claim 1, wherein, in the resin material supply method, a jumping distance from the lower surface of the needle valve nozzle portion to the needle valve tip needle tip portion is set to 2 mm. 前記樹脂材料の供給方法において、ニードルバルブノズル部の角度を12.5度とすることを特徴とする請求項1に記載の蒸発装置の製造方法。  2. The method of manufacturing an evaporation apparatus according to claim 1, wherein an angle of the needle valve nozzle portion is set to 12.5 degrees in the resin material supply method.
JP2011195461A 2011-08-22 2011-08-22 Thin film evaporator Withdrawn JP2013044050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195461A JP2013044050A (en) 2011-08-22 2011-08-22 Thin film evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195461A JP2013044050A (en) 2011-08-22 2011-08-22 Thin film evaporator

Publications (1)

Publication Number Publication Date
JP2013044050A true JP2013044050A (en) 2013-03-04

Family

ID=48008186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195461A Withdrawn JP2013044050A (en) 2011-08-22 2011-08-22 Thin film evaporator

Country Status (1)

Country Link
JP (1) JP2013044050A (en)

Similar Documents

Publication Publication Date Title
KR101242989B1 (en) Film-forming apparatus, film-forming method and semiconductor device
US8544410B2 (en) Immobilization apparatus
KR100400981B1 (en) Method of producing thin resin films
CN108472676B (en) Droplet coating and film forming apparatus and droplet coating and film forming method
JP4857362B2 (en) Aerosol injection apparatus and film forming method using the same
CN113438986B (en) Method for manufacturing all-solid-state battery
US9034438B2 (en) Deposition method using an aerosol gas deposition for depositing particles on a substrate
JP2010506722A (en) Method and apparatus for making coatings using ultrasonic spray deposition
US20160074903A1 (en) Applying or dispensing method for powder or granular material
KR101518545B1 (en) Apparatus for Coating Graphene Film Using Cold Spray
KR20040012985A (en) Method and apparatus for preparing thin resin film
US10625297B2 (en) Method of applying powder or granular material
JP3614644B2 (en) Manufacturing method of laminate
TW201002427A (en) Electrostatic coating apparatus
CN105983511B (en) Apparatus for coating and coating method
RU2371379C1 (en) Plating method of nano-coating and device for its implementation
CN104781017A (en) Structure formed on substrate, structure manufacturing method and line pattern
JP2013044050A (en) Thin film evaporator
JP2021118062A (en) Secondary battery and manufacturing method of secondary battery
JP2005014483A (en) Method for manufacturing laminate
JP3502261B2 (en) Method for manufacturing resin thin film
CN114173938B (en) Spraying device and spraying method
WO2021111947A1 (en) Application or film formation method for particulate matter
KR101986306B1 (en) Vacuum suspension plasma spray aparattus and vacuum suspension plasma spray method
JP2014180590A (en) Electrospray device and electrospray method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104