JPH11209854A - Composite magnetic material having ferromagnetic part and nonmagnetic part and its production - Google Patents

Composite magnetic material having ferromagnetic part and nonmagnetic part and its production

Info

Publication number
JPH11209854A
JPH11209854A JP10022525A JP2252598A JPH11209854A JP H11209854 A JPH11209854 A JP H11209854A JP 10022525 A JP10022525 A JP 10022525A JP 2252598 A JP2252598 A JP 2252598A JP H11209854 A JPH11209854 A JP H11209854A
Authority
JP
Japan
Prior art keywords
less
formula
ferromagnetic
magnetic
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10022525A
Other languages
Japanese (ja)
Inventor
Tokuo Egawa
篤雄 江川
Katsunori Takada
勝典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10022525A priority Critical patent/JPH11209854A/en
Publication of JPH11209854A publication Critical patent/JPH11209854A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite magnetic material having a high detection sensitivity and improved strength by preparing a steel having a componental compsn. contg. specified ratios of C, Si, Mn, Ni, Cr, Mo and Al and satisfying specified Md30 value and equivalent Heq value and having a specified ferromagnetic part and nonmagnetic part. SOLUTION: A composite magnetic material having a componental compsn. of steel contg., by weight, <=0.1%, C, <=1.0% Si, <=1.5% Mn, 6.0 to 12.0% Ni, 12.0 to 20.0% Cr, <=2.0% Mo, 0.5 to 2.0% Al, and the balance Fe with inevitable impurities and satisfying the formula of Angel: md30=413-462(C%+N%)-92(Si%)-8.1(Mn%)-13.7 (Cr%)-9.5(Ni%)-18.5(Mo%)=20 to 90 deg.C and the Ni equivalent of the formula of Hirayama Heq=(Ni%)+1.05(Mn%)+0.65(Cr%)+0.36(Si%)+12.6(C%)=19 to 23% and having a ferromagnetic part with >=0.3T magnetic flux density B50 and a nonmagnetic part with <=1.2 permeability is prepd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料噴射バルブな
どに使用する強磁性部と非磁性部を合わせ持つ複合磁性
材料およびその製造方法、詳細には非磁性鋼を冷間加工
することによって全体を強磁性化し、その後その一部を
加熱溶体化して非磁性化する強磁性部と非磁性部を同時
に合わせ持つ複合磁性材料およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material having a combination of a ferromagnetic portion and a non-magnetic portion used for a fuel injection valve and the like, and a method of manufacturing the same. The present invention relates to a composite magnetic material having both a ferromagnetic portion and a non-magnetic portion, both of which are made ferromagnetic and then a part of which is heat-melted to make it non-magnetic, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、強磁性部と非磁性部を合わせ持つ
複合磁性材料は、メカトロニクス分野において磁気スケ
ールとして位置検出機構に用いられており、また最近燃
料噴射バルブに使用することが提案されている。この複
合磁性材料の製造方法の一つとしてCr、Niを含み、
あるいはさらにMoを含む準安定オーステナイト鋼にお
いて、Md =413 ─462 ×( C+N)─9.2 Si─8.1
Mn─ 13.7 Cr─ 9.5Ni─18.5Moなる式で表され
るMd 値が15℃以上で、さらに2Ni+100 ×(N+
C)−Cr ≧2.0の条件を満足する成分組成の材料
を冷間伸線して強磁性にし、局部を加熱溶体化して非磁
性にした複合磁性材料およびその製造方法が特開昭63
─161146号公報に開示されている。しかし、この
複合磁性材料は、強磁性部の比電気抵抗値が低く、した
がって検出感度が低いという問題がある。
2. Description of the Related Art Conventionally, a composite magnetic material having a combination of a ferromagnetic part and a non-magnetic part has been used as a magnetic scale in a mechatronics field for a position detecting mechanism, and has recently been proposed for use in a fuel injection valve. I have. One of the methods for producing this composite magnetic material includes Cr and Ni,
Alternatively, in a metastable austenitic steel further containing Mo, Md = 413─462 × (C + N) ─9.2 Si─8.1
When the Md value represented by the formula of Mn─13.7Cr─9.5Ni─18.5Mo is 15 ° C. or more, 2Ni + 100 × (N +
C) A composite magnetic material in which a material having a component composition satisfying the condition of -Cr ≧ 2.0 is cold drawn to be ferromagnetic, and a local portion is heat-melted to make it non-magnetic and a method for producing the same are disclosed in
No. 161146. However, this composite magnetic material has a problem that the specific electric resistance value of the ferromagnetic portion is low, and thus the detection sensitivity is low.

【0003】また、C:0.6%以下、Cr:12〜1
9%、Ni:6〜12%、Mn:2%以下、Mo:2%
以下、Nb:1%以下、残部Feおよび不可避不純物に
よって構成され、 平山の等量Heq=(Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%)+12.6(C%) =20〜23%で、かつ ニッケル等量Nieq=(Ni%)+30(C%) +0.5(Mn%)=9〜12%で、かつ クロム等量Cr=(Cr%)+(Mo%) +0.5(Si%) +0.5(Nb%) =16〜19% である成分組成の材料に歪み付加を行う加工工程を多段
階にするとともに、各加工工程の温度を100℃以内に
制御することにより、磁束密度B4000が0.3T(テ
ラ)以上の強磁性部を付し、前記強磁性部の一部を10
秒以内で加熱溶体化させ、結晶粒径を30μm以下とす
る複合磁性部材の製造方法が特開平8─3643号公報
に開示されている。しかし、この複合磁性材料は、極低
温の温度環境においても強磁性と非磁性を保てるもので
あるが、特開昭63─161146号と同様に強磁性部
の比電気抵抗値が低く、検出感度が低いという問題があ
る。
Also, C: 0.6% or less, Cr: 12-1
9%, Ni: 6 to 12%, Mn: 2% or less, Mo: 2%
In the following, Nb: 1% or less, composed of the balance of Fe and unavoidable impurities. Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C %) = 20 to 23%, nickel equivalent Nieq = (Ni%) + 30 (C%) + 0.5 (Mn%) = 9 to 12%, and chromium equivalent Cr = (Cr%) + ( Mo%) + 0.5 (Si%) + 0.5 (Nb%) = 16 to 19% The number of processing steps for applying strain to a material having a composition of 16 to 19% is increased, and the temperature of each processing step is set to 100 ° C. Within this range, a ferromagnetic part having a magnetic flux density B 4000 of 0.3 T (tera) or more is provided, and a part of the ferromagnetic part is
Japanese Patent Application Laid-Open No. 8-3643 discloses a method for producing a composite magnetic member in which a solution is heated and melted within seconds to reduce the crystal grain size to 30 μm or less. However, this composite magnetic material can maintain ferromagnetism and non-magnetism even in a very low temperature environment. However, as in JP-A-63-161146, the specific electric resistance of the ferromagnetic portion is low, and the detection sensitivity is low. Is low.

【0004】[0004]

【発明が解決しようとする課題】本発明は、強磁性部の
検出感度が高く、且つ高強度の強磁性部と非磁性部を合
わせ持つ複合磁性材料およびその製造方法を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite magnetic material having both a ferromagnetic portion and a non-magnetic portion having high detection sensitivity for a ferromagnetic portion and having high strength, and a method for producing the same. I do.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の強磁性部と非磁性部を合わせ持つ複合磁性
材料においては、C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、Ni:6.0〜12.0%、
Cr:12.0〜20.0%、Mo:2.0%以下、A
l:0.5〜2.0%を含み、更に必要に応じてNb:
2.0%以下を含み、残部Feおよび不可避不純物から
なり、下記式1および式2を満たす鋼の成分組成を有
し、磁束密度B50が0.3T(テラ)以上の強磁性部
と透磁率1.2以下の非磁性部を有するものとすること
である。 式1 Angelの式Md30= 413 ─462(C%+N%)─9.2(Si%)─8.1(Mn%)─13.7(Cr%) ─9.5(Ni%) ─18.5(Mo%) =20〜90℃ 式2 平山の等量Heq= (Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%) +12.6(C%)=19〜23%
In order to solve the above-mentioned problems, in the composite magnetic material of the present invention having both a ferromagnetic portion and a non-magnetic portion, C: 0.1% or less, Si: 1.0% or less. , Mn: 1.5% or less, Ni: 6.0 to 12.0%,
Cr: 12.0 to 20.0%, Mo: 2.0% or less, A
l: 0.5 to 2.0%, and if necessary, Nb:
A ferromagnetic part containing not more than 2.0%, the balance being Fe and unavoidable impurities, having a steel composition satisfying the following formulas 1 and 2, and having a magnetic flux density B50 of 0.3 T (tera) or more; 1.2 or less non-magnetic portion. Formula 1 Formula of Angel Md30 = 413 ─462 (C% + N%) ─9.2 (Si%) ─8.1 (Mn%) ─13.7 (Cr%) ─9.5 (Ni%) ─18.5 (Mo%) = 20 to 90 ° C. Formula 2 Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C%) = 19-23%

【0006】また、上記課題を解決するため、本発明の
強磁性部と非磁性部を合わせ持つ複合磁性材料の製造方
法においては、C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、Ni:6.0〜12.0%、
Cr:12.0〜20.0%、Mo:2.0%以下、A
l:0.5〜2.0%を含み、更に必要に応じてNb:
2.0%以下を含み、残部Feおよび不可避不純物から
なり、上記式1および式2を満たす成分組成の鋼を冷間
加工し、その後必要に応じて時効析出処理して磁束密度
B50が0.3T以上の強磁性部にし、この強磁性部の
一部を加熱溶体化して非磁性化することである。
In order to solve the above-mentioned problems, a method of manufacturing a composite magnetic material having a ferromagnetic part and a non-magnetic part according to the present invention is characterized in that C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, Ni: 6.0 to 12.0%,
Cr: 12.0 to 20.0%, Mo: 2.0% or less, A
l: 0.5 to 2.0%, and if necessary, Nb:
A steel containing 2.0% or less, the balance being Fe and unavoidable impurities, and having a component composition satisfying the above formulas 1 and 2, is cold-worked, and then, if necessary, is subjected to aging precipitation treatment to obtain a magnetic flux density B50 of 0.1%. A ferromagnetic portion of 3T or more is formed, and a part of the ferromagnetic portion is heated to a solution to be demagnetized.

【0007】本発明について詳細に説明する。本発明の
複合磁性材料の上記成分組成の鋼は、この種の鋼の通常
の製造方法、例えば真空誘導炉で溶製した後熱間鍛造、
熱間圧延して板材又は棒材にする方法によって製造する
ことができる。管が必要の場合には、通常の製造方法、
例えば板材を曲げて溶接して製造することができる。さ
らに、本発明の冷間加工は、冷間圧延、冷間引抜き、冷
間絞り、冷間しごきなどで行うことができる。その加工
率は、B50が0.3T以上になるような加工率、例え
ば30%以上である。なお、このように加工率を結果に
よって特定しているのは、加工率が材料である鋼の成分
組成、時効析出処理を行うか否か、求める磁束密度など
によって異なるので一概に決められないからである。ま
た、本発明の時効析出処理は、450〜780℃で30
〜100分加熱し、空冷するか、その後さらに500〜
600℃で80〜400分加熱して行うのが好ましい。
また、本発明の加熱溶体化は、部材の非磁性化する箇所
のみを溶融することなく加熱することができれば如何な
る方法でもよいが、高周波加熱で行うのが容易である。
The present invention will be described in detail. The steel having the above-described composition of the composite magnetic material of the present invention is produced by a usual method for producing this type of steel, for example, hot forging after melting in a vacuum induction furnace.
It can be manufactured by a method of hot rolling into a plate or bar. If tubes are needed, use the usual manufacturing method,
For example, it can be manufactured by bending and welding a plate material. Further, the cold working of the present invention can be performed by cold rolling, cold drawing, cold drawing, cold ironing, or the like. The processing rate is such that B50 becomes 0.3T or more, for example, 30% or more. Note that the processing rate is specified by the result in this way because the processing rate differs depending on the composition of the steel, which is the material, whether or not to perform the aging precipitation treatment, the magnetic flux density to be obtained, etc., so it cannot be determined unconditionally. It is. Further, the aging precipitation treatment of the present invention is performed at 450 to 780 ° C. for 30 minutes.
Heat for 100 minutes and air-cool, or then 500-
The heating is preferably performed at 600 ° C. for 80 to 400 minutes.
The solution heat treatment of the present invention can be performed by any method as long as it can heat only the portion of the member to be demagnetized without melting, but it is easy to perform high-frequency heating.

【0008】次に、本発明の強磁性部と非磁性部を合わ
せ持つ複合磁性材料およびその製造方法において、成分
組成などを上記のように限定した理由を説明する。 C:0.1%以下 Cは、侵入型元素であって、強度の向上に寄与する元素
であるが、多量に添加するとCrと結合して炭化物を形
成し、マトリックスの固溶Cr量を低下させて耐食性を
劣化させるため、その上限を0.1%とする。
Next, the reason why the component composition and the like are limited as described above in the composite magnetic material having the ferromagnetic portion and the non-magnetic portion of the present invention and the method for producing the same will be described. C: 0.1% or less C is an interstitial element and contributes to the improvement of strength. However, when added in a large amount, it combines with Cr to form carbides and lowers the amount of solute Cr in the matrix. Therefore, the upper limit is set to 0.1%.

【0009】Si:1.0%以下 Siは、主として溶解精錬時の脱酸剤として必要な元素
であるが、多量に含有すると、熱間加工性を低下するの
で、その上限を1.0%とする。Mn:1.5%以下M
nは、オーステナイトを生成して非磁性にし、且つSを
MnSとして固定し、熱間加工性を改善する元素である
が、1.5%を超えて含有させても効果の増大がなく、
また材料のコストも高くなるので、その上限を1.5%
とする。
Si: 1.0% or less Si is an element mainly required as a deoxidizing agent during refining, but if contained in a large amount, the hot workability is reduced, so the upper limit is 1.0%. And Mn: 1.5% or less M
n is an element that forms austenite to make it non-magnetic, fixes S as MnS, and improves hot workability. However, even if it exceeds 1.5%, the effect is not increased.
In addition, the cost of the material increases, so the upper limit is 1.5%.
And

【0010】Ni:6.0〜12.0% Niは、オーステナイトを生成して非磁性にする元素で
あり、オーステナイト相の安定に寄与し、変形抵抗を低
下させ、さらに低温での加工性を向上させる元素である
が、6.0%より少ないとこれらの効果、特に比透磁率
が1.2以下にならず、12.0%を超えて含有させて
もコストを上げるだけで非磁性、耐食性改善効果は飽和
するので、その含有範囲を6.0〜12.0%とする。
Ni: 6.0 to 12.0% Ni is an element that forms austenite to make it non-magnetic, contributes to the stability of the austenite phase, reduces deformation resistance, and further improves workability at low temperatures. If the content is less than 6.0%, these effects, in particular, the relative magnetic permeability does not become 1.2 or less. Since the effect of improving corrosion resistance is saturated, the content range is set to 6.0 to 12.0%.

【0011】Cr:12.0〜20.0% Crは、ステンレス鋼の耐食性を向上させるとともに、
冷間加工した場合のステンレス鋼の磁束密度を高くする
元素であるが、12.0%より少ないと耐食性および磁
束密度が十分高くならず、20.0%を超えるとフェラ
イト・オーステナイト2相組織になるため非磁性にする
ことができないので、その含有範囲を12.0〜20.
0%とする。 Mo:2.0%以下 Moは、強度を高めるとともに、Ms点を低めるのに有
効な元素であるが、2.0%を超えると過量のフェライ
トを生成する場合があるので、その上限を2.0%とす
る。好ましくは0.1〜1.8%である。
Cr: 12.0 to 20.0% Cr improves the corrosion resistance of stainless steel,
It is an element that increases the magnetic flux density of stainless steel when cold worked, but if it is less than 12.0%, the corrosion resistance and magnetic flux density do not become sufficiently high, and if it exceeds 20.0%, a ferrite-austenite two-phase structure is formed. Therefore, the content range is from 12.0 to 20.
0%. Mo: 2.0% or less Mo is an element effective in increasing the strength and lowering the Ms point. However, if it exceeds 2.0%, an excessive amount of ferrite may be generated. 0.0%. Preferably it is 0.1-1.8%.

【0012】Al:0.5〜2.0% Alは、比電気抵抗値を大きくし、且つ析出硬化して材
料の硬度を高くするとともに強度を高くし、また磁気特
性に悪影響を及ぼす酸素を下げるので、その含有範囲を
0.5〜2.0%とする。 Nb:2.0%以下 Nbは、結晶粒の微細化および強度の向上に寄与するた
め、必要により含有させる元素であるが、多量に含有す
ると成形性が低下するので、その上限を2.0%とす
る。
Al: 0.5% to 2.0% Al increases the specific electric resistance, increases the hardness of the material by precipitation hardening, increases the strength, and reduces oxygen that adversely affects the magnetic properties. Therefore, the content range is set to 0.5 to 2.0%. Nb: 2.0% or less Nb is an element to be added as necessary because it contributes to refinement of crystal grains and improvement in strength. However, if Nb is contained in a large amount, formability is reduced. %.

【0013】Angelの式Md30(℃)=20〜9
0℃ Angelの式Md30(℃)が20℃より低いと冷間
加工の加工度を上げても強磁性部のB50が0.3T以
上にならず、また90℃より高くなると加熱溶体化して
も非磁性部の比透磁率が1.2以下にならないからであ
る。 平山の等量Heq=19〜23% Heqが19%より低いと非磁性部の比透磁率が1.2
以下にならず、またHeqが23%より大きいとオース
テナイトが安定し、冷間加工の加工率を高くしても磁束
密度のB50が0.3T以上にならないので、その範囲
を19〜23%とする。
Angel equation Md30 (° C.) = 20-9
If the formula Md30 (° C.) of 0 ° C. Angel is lower than 20 ° C., the B50 of the ferromagnetic portion does not become 0.3 T or more even if the degree of cold working is increased, and if it becomes higher than 90 ° C., it becomes a heated solution. This is because the relative magnetic permeability of the non-magnetic portion does not fall below 1.2. Hirayama's equivalent Heq = 19-23% When Heq is lower than 19%, the relative magnetic permeability of the non-magnetic portion is 1.2.
If the Heq is greater than 23%, the austenite is stable, and the B50 of the magnetic flux density does not become 0.3T or more even when the cold working ratio is increased. I do.

【0014】次に、本発明の複合磁性材料の強磁性部の
磁束密度B50を0.3T以上にし、非磁性部を透磁率
1.2以下に限定した理由を説明する。燃料噴射バルブ
などに使用する場合、強磁性部のB50が0.3T以上
であれば、ソレノイドなどから発生する磁気(%)がそ
れを通ることによって大幅に低下することがないからで
あり、また非磁性部の透磁率が1.2以下であれば、ソ
レノイドなどから発生する磁気を十分遮断することがで
きるからである。
Next, the reason why the magnetic flux density B50 of the ferromagnetic portion of the composite magnetic material of the present invention is set to 0.3 T or more and the non-magnetic portion is set to a magnetic permeability of 1.2 or less will be described. When used in a fuel injection valve or the like, if the B50 of the ferromagnetic portion is 0.3 T or more, the magnetism (%) generated from the solenoid or the like does not significantly decrease by passing through it. If the magnetic permeability of the non-magnetic portion is 1.2 or less, magnetism generated from a solenoid or the like can be sufficiently cut off.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を説明す
る。 実施例1 下記表1に示した成分組成の本発明例および比較例の鋼
を真空誘導炉において溶解した後、これらを鋳造および
圧延加工して厚さ2mm×幅400mmの板を製造し
た。これらの板を所定幅に切断し、曲げて外径30mm
の電縫管とした。この管を950℃で焼鈍して軟化した
後、加工率50%の冷間引抜き加工をして外径28mm
×板厚1mmの管とした。
Embodiments of the present invention will be described below. Example 1 Steels of the present invention and comparative examples having the component compositions shown in Table 1 below were melted in a vacuum induction furnace, and then cast and rolled to produce a plate having a thickness of 2 mm and a width of 400 mm. These plates are cut to a predetermined width and bent to an outer diameter of 30 mm.
ERW tube. This tube was annealed at 950 ° C. and softened, and then subjected to cold drawing at a working ratio of 50% to obtain an outer diameter of 28 mm.
X A tube having a thickness of 1 mm was used.

【0016】[0016]

【表1】 [Table 1]

【0017】上記冷間引抜き加工をした管を試験材とし
て磁束密度のB50および比電気抵抗値を測定し、その
結果を下記表2の50%冷間加工材の磁気特性B50の
欄および比電気抵抗値の欄に記載した。また、上記冷間
引抜き加工をした管から長さ3mmの試験片を切り出
し、この試験片を1050℃×30分間加熱水冷して溶
体化した。この溶体化した試験片を用いて透磁率を測定
し、その結果を下記表2の透磁率の欄に記載した。
Using the cold-drawn pipe as a test material, the magnetic flux density B50 and the specific electrical resistance were measured. The results were shown in Table 2 below in the column of magnetic properties B50 of 50% cold-worked material and the specific electrical resistance. It is described in the column of resistance value. Further, a test piece having a length of 3 mm was cut out from the tube subjected to the cold drawing, and the test piece was heated and cooled with water at 1050 ° C. for 30 minutes to form a solution. The magnetic permeability was measured using the solution-treated test pieces, and the results are shown in the column of magnetic permeability in Table 2 below.

【0018】[0018]

【表2】 [Table 2]

【0019】これらの結果より、本発明例のものはいず
れも磁束密度B50が0.3T以上、透磁率が1.2以
下であり、燃料バルブなどに用いる複合磁性材料に必要
な性能を有しており、また検出感度に影響する比電気抵
抗値も61μΩ/cm以上であった。これに対し、Al
が0.5%より少ない比較例のNo.11 のものは、磁束密
度B50が0.7Tで0.3T以上であるが、透磁率が
1.21と高くなっており、複合磁性材料として十分な
ものではなかった。また検出感度に影響する比電気抵抗
値も51μΩ/cmと低かった。また、同じくAlが
0.5%より少ない比較例のNo.12 のものは、磁束密度
B50が0.2Tで0.3T以下であり、また透磁率も
1.24と高くなっており、複合磁性材料に必要な性能
を有していなかった。また検出感度に影響する比電気抵
抗値も52μΩ/cmと低かった。なお、実施例1の表
1には、本発明例および比較例の鋼についてPickering
の式により計算したMs点の温度を記載しているが、寒
冷地で使用する機器を製造する場合にはMs点の低いも
のを使用する必要があるので、Ms点も記載した。
From these results, all of the examples of the present invention have a magnetic flux density B50 of 0.3 T or more and a magnetic permeability of 1.2 or less, and have the performance required for a composite magnetic material used for a fuel valve or the like. The specific electrical resistance value affecting the detection sensitivity was 61 μΩ / cm or more. In contrast, Al
In Comparative Example No. 11 having a magnetic flux density B50 of less than 0.5% and a magnetic flux density B50 of 0.7 T or more but 0.3 T or more, the magnetic permeability was as high as 1.21 and was sufficient as a composite magnetic material. It was not something. Further, the specific electrical resistance value affecting the detection sensitivity was as low as 51 μΩ / cm. Also, in Comparative Example No. 12 in which Al was less than 0.5%, the magnetic flux density B50 was 0.2 T or less and 0.3 T or less, and the magnetic permeability was as high as 1.24. It did not have the required performance for magnetic materials. The specific electrical resistance value affecting the detection sensitivity was as low as 52 μΩ / cm. Table 1 in Example 1 shows Pickering for steels of the present invention and comparative examples.
The temperature at the Ms point calculated by the following equation is described. However, when manufacturing equipment to be used in a cold region, it is necessary to use a device having a low Ms point, so the Ms point is also described.

【0020】実施例2 上記実施例1の本発明例のNo.2および比較例のNo.12 の
実験材を30%および50%の冷間引抜き加工をした
後、表3に示した条件で時効析出処理して磁束密度のB
50を測定した、その結果を表4に示す。また上記本発
明例のNo.2および比較例のNo.12 の実験材を30%の冷
間引抜き加工をした後、表3に示した条件で時効析出処
理したものの硬度を測定し、その結果を表4に示す。
Example 2 No. 2 of the present invention of Example 1 and No. 12 of the comparative example were subjected to cold drawing of 30% and 50% under the conditions shown in Table 3. Aging precipitation treatment and magnetic flux density B
50 were measured, and the results are shown in Table 4. Further, the test materials of No. 2 of the present invention and No. 12 of the comparative example were subjected to cold drawing of 30%, and then subjected to aging precipitation treatment under the conditions shown in Table 3, and the hardness was measured. Are shown in Table 4.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】これらの結果より、本発明例のNo.2の実験
材は、的確な時効析出処理をすると、硬度(強度)が向
上するとともに磁束密度のB50が高くなり、特にTH
950は、30%の冷間加工したもので、約2.7倍、
50%の冷間加工したもので、2.4倍になっている。
これに対して、比較例のNo.12 の実験材は、時効析出処
理をすると硬度(強度)が低下し、磁束密度のB50が
全体的に見ると殆ど変わっていなかった。
From these results, it can be seen that the No. 2 experimental material of the present invention, when subjected to a proper aging precipitation treatment, has an improved hardness (strength) and a higher magnetic flux density B50.
950 is 30% cold-worked, about 2.7 times,
50% cold-worked, 2.4 times larger.
On the other hand, in the experimental material of Comparative Example No. 12, the hardness (strength) was reduced by the aging treatment, and the B50 of the magnetic flux density was hardly changed as a whole.

【0024】[0024]

【発明の効果】本発明の複合磁性材料およびその複合磁
性材料の製造方法は、上記構成にしたことにより、次の
ような優れた効果を奏する。 (1)磁束密度B50が0.3T以上の複合材料が得ら
れる。 (2)十分電気抵抗が高いため、検出感度が良好な複合
材料が得られる。 (3)時効析出処理を行うことにより、強度が向上する
とともに磁束密度B50を高くすることができる。
The composite magnetic material of the present invention and the method for producing the composite magnetic material according to the present invention have the following excellent effects by adopting the above-mentioned structure. (1) A composite material having a magnetic flux density B50 of 0.3 T or more is obtained. (2) Since the electric resistance is sufficiently high, a composite material having good detection sensitivity can be obtained. (3) By performing the aging precipitation treatment, the strength can be improved and the magnetic flux density B50 can be increased.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02M 51/06 F02M 51/06 S H01F 1/00 H01F 1/00 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02M 51/06 F02M 51/06 S H01F 1/00 H01F 1/00 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下同じ)、C:0.1%以
下、Si:1.0%以下、Mn:1.5%以下、Ni:
6.0〜12.0%、Cr:12.0〜20.0%、M
o:2.0%以下、Al:0.5〜2.0%、残部Fe
および不可避不純物を含み、且つ下記式1および式2を
満たす鋼の成分組成を有し、磁束密度B50が0.3T
以上の強磁性部と透磁率1.2以下の非磁性部を有する
ことを特徴とする強磁性部と非磁性部を合わせ持つ複合
磁性材料。 式1 Angelの式Md30= 413 ─462(C%+N%)─9.2(Si%)─8.1(Mn%)─13.7(Cr%) ─9.5(Ni%) ─18.5(Mo%) =20〜90℃ 式2 平山の等量Heq= (Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%) +12.6(C%)=19〜23%
1. In weight% (the same applies hereinafter), C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, Ni:
6.0 to 12.0%, Cr: 12.0 to 20.0%, M
o: 2.0% or less, Al: 0.5 to 2.0%, balance Fe
And a steel composition containing unavoidable impurities and satisfying the following formulas 1 and 2, and having a magnetic flux density B50 of 0.3 T
A composite magnetic material having both a ferromagnetic portion and a nonmagnetic portion, wherein the composite magnetic material has the above ferromagnetic portion and a nonmagnetic portion having a magnetic permeability of 1.2 or less. Formula 1 Formula of Angel Md30 = 413 ─462 (C% + N%) ─9.2 (Si%) ─8.1 (Mn%) ─13.7 (Cr%) ─9.5 (Ni%) ─18.5 (Mo%) = 20 to 90 ° C. Formula 2 Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C%) = 19-23%
【請求項2】 C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、Ni:6.0〜12.0%、
Cr:12.0〜20.0%、Mo:2.0%以下、A
l:0.5〜2.0%、Nb:2.0%以下、残部Fe
および不可避不純物を含み、且つ下記式1および式2を
満たす鋼の成分組成を有し、磁束密度B50が0.3T
以上の強磁性部と透磁率1.2以下の非磁性部を有する
ことを特徴とする強磁性部と非磁性部を合わせ持つ複合
磁性材料。 式1 Angelの式Md30= 413 ─462(C%+N%)─9.2(Si%)─8.1(Mn%)─13.7(Cr%) ─9.5(Ni%) ─18.5(Mo%) =20〜90℃ 式2 平山の等量Heq= (Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%) +12.6(C%)=19〜23%
2. C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, Ni: 6.0 to 12.0%,
Cr: 12.0 to 20.0%, Mo: 2.0% or less, A
l: 0.5 to 2.0%, Nb: 2.0% or less, balance Fe
And a steel composition containing unavoidable impurities and satisfying the following formulas 1 and 2, and having a magnetic flux density B50 of 0.3 T
A composite magnetic material having both a ferromagnetic portion and a nonmagnetic portion, wherein the composite magnetic material has the above ferromagnetic portion and a nonmagnetic portion having a magnetic permeability of 1.2 or less. Formula 1 Formula of Angel Md30 = 413 ─462 (C% + N%) ─9.2 (Si%) ─8.1 (Mn%) ─13.7 (Cr%) ─9.5 (Ni%) ─18.5 (Mo%) = 20 to 90 ° C. Formula 2 Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C%) = 19-23%
【請求項3】 C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、Ni:6.0〜12.0%、
Cr:12.0〜20.0%、Mo:2.0%以下、A
l:0.5〜2.0%を含み、更に必要に応じてNb:
2.0%以下を含み、残部Feおよび不可避不純物から
なり、下記式1および式2を満たす成分組成の鋼を冷間
加工して磁束密度B50が0.3T以上の強磁性部に
し、この強磁性部の一部を加熱溶体化して非磁性部とす
ることを特徴とする強磁性部と非磁性部を合わせ持つ複
合磁性材料の製造方法。 式1 Angelの式Md30= 413 ─462(C%+N%)─9.2(Si%)─8.1(Mn%)─13.7(Cr%) ─9.5(Ni%) ─18.5(Mo%) =20〜90℃ 式2 平山の等量Heq= (Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%) +12.6(C%)=19〜23%
3. C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, Ni: 6.0 to 12.0%,
Cr: 12.0 to 20.0%, Mo: 2.0% or less, A
l: 0.5 to 2.0%, and if necessary, Nb:
A steel containing 2.0% or less, the balance being Fe and unavoidable impurities, and having a component composition satisfying the following formulas 1 and 2 is cold worked to form a ferromagnetic portion having a magnetic flux density B50 of 0.3 T or more. A method for producing a composite magnetic material having both a ferromagnetic part and a non-magnetic part, wherein a part of the magnetic part is heat-fused into a non-magnetic part. Formula 1 Formula of Angel Md30 = 413 ─462 (C% + N%) ─9.2 (Si%) ─8.1 (Mn%) ─13.7 (Cr%) ─9.5 (Ni%) ─18.5 (Mo%) = 20 to 90 ° C. Formula 2 Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C%) = 19-23%
【請求項4】 C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、Ni:6.0〜12.0%、
Cr:12.0〜20.0%、Mo:2.0%以下、A
l:0.5〜2.0%を含み、更に必要に応じてNb:
2.0%以下を含み、残部Feおよび不可避不純物から
なり、下記式1および式2を満たす成分組成の鋼を冷間
加工し、その後時効析出処理して磁束密度B50が0.
3T以上の強磁性部にし、この強磁性部の一部を加熱溶
体化して非磁性部とすることを特徴とする強磁性部と非
磁性部を合わせ持つ複合磁性材料の製造方法。 式1 Angelの式Md30= 413 ─462(C%+N%)─9.2(Si%)─8.1(Mn%)─13.7(Cr%) ─9.5(Ni%) ─18.5(Mo%) =20〜90℃ 式2 平山の等量Heq= (Ni%)+ 1.05(Mn%)+ 0.65(Cr%) + 0.36(Si%) +12.6(C%)=19〜23%
4. C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, Ni: 6.0 to 12.0%,
Cr: 12.0 to 20.0%, Mo: 2.0% or less, A
l: 0.5 to 2.0%, and if necessary, Nb:
A steel containing 2.0% or less, the balance being Fe and unavoidable impurities, and having a component composition satisfying the following formulas (1) and (2) is cold-worked, and then subjected to age precipitation treatment to obtain a magnetic flux density B50 of 0.
A method of manufacturing a composite magnetic material having a combination of a ferromagnetic portion and a nonmagnetic portion, wherein the ferromagnetic portion has a ferromagnetic portion of 3T or more, and a part of the ferromagnetic portion is heat-melted to form a nonmagnetic portion. Formula 1 Formula of Angel Md30 = 413 ─462 (C% + N%) ─9.2 (Si%) ─8.1 (Mn%) ─13.7 (Cr%) ─9.5 (Ni%) ─18.5 (Mo%) = 20 to 90 ° C. Formula 2 Hirayama's equivalent Heq = (Ni%) + 1.05 (Mn%) + 0.65 (Cr%) + 0.36 (Si%) + 12.6 (C%) = 19-23%
JP10022525A 1998-01-21 1998-01-21 Composite magnetic material having ferromagnetic part and nonmagnetic part and its production Withdrawn JPH11209854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022525A JPH11209854A (en) 1998-01-21 1998-01-21 Composite magnetic material having ferromagnetic part and nonmagnetic part and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022525A JPH11209854A (en) 1998-01-21 1998-01-21 Composite magnetic material having ferromagnetic part and nonmagnetic part and its production

Publications (1)

Publication Number Publication Date
JPH11209854A true JPH11209854A (en) 1999-08-03

Family

ID=12085215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022525A Withdrawn JPH11209854A (en) 1998-01-21 1998-01-21 Composite magnetic material having ferromagnetic part and nonmagnetic part and its production

Country Status (1)

Country Link
JP (1) JPH11209854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080656A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Precipitation hardening type martensitic stainless steel and steam turbine long blade using the same
WO2017175539A1 (en) * 2016-04-06 2017-10-12 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080656A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Precipitation hardening type martensitic stainless steel and steam turbine long blade using the same
EP2722407A3 (en) * 2012-10-17 2017-10-25 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardening martensitic stainless steel and long blade for steam turbine using the same
WO2017175539A1 (en) * 2016-04-06 2017-10-12 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
US20190128229A1 (en) * 2016-04-06 2019-05-02 Hitachi Automotive Systems, Ltd. High-Pressure Fuel Supply Pump
EP3441606A4 (en) * 2016-04-06 2020-03-18 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump
US10788003B2 (en) 2016-04-06 2020-09-29 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump

Similar Documents

Publication Publication Date Title
JP2001131713A (en) Ti-CONTAINING ULTRAHIGH STRENGTH METASTABLE AUSTENITIC STAINLESS STEEL AND PRODUCING METHOD THEREFOR
JPS6130017B2 (en)
US4540453A (en) Magnetically soft ferritic Fe-Cr-Ni alloys
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
EP0446188B1 (en) Stainless steel
JP5729827B2 (en) High strength non-magnetic steel
JPH0542493B2 (en)
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JPH11209854A (en) Composite magnetic material having ferromagnetic part and nonmagnetic part and its production
US5242655A (en) Stainless steel
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JPH08269639A (en) High strength non-magnetic stainless steel sheet for fastener and its production
JP2017078195A (en) High hardness stainless steel excellent in corrosion resistance and productivity
EP0783595B1 (en) Use of a nonmagnetic stainless steel
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
JP3276045B2 (en) Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same
JPH06212358A (en) Nonmagnetic pc steel wire and its production
JP4015712B2 (en) Composite magnetic member and manufacturing method thereof
JPS6123750A (en) Nonmagnetic steel
CN100372961C (en) Austenitic high mn stainless steel excellent in workability
JP2587520B2 (en) High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers
JP3179967B2 (en) Manufacturing method of composite magnetic member
CN111492081B (en) Non-magnetic austenitic stainless steel with improved strength and surface conductivity
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JPH05311346A (en) Ferritic heat resistant steel having high creep strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107