JPH11205234A - Space light receiver - Google Patents

Space light receiver

Info

Publication number
JPH11205234A
JPH11205234A JP10017804A JP1780498A JPH11205234A JP H11205234 A JPH11205234 A JP H11205234A JP 10017804 A JP10017804 A JP 10017804A JP 1780498 A JP1780498 A JP 1780498A JP H11205234 A JPH11205234 A JP H11205234A
Authority
JP
Japan
Prior art keywords
light receiving
light
optical axis
amount
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10017804A
Other languages
Japanese (ja)
Inventor
Tateki Orino
干城 折野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10017804A priority Critical patent/JPH11205234A/en
Publication of JPH11205234A publication Critical patent/JPH11205234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To align optical axes in a short time with loose accuracy in the range finding by retrieval of opposite devices in the case of installation of the receivers. SOLUTION: A deviation width from a transmission beam optical axis is set to be O-R1 in the case of an intensity P1 of a transmission beam that provides a light receiving amount of a limit of detection in optical axis deviation in a conventional embodiment. The receiver can detect the optical axis deviation up to a point R2 at which an intensity P2 of a transmission beam is about 10% of the intensity P1, and then the permissible deviation width is 0 to R2 so as to widen the width more than the conventional embodiment. Thus, the optical axes of the receivers are aligned with a looser accuracy than that of the conventional embodiment quickly by using the receivers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気中で光ビーム
を受光しながら受光ビームに対する自装置の受光光軸の
方向を制御する光軸ずれ補正機能を備えた空間光受信装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial light receiving apparatus provided with an optical axis shift correction function for controlling the direction of a light receiving optical axis of the apparatus with respect to a light receiving beam while receiving the light beam in the atmosphere. .

【0002】[0002]

【従来の技術】従来、光軸ずれ補正手段を備え、大気中
で投光・受光を行う空間光通信装置が特開平5−133
716号公報に開示されており、これは2台の同様な通
信装置を空間を隔てて対向設置して双方向で通信を行う
ものである。
2. Description of the Related Art Conventionally, there has been disclosed a spatial optical communication apparatus having an optical axis deviation correcting means for projecting and receiving light in the atmosphere.
This is disclosed in Japanese Patent No. 716, in which two similar communication devices are installed facing each other across a space to perform bidirectional communication.

【0003】図19は従来例の空間光通信装置の構成図
を示し、架台に設けた光軸調整台1上に、通信光の送受
を行う通信用光学系2と視準望遠鏡3が固定され、通信
用光学系2の光軸O1と観察光学系である視準望遠鏡3の
光軸O2が平行になるように組み立てられた自装置と相手
側装置が、所定距離隔てて対向配置されている。
FIG. 19 shows a configuration diagram of a conventional spatial optical communication apparatus. A communication optical system 2 for transmitting and receiving communication light and a collimating telescope 3 are fixed on an optical axis adjusting table 1 provided on a gantry. The own apparatus and the other apparatus assembled so that the optical axis O1 of the communication optical system 2 and the optical axis O2 of the collimating telescope 3 as the observation optical system are arranged opposite to each other at a predetermined distance. .

【0004】空間光通信装置には、送信光Laと受信光Lb
を送受する位置に光軸方向可変部4が配置され、光軸方
向可変部4内には光軸O1に対して略45度に光軸方向可
変ミラー5が斜設されている。光軸方向可変ミラー5の
反射方向には、偏光ビームスプリッタ6、受光光分岐素
子7、正のパワーを有するレンズ群8、本信号検出用受
光素子9が順次に配列され、受光光分岐素子7は図20
に示すように透明平行平板E1の中央部に入射光の殆どを
反射する楕円形ミラー部E2が設けられている。
[0004] The spatial optical communication apparatus includes a transmitting light La and a receiving light Lb.
The optical axis direction variable unit 4 is disposed at a position where the optical axis O1 is transmitted and received, and the optical axis direction variable mirror 5 is inclined in the optical axis direction variable unit 4 at approximately 45 degrees with respect to the optical axis O1. In the reflection direction of the optical axis direction variable mirror 5, a polarizing beam splitter 6, a light receiving light splitting element 7, a lens group 8 having a positive power, and a signal detecting light receiving element 9 are sequentially arranged. Figure 20
As shown in the figure, an elliptical mirror portion E2 that reflects most of the incident light is provided at the center of the transparent parallel plate E1.

【0005】また、受光光分岐素子7の反射方向には、
正のパワーを有するレンズ群10、4分割センサ11が
配置され、偏光ビームスプリッタ6の入射方向には、正
のパワーを有するレンズ群12、紙面に対して垂直方向
に直線偏光となるレーザー光を発する信号発生部の発光
素子としてレーザーダイオード13が配置されている。
4分割センサ11の出力は信号処理部14に接続され、
信号処理部14の出力は光軸方向制御部15を介して光
軸方向可変部4に接続されている。
Further, in the reflection direction of the light receiving light branching element 7,
A lens group 10 having positive power, a four-divided sensor 11 are arranged, and a lens group 12 having positive power, and a laser beam which becomes linearly polarized in a direction perpendicular to the plane of the drawing are arranged in the incident direction of the polarizing beam splitter 6. A laser diode 13 is disposed as a light emitting element of a signal generating unit that emits light.
The output of the quadrant sensor 11 is connected to the signal processing unit 14,
The output of the signal processing unit 14 is connected to the optical axis direction variable unit 4 via the optical axis direction control unit 15.

【0006】偏光ビームスプリッタ6としては、例えば
S偏光の光の殆どを反射しP偏光の光の殆どを通過する
ような誘電体多層薄膜を貼り合わせ面に蒸着した光学素
子が用いられている。この偏光ビームスプリッタ6を使
用して最も効率の良い投光・受光を行うには、送信光La
をS偏光としたときに受信光LbがP偏光となる関係にす
ればよく、また同一構造の受信装置を対向的に配置して
最も効率の良い投光・受光を行うためには、通信用光学
系2を紙面の後方に向けて垂直方向に対し45度に傾斜
させるようにすればよい。
As the polarization beam splitter 6, for example, an optical element is used in which a dielectric multilayer thin film that reflects most of S-polarized light and passes most of P-polarized light is deposited on the bonding surface. In order to perform the most efficient light projection and light reception using this polarization beam splitter 6, the transmission light La
It is sufficient that the received light Lb becomes P-polarized light when is S-polarized light. In order to perform the most efficient light-emitting and light-receiving operations by arranging the receiving devices having the same structure to face each other, The optical system 2 may be inclined at 45 degrees to the vertical direction toward the rear of the paper.

【0007】広帯域化や高速応答が可能な大容量通信を
行う場合には、本信号検出用受光素子9として、例えば
アバランシェフォトダイオードのように有効受光域が直
径1mm以下の小さな素子を使用することが多い。ま
た、4分割センサ11の中心に受光ビームスポットSの
中心が位置したときに、送信光Laが相手側装置を受信可
能な強度分布で照射し、かつ相手側装置からの受信光Lb
が本信号検出用受光素子9の有効受光域を外れないよう
にするためには、装置の組み立て段階において、本信号
検出用受光素子9と4分割センサ11の受光素子との中
心が、装置正面から見たときにレーザーダイオード13
の発光点と一致するように調整する必要がある。
In the case of performing large-capacity communication capable of achieving a wide band and high-speed response, a small element having an effective light receiving area of 1 mm or less in diameter, such as an avalanche photodiode, is used as the light detecting element 9 for signal detection. There are many. Further, when the center of the light receiving beam spot S is located at the center of the four-divided sensor 11, the transmission light La irradiates the partner device with a receivable intensity distribution and receives the light Lb from the partner device.
In order to ensure that the light receiving element 9 does not deviate from the effective light receiving area of the signal detecting light receiving element 9, the center of the signal detecting light receiving element 9 and the light receiving element of the four-divided sensor 11 should Laser diode 13 when viewed from
It is necessary to make adjustments so as to coincide with the light emission point of.

【0008】レーザーダイオード13から出射した光束
は、レンズ群12によりほぼ平行光となり、偏光ビーム
スプリッタ6の境界面で反射され、更に光軸方向可変ミ
ラー5によって反射されて、送信光Laとして自装置から
図示しない相手側装置に投光される。一方、相手側装置
からの投光光は自装置に受信光Lbとして光軸方向可変部
4に入射し、光軸方向可変ミラー5で反射され、偏光ビ
ームスプリッタ6を通過して受光光分岐素子7に至り、
全受光量の約90%の光束が受光光分岐素子7を通過
し、レンズ群8により本信号検出用受光素子9に集光す
る。また、残りの全受光量の約10%の光束は受光光分
岐素子7で反射され、レンズ群10により4分割センサ
11に集光する。
The light beam emitted from the laser diode 13 becomes almost parallel light by the lens group 12, is reflected on the boundary surface of the polarizing beam splitter 6, is further reflected by the optical axis direction variable mirror 5, and is transmitted as transmission light La by itself. The light is emitted from the other device (not shown). On the other hand, the light projected from the partner device enters the optical device in the optical axis direction variable unit 4 as the received light Lb, is reflected by the optical axis direction variable mirror 5, passes through the polarization beam splitter 6, and passes through the polarization beam splitter 6 to receive light. 7
A light beam of about 90% of the total received light amount passes through the light receiving light splitting element 7 and is condensed by the lens group 8 on the signal detecting light receiving element 9. Further, a light beam of about 10% of the remaining amount of received light is reflected by the received light branching element 7 and condensed by the lens group 10 on the four-divided sensor 11.

【0009】4分割センサ11の受光面上での受光ビー
ムスポットSの位置ずれ情報は、信号処理部14を介し
て光軸ずれ補正信号として光軸方向制御部15に送ら
れ、光軸方向制御部15から光軸方向可変部4の駆動部
にミラー駆動用信号が送られる。この信号に基づいて駆
動部のモータが回転し、光軸方向可変ミラー5が図21
に示すように軸Fと軸Gの回りに回動する。
The positional deviation information of the light receiving beam spot S on the light receiving surface of the four-divided sensor 11 is sent to an optical axis direction control unit 15 as an optical axis deviation correction signal via a signal processing unit 14 to control the optical axis direction. The mirror driving signal is sent from the unit 15 to the driving unit of the optical axis direction variable unit 4. Based on this signal, the motor of the drive section rotates, and the optical axis direction variable mirror 5 is moved as shown in FIG.
As shown in FIG.

【0010】図22、図23はこのときの4分割センサ
11の受光面上の受光ビームスポットSの動きを示して
おり、可変ミラー5の軸Fの回りの回動は、受光ビーム
スポットSを図22の矢印に示すように受光面の上下方
向に移動し、可変ミラー5軸Gの周りの回動は、受光ビ
ームスポットSを図23の矢印に示すように受光面の右
上45度方向に移動する。このように、異なる2方向へ
受光ビームスポットSを移動する操作を繰り返して、受
光ビームスポットSの中心が4分割センサ11の受光部
有効域Uの中央の十字状分離体Tが交差する位置に至る
ように制御する。
FIGS. 22 and 23 show the movement of the light receiving beam spot S on the light receiving surface of the four-divided sensor 11 at this time, and the rotation of the variable mirror 5 about the axis F causes the light receiving beam spot S to move. The light receiving surface moves up and down as shown by the arrow in FIG. 22, and the rotation around the variable mirror 5 axis G causes the light receiving beam spot S to move in the upper right 45 ° direction of the light receiving surface as shown by the arrow in FIG. Moving. As described above, the operation of moving the light receiving beam spot S in two different directions is repeated, and the center of the light receiving beam spot S is located at the position where the cross-shaped separator T at the center of the light receiving section effective area U of the four-divided sensor 11 intersects. Control to reach.

【0011】このような光軸ずれ補正制御を、空間を隔
てて対向する双方向光通信装置において互いに行うこと
により、双方の送信ビームの広がりの中央部が、対向す
る装置のビーム取込口に常に一致する状態に維持するこ
とができる。この従来例の空間光通信装置では、装置を
対向設置して光軸合わせを行う際に、視準望遠鏡3を覗
いて、対向装置からのレーザー光Lb又は対向装置からの
位置確認用ストロボ光Lsが視準望遠鏡3内の交差する十
字線の中心に位置するように、通信用光学系2と視準望
遠鏡3とを一体化した光軸調整台1の姿勢調整機構を使
用して、水平・垂直の直交する2方向のあおり調整を行
っている。
By performing such optical axis misalignment correction control in two-way optical communication devices facing each other across a space, the central portion of the spread of both transmission beams is located at the beam inlet of the facing device. It can always be maintained in the same state. In this conventional spatial optical communication apparatus, when the optical axis alignment is performed by installing the apparatuses opposing each other, the collimating telescope 3 is looked into, and the laser light Lb from the opposing apparatus or the strobe light Ls for position confirmation from the opposing apparatus is used. Using the attitude adjustment mechanism of the optical axis adjustment table 1 in which the communication optical system 2 and the collimating telescope 3 are integrated, so that is located at the center of the crossing cross line in the collimating telescope 3, The tilt adjustment is performed in two perpendicular directions.

【0012】[0012]

【発明が解決しようとする課題】(1) しかしながら、上
述の従来例の双方向空間光通信システムにおいては、装
置を対向設置する際の光軸合わせ時に、装置に入射する
全受光量の10%しか利用できず、光軸合わせに利用可
能なビームと通信用ビームとが同じビーム径なために、
視準望遠鏡3等による対向装置の探索を十分慎重に行わ
ないと精度良く位置合わせすることができない。
(1) However, in the above-described conventional two-way spatial optical communication system, when the optical axes are aligned when the devices are opposed to each other, 10% of the total amount of light received by the devices is incident. Only available, and the beam that can be used for optical axis alignment and the communication beam have the same beam diameter,
If the search for the opposing device by the collimating telescope 3 or the like is not performed sufficiently carefully, accurate positioning cannot be performed.

【0013】(2) また、2つの受光素子へ分岐する受光
量の配分が一定なために、環境条件の変化に応じた効率
的な受光量配分の設定ができないという問題がある。
(2) Further, since the distribution of the amount of received light branched to the two light receiving elements is constant, there is a problem that it is not possible to set the distribution of the amount of received light efficiently according to a change in environmental conditions.

【0014】本発明の目的は、上述の問題点(1) を解消
し、装置設置時に対向装置の探索による照準作業を緩い
精度で、かつ短時間で光軸合わせができる空間光受信装
置を提供することにある。
An object of the present invention is to solve the above-mentioned problem (1) and to provide a spatial light receiving device capable of performing optical axis alignment in a short time with a low accuracy in aiming work by searching for an opposing device when installing the device. Is to do.

【0015】本発明の他の目的は、上述の問題点(2) を
解消し、通信時における環境の変化に応じて2つの受信
光検出部へ効率的な分岐受光量配分を設定してより多様
な環境条件で精度良く通信可能な空間光受信装置を提供
することである。
Another object of the present invention is to solve the above-mentioned problem (2) and to set an efficient distribution of the amount of branched received light to the two received light detectors according to a change in environment during communication. An object of the present invention is to provide a spatial light receiving device capable of communicating accurately under various environmental conditions.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る空間光受信装置は、第1の受光光学系と
本信号検出部から成る本信号検出手段と、第2の受光光
学系と受光ビームスポット位置検出部から成る光軸ずれ
検出手段と、前記第1及び第2の受光光学系に受信光を
分岐する受信光分岐手段と、前記第1及び第2の受光光
学系の共有受光光軸方向を変更する光軸方向可変手段
と、前記光軸ずれ検出手段からの光軸ずれ信号に基づき
前記光軸方向可変手段へ制御信号を送る光軸方向制御手
段とを有する空間光受信装置において、前記光軸ずれ検
出手段は、対向装置からの投光光を受光し受光面上の受
光ビームスポットの基準位置からの位置ずれ情報に基づ
いて受信光の光軸及び前記第2の受光光学系の光軸の光
軸ずれ信号を形成する信号処理部を備え、前記受信光分
岐手段は、前記第1及び第2の受光光学系に導く分岐受
光量を変更する分岐受光量可変部を備えたことを特徴と
する。
According to the present invention, there is provided a spatial light receiving apparatus comprising: a first light receiving optical system and a main signal detecting unit; and a second light receiving optical system. Optical axis deviation detecting means comprising a system and a light receiving beam spot position detecting part; receiving light branching means for branching received light to the first and second light receiving optical systems; Spatial light having an optical axis direction changing means for changing a shared light receiving optical axis direction, and an optical axis direction control means for sending a control signal to the optical axis direction changing means based on an optical axis deviation signal from the optical axis deviation detecting means. In the receiving device, the optical axis deviation detecting means receives the light projected from the opposing device, and detects the optical axis of the received light and the second position based on the positional deviation information of the light receiving beam spot on the light receiving surface from the reference position. Form an optical axis deviation signal of the optical axis of the light receiving optical system A signal processing unit, the received optical branching means comprising the branched light amount changing unit for changing the branch received light amount that leads to the first and second light receiving optical system.

【0017】[0017]

【発明の実施の形態】本発明を図1〜図18に図示の実
施例に基づいて詳細に説明する。図1は第1の実施例の
構成図を示し、受信光学系の光軸方向を偏向する光軸方
向可変部20の後方に、分岐受光量可変部21が入射光
に対して斜設して配置されている。分岐受光量可変部2
1の受信光分岐面21aは、図2に示すように入射光の
殆どを透過する領域H1と、入射光の約10%を透過して
約90%を反射する領域H2とを有し、分岐受光量の切換
方法は、分岐受光量可変部21を受信光分岐面21aに
沿って平行移動して光路中に領域H1又は領域H2を挿入す
ることにより行うようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows a configuration diagram of the first embodiment, in which a branched light reception amount variable unit 21 is provided obliquely with respect to incident light, behind an optical axis direction variable unit 20 for deflecting the optical axis direction of the receiving optical system. Are located. Dividing light amount variable section 2
As shown in FIG. 2, the first receiving light branch surface 21a has a region H1 that transmits most of the incident light and a region H2 that transmits approximately 10% of the incident light and reflects approximately 90% of the incident light. The method of switching the amount of received light is performed by parallelly moving the variable amount 21 of branched received light along the receiving light branch surface 21a and inserting the region H1 or the region H2 into the optical path.

【0018】分岐受光量可変部21の透過方向には、正
のパワーを有するレンズ群22と4分割受光素子23か
ら成る光軸ずれ検出部が配置されており、分岐受光量可
変部21の反射方向には、正のパワーを有するレンズ群
24と本信号検出用受光素子25が配置されている。そ
して、4分割受光素子23の出力は、信号処理部26、
光軸方向制御部27、光軸方向可変部20に順次に接続
されている。
In the transmission direction of the variable branched light receiving amount unit 21, an optical axis shift detecting unit including a lens group 22 having a positive power and a four-divided light receiving element 23 is arranged. In the direction, a lens group 24 having positive power and a light-receiving element 25 for signal detection are arranged. The output of the quadrant light receiving element 23 is output to the signal processing unit 26,
The optical axis direction control unit 27 and the optical axis direction variable unit 20 are sequentially connected.

【0019】上述の構成の受信装置で、所定距離を隔て
て対向配置された相手側の送信装置からの伝送ビームL
を受信する場合には、伝送ビームLは光軸方向可変部2
0に入射した後に、分岐受光量可変部21において受信
光分岐面21aの領域H1が光路中に挿入されていると、
入射光の殆どがレンズ群22を介して4分割受光素子2
3に集光する。一方、受信光分岐面21aの領域H2が光
路中に挿入されていると、入射光の約10%が4分割受
光素子23に集光し、約90%がレンズ群24を介して
本信号検出用受光素子25に集光する。
In the receiving apparatus having the above-described configuration, the transmission beam L from the transmitting apparatus on the opposite side, which is disposed at a predetermined distance from the transmitting apparatus on the opposite side, is used.
When the transmission beam L is received, the transmission beam L is
0, after the region H1 of the reception light branch surface 21a is inserted into the optical path in the branch light reception amount variable unit 21,
Most of the incident light passes through the lens group 22 and is divided into four light receiving elements 2
Focus on 3. On the other hand, when the region H2 of the receiving light splitting surface 21a is inserted in the optical path, about 10% of the incident light is condensed on the four-divided light receiving element 23, and about 90% of the signal is detected via the lens group 24. To the light receiving element 25 for use.

【0020】図3は送信装置からの伝送ビームLの光軸
が、受信地点を含む垂直断面と交叉する点を基準点Oと
したときの垂直断面内における伝送ビームLの強度分布
曲線C1を示している。2つの斜線領域D1が本信号検出用
受光素子25への取込入射光に受光量換算で対応し、2
つの斜線部D1に挟まれた領域D2が4分割受光素子23へ
の取込入射光に受光量換算で対応している。
FIG. 3 shows an intensity distribution curve C1 of the transmission beam L in the vertical section when the optical axis of the transmission beam L from the transmission device intersects with the vertical section including the receiving point as a reference point O. ing. The two shaded areas D1 correspond to the incident light taken into the light-receiving element 25 for signal detection in terms of the amount of received light.
An area D2 sandwiched between the two hatched portions D1 corresponds to the incident light taken into the four-divided light receiving element 23 in terms of the amount of received light.

【0021】対向設置時の光軸合わせを行う際に、従来
は伝送ビームLの光軸ずれが受信地点において幅O〜R1
以内となるように、視準望遠鏡により光軸合わせを行っ
た後に、光軸方向制御動作に入る。
Conventionally, when the optical axis is aligned at the time of the opposing installation, the optical axis deviation of the transmission beam L has a width O to R1 at the receiving point.
After the optical axis is adjusted by the collimating telescope so as to be within the range, the optical axis direction control operation is started.

【0022】しかし、本実施例の装置による対向設置時
の光軸合わせにおいては、分岐受光量可変部21で第1
の領域H1が光路内にあるように設定することにより、領
域D3の取込入射光は全て4分割受光素子23で受光でき
る。そして、受光ビームスポットの位置ずれ情報が信号
処理部26により光軸ずれ補正信号となって、光軸方向
制御部27に送られ、光軸方向可変部20において受光
光軸の制御動作が行われる。
However, in the optical axis alignment at the time of opposing installation by the apparatus of the present embodiment, the first variable
Is set in the optical path, all the incident light captured in the area D3 can be received by the four-divided light receiving element 23. Then, the positional deviation information of the light receiving beam spot is converted into an optical axis deviation correcting signal by the signal processing unit 26 and sent to the optical axis direction control unit 27, and the optical axis direction variable unit 20 controls the light receiving optical axis. .

【0023】従来例の光軸ずれ検出限界の受光量となる
伝送ビームLの強度P1のとき、伝送ビーム光軸からのず
れ幅をO〜R1とすると、本実施例では強度P1の10%程
度である伝送ビームLの強度P2となる地点R2まで光軸ず
れ検出が可能なので、許容ずれ幅はO〜R2となって従来
例より広くすることができる。従って、本実施例の受信
装置を用いることにより、従来例に比較して緩い精度
で、より速やかに受信装置の光軸合わせを行うことがで
きる。一方、対向する送信装置の光軸合わせについて
は、従来例のように高精度に光軸合わせを行った視準望
遠鏡によって、本実施例の受信装置との光軸合わせを行
う。
In the case of the intensity P1 of the transmission beam L which is the light receiving amount at the detection limit of the optical axis deviation in the conventional example, if the deviation width from the optical axis of the transmission beam is O to R1, in this embodiment, about 10% of the intensity P1 Since the optical axis deviation can be detected up to the point R2 at which the intensity P2 of the transmission beam L is obtained, the allowable deviation width becomes O to R2, which can be made wider than the conventional example. Therefore, by using the receiving apparatus of the present embodiment, the optical axis of the receiving apparatus can be more quickly adjusted with less accuracy than the conventional example. On the other hand, with respect to the optical axis alignment of the opposing transmitting apparatus, the optical axis alignment with the receiving apparatus of the present embodiment is performed by a collimating telescope having highly accurate optical axis alignment as in the conventional example.

【0024】このようにして、送・受双方の装置の光軸
合わせが終了した後に、受信装置の分岐受光量可変部2
1において、図2の第2の領域H2が光路内にあるように
設定することにより、通信可能な状態となる。
In this way, after the optical axis alignment of both the transmitting and receiving devices is completed, the branched light receiving amount varying unit 2 of the receiving device
In 1, communication is enabled by setting the second area H2 in FIG. 2 to be in the optical path.

【0025】受信装置における本信号検出用受光素子2
5は一般的に有効受光域が小さいために、装置が振動し
ても受光スポットSが有効受光域を外れないように、本
実施例のような光軸方向補正方式を使用する。一方、対
向する送信装置については、装置が振動しても伝送ビー
ムLが受信装置を外れない程度に、投光ビーム発散角が
設定されている。
Light-receiving element 2 for signal detection in a receiver
Since the effective light receiving area 5 is generally small, the optical axis direction correction method as in the present embodiment is used so that the light receiving spot S does not deviate from the effective light receiving area even when the apparatus is vibrated. On the other hand, for the opposing transmitting device, the divergence angle of the projection beam is set so that the transmission beam L does not deviate from the receiving device even if the device vibrates.

【0026】図4は第1の実施例の分岐受光量可変部2
1の変形例の正面図を示し、矩形状の平行平面部材に代
えて、入射光の殆どを透過する領域H1と入射光の約10
%を透過して約90%を反射する領域H2を有する扇状の
平行平板部材を使用している。扇状の要Iを回転軸とし
て矢印方向に回転移動し、2つの領域H1、H2の内の何れ
か一方が光路中に挿入するようになっている。
FIG. 4 shows a branch light receiving amount variable section 2 according to the first embodiment.
FIG. 6 is a front view of a modification of the first embodiment, in which a region H1 that transmits most of incident light and about 10% of incident light are used instead of a rectangular parallel plane member;
A fan-shaped parallel plate member having an area H2 that transmits about 90% and reflects about 90% is used. The fan-shaped pivot I is rotated in the direction of the arrow around the axis of rotation, and one of the two regions H1 and H2 is inserted into the optical path.

【0027】図5は他の変形例を示し、図2の分岐受光
量可変部21の第2の領域H2を、入射光束の約10%を
透過する中央部光束の領域H3と、入射光束の約90%を
反射する領域H4で構成されている。
FIG. 5 shows another modification, in which the second area H2 of the variable section 21 shown in FIG. 2 is divided into a central light beam area H3 that transmits about 10% of the incident light flux and an incident light flux H2. The region H4 reflects about 90%.

【0028】以上の実施例においては、受信光分岐面2
1aの第1の領域H1と第2の領域H2を切換える際に、受
光光軸に対する受信光分岐面21aの角度の設定誤差を
考慮して、分岐受光量可変部21の透過光が、4分割受
光素子23の受光面上に小さい位置ずれ範囲で導光され
るように、分岐受光量可変部21が配置されている。従
って、第1、第2領域H1、H2の切換えによる角度設定誤
差が問題ない精度で切換えが行われる場合には、図1に
おいてレンズ群22以降の光軸ずれ検出部と、レンズ群
24以降の本信号検出部とを入れ換えた構成とし、各領
域H1、H2の透過率と反射率とを逆にした受光量分岐面2
1aを有する分岐受光量可変部21を使用して、第1の
実施例と同様の効果を得ることができる。
In the above embodiment, the receiving light branch surface 2
When switching between the first area H1 and the second area H2 in FIG. 1a, the transmitted light of the branched light receiving amount variable section 21 is divided into four parts in consideration of the setting error of the angle of the receiving light branch surface 21a with respect to the light receiving optical axis. The branched light reception amount varying unit 21 is arranged so that the light is guided on the light receiving surface of the light receiving element 23 within a small displacement range. Therefore, when the switching is performed with high accuracy without an angle setting error caused by the switching between the first and second regions H1 and H2, the optical axis shift detecting unit after the lens group 22 and the lens group 24 and after in FIG. The light receiving amount branching surface 2 having a configuration in which the present signal detecting unit is replaced, and in which the transmittance and the reflectance of each of the regions H1 and H2 are reversed.
The same effect as that of the first embodiment can be obtained by using the branch light reception amount varying unit 21 having 1a.

【0029】更に、図6は分岐受光量可変部21の他の
変形例を示し、図5の受信光分岐面21aの第2の領域
H2の領域H3を中空部H5とした中空の平行平板H6を分岐受
光量可変部21として使用し、受光量分岐面21a内で
平行移動又は回転移動することにより、中空平行平板2
1bを光路内に入退出するようにしてもよい。
FIG. 6 shows another modified example of the branching light receiving amount variable section 21. The second area of the receiving light branching surface 21a shown in FIG.
A hollow parallel flat plate H6 having a hollow portion H5 as an area H3 of the H2 is used as a branching light receiving amount variable portion 21 and is translated or rotated within the light receiving amount branching surface 21a, so that the hollow parallel flat plate 2 is formed.
1b may enter and exit the optical path.

【0030】また、図7に示すように受光量分岐面21
a内で、かつ入射光束外にある回転軸Zの回りに回転さ
せることによって、中空平行平板21bを光路内に入退
出して、図5の受光量分岐面21aを有する分岐受光量
可変部21と同様の効果を得ることもできる。
Further, as shown in FIG.
a, the hollow parallel flat plate 21b enters and exits the optical path by rotating about a rotation axis Z outside the incident light beam, and the branched light reception amount variable unit 21 having the light reception amount branch surface 21a in FIG. The same effect can be obtained.

【0031】図8は第2の実施例の受信光分岐面の正面
図を示し、受信装置に4つの領域M1〜M4から成る受光分
岐面21aを有する分岐受光量可変部21を配置し、光
路中に各領域M1〜M4が入退出できるようにする。第1の
領域M1は図2の領域H1と同様に入射光の殆どを通過し、
第2〜第4の領域M2〜M4は、入射光束を殆ど通過する中
央部N1〜N3を有し、その他の斜線分は光束を殆ど反射す
る。そして、第3の領域M3の通過領域N2は第2の領域M2
の通過領域N1より小さくされており、第4の領域M4の通
過領域N3は更に小さく、この領域M4では入射光の殆どを
反射するようになっている。
FIG. 8 is a front view of a receiving light splitting surface according to a second embodiment, in which a receiving light variable portion 21 having a light receiving splitting surface 21a including four regions M1 to M4 is disposed in a receiving apparatus. Each area M1 to M4 can enter and exit. The first area M1 passes most of the incident light, as does the area H1 in FIG.
The second to fourth regions M2 to M4 have central portions N1 to N3 that almost pass the incident light beam, and the other oblique line segments almost reflect the light beam. The passing area N2 of the third area M3 is the second area M2
Is smaller than the passing area N1, and the passing area N3 of the fourth area M4 is even smaller. In this area M4, most of the incident light is reflected.

【0032】第1の領域M1と第3の領域M3との切換え
は、第1の実施例と同様に装置を対向設置する際の光軸
合わせ時に利用する。第2から第4の領域M2〜M4は、通
信時における環境変化に応じて、円板状受光分岐面の中
心Kを回転軸として回転して、何れかの領域M2〜M4を選
択設定するようにされている。
The switching between the first area M1 and the third area M3 is used at the time of optical axis alignment when the apparatus is installed facing the same as in the first embodiment. The second to fourth regions M2 to M4 rotate around the center K of the disc-shaped light receiving / branching surface as a rotation axis in accordance with an environmental change during communication, and select and set any one of the regions M2 to M4. Has been.

【0033】例えば、図9は通信時の対向装置間の伝送
空間の透明度が通信開始時に比べて向上した場合に、送
信装置からの伝送ビームLの光軸が受信地点を含む垂直
断面と交叉する点を基準点Oとした場合の、垂直断面内
における伝送ビームLの強度分布を示している。通信開
始時の伝送ビームLは曲線C2に示すような強度分布を示
し、受信装置の分岐受光量可変部21において、図8の
第3の領域M3が光路中に挿入されているときの受信装置
の本信号検出用受光素子26への入射光取入領域を斜線
部D3で示し、4分割受光素子24への入射光取入領域を
2つの斜線部D3に挟まれた点線部D4で示している。
For example, FIG. 9 shows that the optical axis of the transmission beam L from the transmitting device intersects the vertical section including the receiving point when the transparency of the transmission space between the opposing devices at the time of communication is improved as compared to when the communication starts. The intensity distribution of the transmission beam L in the vertical section when the point is set as the reference point O is shown. The transmission beam L at the start of communication shows an intensity distribution as shown by a curve C2, and the receiving device when the third region M3 in FIG. The hatched area D3 indicates the area where the light is incident on the light-receiving element 26 for signal detection of the present invention, and the dotted area D4 sandwiched between the two shaded areas D3 indicates the area where the light is incident on the four-divided light-receiving element 24. I have.

【0034】所定時間経過後に伝送空間の透明度が向上
し、伝送ビームLの強度分布が曲線C3のようになったと
すると、受信装置の分岐受光量可変部21において、第
2の領域M2が光路中に入るように設定して、4分割受光
素子24への取込み入射光量を多くして点線部D5のよう
に広くし、本信号検出用受光素子26への取込入射光量
を少なくして斜線部D6となるように設定する。そして、
このとき送信装置から送信する光軸方向制御用信号レベ
ルを小さくすることによって、一層高品質な本信号を得
ることができる。
Assuming that the transparency of the transmission space has been improved after a predetermined time has elapsed and the intensity distribution of the transmission beam L has become as shown by the curve C3, the second area M2 is located on the optical path in the branching light receiving amount variable section 21 of the receiving apparatus. , The incident light amount to the four-divided light receiving element 24 is increased to increase the amount as indicated by the dotted line D5, and the incident light amount to the present signal detecting light receiving element 26 is reduced to reduce the shaded part. Set to be D6. And
At this time, by reducing the level of the optical axis direction control signal transmitted from the transmitting device, a higher quality main signal can be obtained.

【0035】本実施例の機能をより効果的に発揮させる
ために、4分割受光素子24で受光する受信光強度を検
出する受光強度検出回路を設けて、一定レベル以上の光
強度の受光状態が一定時間以上継続したときに点灯する
アラームランプを確認した後に、上述の操作を行うよう
にするとよい。
In order to more effectively exert the function of the present embodiment, a light receiving intensity detecting circuit for detecting the intensity of the received light received by the four-division light receiving element 24 is provided. The above-described operation may be performed after confirming the alarm lamp that is turned on when the operation is continued for a predetermined time or more.

【0036】次に、図10は例えば通信時の対向装置間
の伝送空間の透明度が通信時に比較して低下し、かつ対
向する両装置の揺れが小さい場合に通信を行うときの伝
送ビームLの強度分布のグラフ図を示す。図9と同様
に、曲線C2は通信開始時の伝送ビームLの強度分布曲
線、2つの斜線部D5は本信号検出用受光素子26への入
射光取入領域、斜線部D5に挟まれた点線部D6は4分割受
光素子24への入射光取入領域である。
Next, FIG. 10 shows, for example, the case where the transparency of the transmission space between the opposing devices at the time of communication is lower than that at the time of communication, and the shaking of both opposing devices is small. FIG. 4 shows a graph of an intensity distribution. Similarly to FIG. 9, the curve C2 is the intensity distribution curve of the transmission beam L at the start of communication, the two hatched parts D5 are the area where the incident light enters the signal detection light-receiving element 26, and the dotted line between the hatched parts D5. The portion D6 is a region where the incident light enters the four-divided light receiving element 24.

【0037】通信開始から所定時間経過後に、伝送空間
の透明度が低下して伝送ビームLの強度分布が曲線C4の
ようになったとすると、受信装置の振動が小さい場合に
は、受信装置の光軸方向制御を最終状態に保持するよう
に制御し、分岐受光量可変部21で第4の領域M4が光路
に入るように切換えると、本信号検出用受光素子26へ
の入射光取入領域は斜線部D7に示すようになって、本信
号検出用受光素子26における受光量低下を補うことが
できる。このとき、遠隔通話手段を用いて送信側の光軸
方向制御用信号レベルを小さくするよう指示して、信号
合波による本信号への悪影響を抑えることにより、本信
号のS/Nを向上することができる。
Assuming that after a predetermined time has elapsed from the start of communication, the transparency of the transmission space has decreased and the intensity distribution of the transmission beam L has become as shown by a curve C4. If the vibration of the receiving device is small, the optical axis of the receiving device When the direction control is controlled so as to be maintained in the final state, and the fourth area M4 is switched so that the fourth area M4 enters the optical path by the branch light receiving amount variable section 21, the area where the incident light is introduced into the light detecting element 26 for signal detection is hatched. As shown in the section D7, it is possible to compensate for a decrease in the amount of light received by the signal detection light-receiving element 26. At this time, the signal level for controlling the optical axis direction on the transmitting side is instructed to be reduced by using the remote communication means, thereby suppressing an adverse effect on the signal due to signal multiplexing, thereby improving the S / N of the signal. be able to.

【0038】本実施例の機能をより効果的に発揮させる
ためには、受信装置に4分割受光素子24の受信光強度
を検出する受光強度検出回路と、振動センサ等の振動検
出手段とを設け、一定レベル以下の光強度の受光状態が
一定時間継続したときや、一定レベル以下の振動状態が
一定時間継続したときに点灯するアラームランプを確認
した後に、遠隔通話手段を用いて双方の状態を連絡し
て、上述と同様の操作を行うようにするとよい。
In order to more effectively exert the function of the present embodiment, the receiving apparatus is provided with a light receiving intensity detecting circuit for detecting the received light intensity of the four-divided light receiving element 24 and vibration detecting means such as a vibration sensor. After confirming the alarm lamp that is lit when the light receiving state of light intensity below a certain level continues for a certain period of time or when the vibration state below a certain level continues for a certain period of time, both states are checked using the remote communication means. It is good to contact and perform the same operation as above.

【0039】図11、図12は第3の実施例の構成図を
示し、光軸方向可変部20の背後に、第1の実施例の分
岐受光量可変部21に代えて、受信光分岐面21aの位
置に光路に斜めに液晶層30が配置され、入射光側及び
反射光側は光線に対して略垂直な平面となる硝子ブロッ
ク31が配置され、液晶の光学的異方性を利用して光路
の切換えを行うようになっている。その他の構成は図1
と同様であり、同じ符号は同じ部材を表している。
FIGS. 11 and 12 show the configuration of the third embodiment, in which a receiving light branch surface is provided behind the optical axis direction variable unit 20 instead of the branch light receiving amount variable unit 21 of the first embodiment. A liquid crystal layer 30 is disposed obliquely in the optical path at the position 21a, and a glass block 31 is disposed on the incident light side and the reflected light side, which is a plane substantially perpendicular to the light rays, and utilizes the optical anisotropy of the liquid crystal. The optical path is switched over. Other configurations are shown in FIG.
The same reference numerals denote the same members.

【0040】硝子ブロック31は、図13に示すように
楕円状の中空孔30aを有する液晶層30が挟持されて
おり、液晶層30の表裏には透明電極32が蒸着等によ
り形成されている。透明電極32のリード線コンタクト
部33aにはリード線が溶接され、リード線によって電
源33と分岐受光量切換スイッチ34が連結されてい
る。
As shown in FIG. 13, the glass block 31 has a liquid crystal layer 30 having an elliptical hollow hole 30a interposed therebetween. Transparent electrodes 32 are formed on the front and back of the liquid crystal layer 30 by vapor deposition or the like. A lead wire is welded to the lead wire contact portion 33a of the transparent electrode 32, and the power supply 33 and the branch light receiving amount switch 34 are connected by the lead wire.

【0041】図11に示すように、受信光伝送ビームL
が紙面に平行平面内に偏光面のあるP偏光光Lpの場合に
は、分岐受光量切換スイッチ34をオンにすると、入射
光は殆ど全て4分割受光素子23へ透過する。次に、図
12に示すように分岐受光量切換スイッチ34をオフに
すると、液晶層30への入射光は殆ど反射して、中央部
の光束のみ4分割受光素子23に到達し、液晶層30か
らの反射光は本信号検出用受光素子25に導かれる。こ
のように、分岐受光量切換スイッチ34をオン・オフす
ることによって、図5に示した受光量分岐面21aを有
する第1の実施例と同様な効果を得ることができる。
As shown in FIG. 11, the received light transmission beam L
Is a P-polarized light Lp having a plane of polarization within a plane parallel to the plane of the drawing, when the switch 34 is turned on, almost all of the incident light is transmitted to the four-divided light receiving element 23. Next, as shown in FIG. 12, when the switch 34 is turned off, most of the light incident on the liquid crystal layer 30 is reflected, and only the light flux at the center reaches the four-division light receiving element 23. The reflected light from is guided to the signal detection light receiving element 25. In this way, by turning on / off the branch light receiving amount switch 34, the same effect as in the first embodiment having the light receiving amount branch surface 21a shown in FIG. 5 can be obtained.

【0042】また、図14に示すように受光量分岐面2
1aは、中央楕円部の透明電極32aとそれ以外の周辺
部の透明電極32bから形成され、第1のスイッチに連
結するリード線コンタクト部33aと、第2のスイッチ
に連結するリード線コンタクト部33bが設けられ、第
1のスイッチと第2のスイッチのオン・オフの組み合わ
せを変えることによって、図8に示した受光分岐面21
aを有する第2の実施例と同様な効果を得ることができ
る。両スイッチのオン・オフの組み合わせによって、第
2の実施例と等価となる受光分岐面21aの切換領域の
対応表を次に示す。
Further, as shown in FIG.
1a is formed of a transparent electrode 32a of a central elliptical portion and a transparent electrode 32b of the other peripheral portion, and is provided with a lead wire contact portion 33a connected to the first switch and a lead wire contact portion 33b connected to the second switch. Is provided, and by changing the on / off combination of the first switch and the second switch, the light receiving branch surface 21 shown in FIG.
The same effect as in the second embodiment having a can be obtained. A correspondence table of the switching area of the light receiving branch surface 21a which is equivalent to the second embodiment by the combination of the ON and OFF of the two switches is shown below.

【0043】 第1のスイッチ 第2のスイッチ 切換領域 オン オン 第1の領域M1 オフ オン 第2の領域M2 オン オフ 第3の領域M3 オフ オフ 第4の領域M4First switch Second switch Switching area ON ON First area M1 OFF ON Second area M2 ON OFF Third area M3 OFF OFF Fourth area M4

【0044】第2、第3の実施例においては、通信時の
環境の変化に応じて2つの受信光受光素子24、26へ
の最適な分岐受光量を設定できるようにしたことによ
り、より多様な環境条件下でより高品質な通信を行うこ
とができる。
In the second and third embodiments, the optimum amount of branched light received by the two receiving light receiving elements 24 and 26 can be set in accordance with a change in the environment during communication. It is possible to perform higher quality communication under an environmental condition.

【0045】図15、図16は第4の実施例の構成図を
示し、紙面に平行平面内に偏光面を有するP偏光光Lpの
入射光を殆ど透過し、P偏光光Lpと偏光方向が直交する
S偏光光Lsの入射光を殆ど反射する偏光分離面40aを
有する偏光ビームスプリッタ40と、入射光の偏光方向
を変えるための1/2波長板41とが受信光入射側に配
置されている。
FIGS. 15 and 16 show the configuration of the fourth embodiment, in which the incident light of the P-polarized light Lp having a polarization plane in a plane parallel to the plane of the paper is almost transmitted, and the polarization direction of the P-polarized light Lp is changed. A polarization beam splitter 40 having a polarization splitting surface 40a that almost reflects the incident light of the orthogonal S-polarized light Ls, and a half-wave plate 41 for changing the polarization direction of the incident light are arranged on the reception light incident side. I have.

【0046】偏光分離面40aは図5に示す受光分岐面
21aの第2の領域H2と同様に、その中央部が全偏光成
分を透過する中空部となっている。また、1/2波長板
41は図17に示すように光学軸Yを角度θだけ右回転
すると、入射光の偏向方向Zが、1/2波長板41出射
直後に垂直方向から角度2θだけ右回転する性質を有し
ている。
As in the case of the second region H2 of the light receiving / branching surface 21a shown in FIG. 5, the center of the polarization splitting surface 40a is a hollow portion that transmits all polarized light components. When the 波長 wavelength plate 41 rotates the optical axis Y clockwise by an angle θ as shown in FIG. 17, the deflection direction Z of the incident light is shifted rightward by an angle 2θ from the vertical direction immediately after exiting the 波長 wavelength plate 41. It has the property of rotating.

【0047】図15において、1/2波長板41の角度
θは0度又は90度となっており、P偏光光Lpの入射光
が殆ど偏光ビームスプリッタ40を透過して4分割受光
素子23に受光される。一方、図16においては、1/
2波長板41の角度θは45度となって透過光はS偏光
光Lsとなり、偏光ビームスプリッタ40の偏光分離面4
0aの中空部を通った光だけが4分割受光素子23に至
り、他の光束は偏光分離面40aに反射されて本信号用
受光素子25に受光される。
In FIG. 15, the angle θ of the half-wave plate 41 is 0 degree or 90 degrees, and almost all the incident light of the P-polarized light Lp passes through the polarizing beam splitter 40 and enters the four-divided light receiving element 23. Received. On the other hand, in FIG.
The angle θ of the two-wavelength plate 41 becomes 45 degrees, the transmitted light becomes S-polarized light Ls, and the polarization splitting surface 4 of the polarization beam splitter 40 becomes
Only the light that has passed through the hollow portion 0a reaches the quadrant light receiving element 23, and the other light flux is reflected by the polarization separation surface 40a and received by the main signal light receiving element 25.

【0048】図18は1/2波長板41の光学軸Yの回
転角θと2つの受信光受光素子24、26への分岐受光
量を示す。光軸ずれ検出部の4分割受光素子23の受光
量を曲線C5で表し、本信号検出部の受光素子25の受光
量を曲線C6で表している。これによって、2つの受信光
の受光素子23、25への分岐受光量を連続的に変化さ
せながら、図8に示した受光量分岐面21aを有する第
1の実施例の第1、第2、第3の領域M1、M2、M3を利用
する場合と同様な効果を得ることができる。
FIG. 18 shows the rotation angle θ of the optical axis Y of the half-wave plate 41 and the amount of light received by the two receiving light receiving elements 24 and 26. The amount of light received by the four-divided light receiving element 23 of the optical axis deviation detecting unit is represented by a curve C5, and the amount of light received by the light receiving element 25 of the present signal detecting unit is represented by a curve C6. Accordingly, the first, second, and second embodiments of the first embodiment having the light reception amount branch surface 21a shown in FIG. The same effect as in the case where the third regions M1, M2, and M3 are used can be obtained.

【0049】なお、偏光方向回転手段として1/2波長
板の代りにファラディ回転子を使用することもできる。
更に、受信光が直線偏光でなく円偏光の場合には、1/
2波長板41の受信光入射側に1/4波長板を配置し
て、円偏光を直線偏光に変換することによって、本実施
例と同様の効果を得ることができる。
It should be noted that a Faraday rotator can be used instead of the half-wave plate as the polarization direction rotating means.
Further, when the received light is not linearly polarized light but circularly polarized light, 1 /
By arranging a quarter-wave plate on the receiving light incident side of the two-wave plate 41 and converting circularly polarized light into linearly polarized light, the same effect as in the present embodiment can be obtained.

【0050】[0050]

【発明の効果】以上説明したように本発明に係る空間光
受信装置は、本信号検出手段と光軸ずれ検出手段へ導光
する分岐受光量を変更するようにしたことにより、装置
設置時の光軸合わせにおいて、通信光学系の光軸と対向
装置探索用の照準光軸との平行度を要求精度より緩める
ことができるので、より短時間で光軸合わせを行うこと
ができ、装置全体の製造コストを下げることができる。
As described above, in the spatial light receiving apparatus according to the present invention, the amount of branched light received to be guided to the signal detecting means and the optical axis deviation detecting means is changed, so that the spatial light receiving apparatus can be installed at the time of installation. In the optical axis alignment, since the parallelism between the optical axis of the communication optical system and the aiming optical axis for searching for the opposing device can be loosened from the required accuracy, the optical axis alignment can be performed in a shorter time, and the entire device can be aligned. Manufacturing costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】受信光分岐面の正面図である。FIG. 2 is a front view of a receiving light branch surface.

【図3】受光状況のグラフ図である。FIG. 3 is a graph showing a light receiving state.

【図4】他の受信光分岐面の正面図である。FIG. 4 is a front view of another reception light branch surface.

【図5】更に他の受信光分岐面の正面図である。FIG. 5 is a front view of still another receiving light branching surface.

【図6】変形例の分岐受光量可変部の斜視図である。FIG. 6 is a perspective view of a branch light reception amount variable unit according to a modification.

【図7】他の変形例の分岐受光量可変部の斜視図であ
る。
FIG. 7 is a perspective view of a branch light reception amount variable unit according to another modification.

【図8】第2の実施例の受信光分岐面の正面図である。FIG. 8 is a front view of a receiving light branch surface of the second embodiment.

【図9】受光状況のグラフ図である。FIG. 9 is a graph showing a light receiving state.

【図10】受光状況のグラフ図である。FIG. 10 is a graph showing a light receiving state.

【図11】第3の実施例の構成図である。FIG. 11 is a configuration diagram of a third embodiment.

【図12】切換スイッチオフ時の構成図である。FIG. 12 is a configuration diagram when a changeover switch is off.

【図13】受信光分岐面の斜視図である。FIG. 13 is a perspective view of a receiving light branch surface.

【図14】他の受信光分岐面の斜視図である。FIG. 14 is a perspective view of another reception light branch surface.

【図15】第4の実施例の構成図である。FIG. 15 is a configuration diagram of a fourth embodiment.

【図16】1/2波長板回転時の構成図である。FIG. 16 is a configuration diagram when a half-wave plate rotates.

【図17】1/2波長板の性質の説明図である。FIG. 17 is an explanatory diagram of properties of a half-wave plate.

【図18】分岐受光量変化のグラフ図である。FIG. 18 is a graph showing a change in the amount of branched received light.

【図19】従来例の構成図である。FIG. 19 is a configuration diagram of a conventional example.

【図20】受信光分岐面の正面図である。FIG. 20 is a front view of a receiving light branch surface.

【図21】光軸方向可変ミラーの斜視図である。FIG. 21 is a perspective view of an optical axis direction variable mirror.

【図22】4分割センサの正面図である。FIG. 22 is a front view of a quadrant sensor.

【図23】4分割センサの正面図である。FIG. 23 is a front view of the quadrant sensor.

【符号の説明】[Explanation of symbols]

20 光軸方向可変部 21 分岐受光量可変部 21a 受信光分岐面 21b 中空平行平板 23 4分割受光素子 25 本信号検出用受光素子 26 信号処理部 27 光軸方向制御部 30 液晶層 31 硝子ブロック 32 透明電極 34 分岐受光量切換スイッチ 40 偏光ビームスプリッタ 40a 偏光分離面 41 1/2波長板 REFERENCE SIGNS LIST 20 optical axis direction variable section 21 branched light receiving amount variable section 21 a receiving light branch surface 21 b hollow parallel plate 23 quadrant light receiving element 25 light receiving element for signal detection 26 signal processing section 27 optical axis direction control section 30 liquid crystal layer 31 glass block 32 Transparent electrode 34 Branch light receiving amount selection switch 40 Polarization beam splitter 40a Polarization separation surface 41 1/2 wavelength plate

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 第1の受光光学系と本信号検出部から成
る本信号検出手段と、第2の受光光学系と受光ビームス
ポット位置検出部から成る光軸ずれ検出手段と、前記第
1及び第2の受光光学系に受信光を分岐する受信光分岐
手段と、前記第1及び第2の受光光学系の共有受光光軸
方向を変更する光軸方向可変手段と、前記光軸ずれ検出
手段からの光軸ずれ信号に基づき前記光軸方向可変手段
へ制御信号を送る光軸方向制御手段とを有する空間光受
信装置において、前記光軸ずれ検出手段は、対向装置か
らの投光光を受光し受光面上の受光ビームスポットの基
準位置からの位置ずれ情報に基づいて受信光の光軸及び
前記第2の受光光学系の光軸の光軸ずれ信号を形成する
信号処理部を備え、前記受信光分岐手段は、前記第1及
び第2の受光光学系に導く分岐受光量を変更する分岐受
光量可変部を備えたことを特徴とする空間光受信装置。
A first signal detecting means comprising a first light receiving optical system and a main signal detecting unit; an optical axis deviation detecting means comprising a second light receiving optical system and a light receiving beam spot position detecting unit; Receiving light splitting means for splitting received light into a second light receiving optical system, optical axis direction changing means for changing a shared light receiving optical axis direction of the first and second light receiving optical systems, and optical axis shift detecting means An optical axis direction control means for transmitting a control signal to the optical axis direction variable means based on an optical axis deviation signal from the optical axis deviation detecting means, wherein the optical axis deviation detecting means receives light projected from the opposing device. A signal processing unit that forms an optical axis shift signal of an optical axis of the received light and an optical axis of the second light receiving optical system based on positional shift information from a reference position of the light receiving beam spot on the light receiving surface; Receiving light branching means, the first and second light receiving optical systems; A spatial light receiving device provided with a branch light receiving amount variable section for changing a branch light receiving amount leading to the light.
【請求項2】 前記分岐受光量可変部は、装置設置の際
の光軸合わせ時には前記第1の受光光学系よりも前記第
2の受光光学系への分岐受光量が多くなり、通信時には
前記第2の受光光学系よりも前記第1の受光光学系への
分岐受光量が多くなるように設定する請求項1に記載の
空間光受信装置。
2. The optical system according to claim 1, wherein when the optical axis is aligned at the time of installation of the apparatus, the amount of light received by the second light receiving optical system is larger than that of the first light receiving optical system. 2. The spatial light receiving device according to claim 1, wherein the amount of light received by the first light receiving optical system is set to be larger than that of the second light receiving optical system. 3.
【請求項3】 前記分岐受光量可変部は、通信時に受光
量が変化したときには受光光学系への分岐受光量を変化
させる請求項1に記載の空間光受信装置。
3. The spatial light receiving device according to claim 1, wherein the branch light receiving amount variable section changes a branch light receiving amount to the light receiving optical system when the light receiving amount changes during communication.
【請求項4】 受信光強度を検出する受光強度検出手段
と、装置の振動状況を検出する振動検出手段とを備えた
請求項3に記載の空間光受信装置。
4. The spatial light receiving device according to claim 3, further comprising: a received light intensity detecting means for detecting a received light intensity; and a vibration detecting means for detecting a vibration state of the device.
【請求項5】 前記分岐受光量可変部は、前記第1及び
第2の受光光学系への受信光分岐面において透過率及び
反射率を変更するようにした請求項1に記載の空間光受
信装置。
5. The spatial light receiving device according to claim 1, wherein the branch light receiving amount variable section changes a transmittance and a reflectance on a receiving light branch surface to the first and second light receiving optical systems. apparatus.
【請求項6】 前記分岐受光量可変部は、前記第1及び
第2の受光光学系への受信光分岐面において透過面積及
び反射面積を変更するようにした請求項1に記載の空間
光受信装置。
6. The spatial light receiving device according to claim 1, wherein the branch light receiving amount variable section changes a transmission area and a reflection area on a receiving light branch surface to the first and second light receiving optical systems. apparatus.
【請求項7】 前記分岐受光量可変部は、前記第1及び
第2の受光光学系への受光量配分の異なる複数個の領域
と、これらの各領域を切換える領域切換手段とを有し、
前記第1及び第2の受光光学系への分岐受光量を変更す
るようにした請求項5又は請求項6に記載の空間光受信
装置。
7. The branch light receiving amount variable section includes a plurality of regions having different light receiving amount distributions to the first and second light receiving optical systems, and region switching means for switching each of these regions.
7. The spatial light receiving apparatus according to claim 5, wherein the amount of light received by the first and second light receiving optical systems is changed.
【請求項8】 前記領域切換手段は、受光量分岐面がそ
の平面内において平行移動又は回転移動して前記各領域
の切換えを行う請求項7に記載の空間光受信装置。
8. The spatial light receiving device according to claim 7, wherein the area switching means switches the respective areas by parallel or rotational movement of the light receiving amount branch surface within the plane.
【請求項9】 前記分岐受光量可変部は、前記受信光分
岐面を光路内で入退出させることによって前記第1及び
第2の受光光学系への分岐受光量を変更するようにした
請求項5に記載の空間光受信装置。
9. The branch light receiving amount variable section changes the amount of light received by the first and second light receiving optical systems by moving the receiving light branch surface in and out of the optical path. 6. The spatial light receiving device according to 5.
【請求項10】 前記受信光分岐面は液晶層で構成さ
れ、前記透過面積及び反射面積の変更を液晶層への印加
電圧の切換えによって行う請求項6に記載の空間光受信
装置。
10. The spatial light receiving device according to claim 6, wherein the reception light branch surface is formed of a liquid crystal layer, and the transmission area and the reflection area are changed by switching a voltage applied to the liquid crystal layer.
JP10017804A 1998-01-14 1998-01-14 Space light receiver Pending JPH11205234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017804A JPH11205234A (en) 1998-01-14 1998-01-14 Space light receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017804A JPH11205234A (en) 1998-01-14 1998-01-14 Space light receiver

Publications (1)

Publication Number Publication Date
JPH11205234A true JPH11205234A (en) 1999-07-30

Family

ID=11953924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017804A Pending JPH11205234A (en) 1998-01-14 1998-01-14 Space light receiver

Country Status (1)

Country Link
JP (1) JPH11205234A (en)

Similar Documents

Publication Publication Date Title
US5627669A (en) Optical transmitter-receiver
US6787745B2 (en) Fiber optic signal detector with two switchable input channels
US7473867B2 (en) Laser machining apparatus
US4760407A (en) Laser printing apparatus with device for combining a plurality of optical beams provided with an integral-order wave plate
US6384944B1 (en) Integral transmitter-receiver optical communication apparatus
JP2004212205A (en) Angle detecting apparatus, light signal switching system, and information recording and reproducing system
JPH05173087A (en) Automatic focus scanning type optical device
US7554650B2 (en) Laser beam projecting device
US7092076B2 (en) Surveying instrument
US6906838B2 (en) Systems and methods for routing optical beams along optical paths using steerable mirrors
JPH11205234A (en) Space light receiver
JP2002196270A (en) Laser lithography system
JPH05145496A (en) Two-way optical transmitter
US6701093B1 (en) Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor
JP3192359B2 (en) Space optical communication equipment
JP3220344B2 (en) Space optical communication equipment
EP1041361A2 (en) Tracking system for automatic survey instrument
JPH11205235A (en) Space optical communication system
JPH11211557A (en) Light projector-receptor
JP3517262B2 (en) Optical axis adjusting device and optical axis adjusting method
JP2006091377A (en) Inner drum exposure system
JPH0888602A (en) Space optical communication equipment
JPH08149077A (en) Optical space communication device
JP3683964B2 (en) Laser surveying equipment
JP2000171293A (en) Light emitting and receiving apparatus